18
Min Soo KIM Department of Mechanical and Aerospace Engineering Seoul National University Optimal Design of Energy Systems (M2794.003400) Chapter 8. Lagrange Multipliers

Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

  • Upload
    others

  • View
    18

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

Min Soo KIM

Department of Mechanical and Aerospace EngineeringSeoul National University

Optimal Design of Energy Systems (M2794.003400)

Chapter 8. Lagrange Multipliers

Page 2: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

Chapter 8. Lagrange Multipliers

8.1 Calculus Methods of optimization

- Differentiable function

- Equality constraints

Using calculus Using the other methods

2/18

- Inequaility constraints

- Not continuous function

Page 3: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

Chapter 8. Lagrange Multipliers

8.2 Lagrange Multiplier equations

3/18

Function : ๐‘ฆ = ๐‘ฆ ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘›

Constraints : ๐œ™1 ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘› = 0

๐œ™2 ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘› = 0

๐œ™๐‘š ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘› = 0

โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™

How to optimize the function subject to the constraints?

Page 4: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

Chapter 8. Lagrange Multipliers

8.2 Lagrange Multiplier equations

4/18

For an optimized point function f(x,y) and g(x,y) are parallel, which meansgradient of f(x,y) is tangent to that of g(x,y)

Thus, for a certain constant ฮป, equation below is established

For multiple m constraints

๐›ป๐‘“ ๐‘ฅ, ๐‘ฆ = ๐œ†๐›ป๐‘” ๐‘ฅ, ๐‘ฆ

๐›ป๐‘“ =

๐‘˜=1

๐‘š

๐œ†๐‘š๐›ป๐‘”๐‘š = 0

Page 5: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

Chapter 8. Lagrange Multipliers

8.3 The gradient vector

Gradient of scalar

๐›ป๐‘ฆ =๐œ•๐‘ฆ

๐œ•๐‘ฅ1 ๐‘–1 +

๐œ•๐‘ฆ

๐œ•๐‘ฅ2 ๐‘–2 +โ‹ฏ+

๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘› ๐‘–๐‘›

๐›ป = ๐‘”๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘’๐‘›๐‘ก ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘– = ๐‘ข๐‘›๐‘–๐‘ก ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ โˆถ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›, ๐‘ข๐‘›๐‘–๐‘ก ๐‘š๐‘Ž๐‘”๐‘›๐‘–๐‘ก๐‘ข๐‘‘๐‘’

( ๐‘–1, ๐‘–2 , ๐‘–3 ๐‘Ž๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ข๐‘›๐‘–๐‘ก ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3 ๐‘‘๐‘–๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›)

5/18

Page 6: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

* *

1 1,m nx x

at optimum point

unknowns

m

n

m n

m nif fixed values of xโ€™s(no optimization)

Chapter 8. Lagrange Multipliers

8.4 Further explanation of Lagrange multiplier equations

n scalar equations

๐‘–1:๐œ•๐‘ฆ

๐œ•๐‘ฅ1โˆ’ ๐œ†1

๐œ•๐œ™1

๐œ•๐‘ฅ1โˆ’ ๐œ†๐‘š

๐œ•๐œ™๐‘š

๐œ•๐‘ฅ1= 0

โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™โˆ™

๐‘–๐‘›:๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘›โˆ’ ๐œ†1

๐œ•๐œ™1

๐œ•๐‘ฅ๐‘›โˆ’ ๐œ†๐‘š

๐œ•๐œ™๐‘š

๐œ•๐‘ฅ๐‘›= 0

+ m constraint equations m+n simultaneous equations

6/18

optimum point can be found

Page 7: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

8.5 Unconstrained optimization

Chapter 8. Lagrange Multipliers

๐‘ฆ = ๐‘ฆ ๐‘ฅ1, ๐‘ฅ2,โ‹ฏ , ๐‘ฅ๐‘›

โ†’ ๐›ป๐‘ฆ = 0 no ฯ•โ€ฒ๐‘  ๐‘œ๐‘Ÿ๐œ•๐‘ฆ

๐œ•๐‘ฅ1=

๐œ•๐‘ฆ

๐œ•๐‘ฅ2= โ‹ฏ =

๐œ•๐‘ฆ

๐œ•๐‘ฅ๐‘›= 0

The state point where the derivatives are zero = critical point

โ‡’may be max, min, saddle point, ridge, valley

7/18

Page 8: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

From (1),

Example 8.1 :

Chapter 8. Lagrange Multipliers

Find minimum value of z for a given constraint

(Solution)

8/18

๐‘ง = ๐‘ฅ2 + ๐‘ฆ2 1 = ๐‘ฅ2 + ๐‘ฅ๐‘ฆ + ๐‘ฆ2

๐›ป๐‘“ ๐‘ฅ, ๐‘ฆ = ๐œ†๐›ป๐‘” ๐‘ฅ, ๐‘ฆ

2๐‘ฅ โˆ’ ๐œ† 2๐‘ฅ + ๐‘ฆ = 0

๐‘” ๐‘ฅ, ๐‘ฆ โˆ’ 1 = 0

ยทยทยทยทยท(1)

ยทยทยทยทยท(2)

2๐‘ฆ โˆ’ ๐œ† 2๐‘ฆ + ๐‘ฅ = 0๐‘ฆ = ๐‘ฅ ๐‘œ๐‘Ÿ ๐‘ฆ = โˆ’๐‘ฅ

Substituting (2) from the result

1 = 3๐‘ฅ2 or 1 = ๐‘ฅ2

Thus, minimum value z is at ๐‘ฅ, ๐‘ฆ =1

3,ยฑ

1

3

2

3

Page 9: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

Chapter 8. Lagrange Multipliers

Example 8.2,3 : Constrained/Unconstrained optimization

A total length of 100 m of tubes must be installed in a shell-and-tube heat

exchanger.

๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘œ๐‘ ๐‘ก = 900 + 1100๐ท2.5๐ฟ + 320๐ท๐ฟ (๐’‚)

where L is the length of the heat exchanger and D is the diameter of the shell,

both in meters. 200 tubes will fit in a cross-sectional area of 1 m2 in the shell.

Determine the D and L of the heat exchanger for minimum first cost.

9/18

Page 10: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

Chapter 8. Lagrange Multipliers

(Solution) โ€“ Unconstrained Optimization

Have to put 100m tubes in the shell

: ๐œ‹๐ท2

4m2 200 tubes/m2 โˆ— ๐ฟ m = 100 m

โ‡’ 50๐œ‹๐ท2๐ฟ = 100 ๐’ƒ

Substitute (b) into (a)

โ‡’ ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘œ๐‘ ๐‘ก = 900 +2200

๐œ‹๐ท0.5 +

640

๐œ‹๐ท

๐‘‘(๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘œ๐‘ ๐‘ก)

๐‘‘(๐ท)=1100

๐œ‹๐ท0.5โˆ’640

๐œ‹๐ท2

๐ทโˆ— = 0.7 m, ๐ฟโˆ— = 1.3 m, ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘œ๐‘ ๐‘กโˆ— = $1777.45

10/18

Page 11: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

Chapter 8. Lagrange Multipliers

(Solution) โ€“ Constrained Optimization

๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘œ๐‘ ๐‘ก = 900 + 1100๐ท2.5๐ฟ + 320๐ท๐ฟ (๐’‚)

50๐œ‹๐ท2๐ฟ = 100 ๐’ƒ

๐›ปy = 2.5 1100 ๐ท1.5๐ฟ + 320๐ฟ ๐‘–1 + 1100๐ท2.5 + 320๐ท ๐‘–2

๐›ป๐œ™ = 100๐œ‹๐ท๐ฟ ๐‘–1 + 50๐œ‹๐ท2 ๐‘–2

๐‘–1: 2750๐ท1.5๐ฟ + 320๐ฟ โˆ’ ๐œ†100๐œ‹๐ท๐ฟ = 0 (๐’„)

๐‘–2: 1100๐ท2.5 + 320๐ท โˆ’ ๐œ†50๐œ‹๐ท2 = 0 ๐’…

Using (b), (c), (d), find ๐ทโˆ—, ๐ฟโˆ—, ๐œ†

Result is the same as unconstrained optimization

11/18

Page 12: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

2x

1x

3y y

2y y

1y y

1dx

2dx

Chapter 8. Lagrange Multipliers

8.7 Gradient vector

- gradient vector is normal to contour line

๐‘ฆ = ๐‘ฆ ๐‘ฅ1, ๐‘ฅ2

๐‘‘๐‘ฆ =๐œ•๐‘ฆ

๐œ•๐‘ฅ1๐‘‘๐‘ฅ1 +

๐œ•๐‘ฆ

๐œ•๐‘ฅ2๐‘‘๐‘ฅ2

Along the line of ๐‘ฆ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก.

๐‘‘๐‘ฆ = 0 โ†’ ๐‘‘๐‘ฅ1 = โˆ’๐‘‘๐‘ฅ2๐œ•๐‘ฆ/๐œ•๐‘ฅ2๐œ•๐‘ฆ/๐œ•๐‘ฅ1

Substitution into arbitrary unit vector

๐‘‘๐‘ฅ1 ๐‘– + ๐‘‘๐‘ฅ2 ๐‘—

(๐‘‘๐‘ฅ1)2 + (๐‘‘๐‘ฅ2)

2

12/18

Page 13: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

Tangent vector

Gradient vector

0T G

Chapter 8. Lagrange Multipliers

8.7 Gradient vector

๐‘‡ =๐‘‘๐‘ฅ1 ๐‘– + ๐‘‘๐‘ฅ2 ๐‘—

(๐‘‘๐‘ฅ1)2 + (๐‘‘๐‘ฅ2)

2=

๐‘–2 โˆ’๐œ•๐‘ฆ/๐œ•๐‘ฅ2๐œ•๐‘ฆ/๐œ•๐‘ฅ1

๐‘–1

๐œ•๐‘ฆ/๐œ•๐‘ฅ2๐œ•๐‘ฆ/๐œ•๐‘ฅ1

2

+ 1

=โˆ’

๐œ•๐‘ฆ๐œ•๐‘ฅ2

๐‘–1 +๐œ•๐‘ฆ๐œ•๐‘ฅ1

๐‘–2

๐œ•๐‘ฆ๐œ•๐‘ฅ2

2

+๐œ•๐‘ฆ๐œ•๐‘ฅ1

2

๐บ =๐›ป๐‘ฆ

๐›ป๐‘ฆ=

๐œ•๐‘ฆ/๐œ•๐‘ฅ1 ๐‘–1 + ๐œ•๐‘ฆ/๐œ•๐‘ฅ2 ๐‘–2

๐œ•๐‘ฆ/๐œ•๐‘ฅ12 + ๐œ•๐‘ฆ/๐œ•๐‘ฅ2

2

13/18

Page 14: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

saddle pointridge & valley point

ridge

valley

Chapter 8. Lagrange Multipliers

8.9 Test for maximum or minimum

decide whether the point is a maximum, minimum, saddle point, ridge, or valley

14/18

Page 15: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

minimum

maximum

a1x2x

a

1x2x

Chapter 8. Lagrange Multipliers

8.9 Test for maximum or minimum

๐‘ฅ = ๐‘Ž โˆถ ๐‘กโ„Ž๐‘’ ๐‘š๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘–๐‘  ๐‘’๐‘ฅ๐‘๐‘’๐‘๐‘ก๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘œ๐‘๐‘๐‘ข๐‘Ÿ

๐‘ฆ ๐‘ฅ = ๐‘ฆ ๐‘Ž +๐‘‘๐‘ฆ

๐‘‘๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž +

1

2

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2(๐‘ฅ โˆ’ ๐‘Ž)2 +โ‹ฏ Taylor series expansion near ๐‘ฅ = ๐‘Ž

If ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ> 0 ๐‘œ๐‘Ÿ

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ< 0 ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘–๐‘  ๐‘›๐‘œ ๐‘š๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š

โ†’๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= 0

If๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2> 0

If๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2< 0

๐‘ฆ ๐‘ฅ1 > ๐‘ฆ ๐‘Ž ๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ1 > ๐‘Ž๐‘ฆ ๐‘ฅ2 > ๐‘ฆ ๐‘Ž ๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ2 < ๐‘Ž

๐‘ฆ ๐‘ฅ1 < ๐‘ฆ ๐‘Ž ๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ1 > ๐‘Ž๐‘ฆ ๐‘ฅ2 < ๐‘ฆ ๐‘Ž ๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ2 < ๐‘Ž

15/18

Page 16: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

min

11 12

21 22

2

11 22 12

y yD

y y

y y y

max

Chapter 8. Lagrange Multipliers

8.9 Test for maximum or minimum

๐‘Ž1, ๐‘Ž2 : ๐‘กโ„Ž๐‘’ ๐‘š๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘œ๐‘“ ๐‘ฆ ๐‘ฅ1, ๐‘ฅ2 ๐‘–๐‘  ๐‘’๐‘ฅ๐‘๐‘’๐‘๐‘ก๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘œ๐‘๐‘๐‘ข๐‘Ÿ

๐‘ฆ ๐‘ฅ1, ๐‘ฅ2 = ๐‘ฆ ๐‘Ž1, ๐‘Ž2 +๐œ•๐‘ฆ

๐œ•๐‘ฅ1๐‘ฅ1 โˆ’ ๐‘Ž1 +

๐œ•๐‘ฆ

๐œ•๐‘ฅ2๐‘ฅ2 โˆ’ ๐‘Ž2 +

1

2๐‘ฆ11โ€ฒโ€ฒ (๐‘ฅ1 โˆ’ ๐‘Ž1)

2 +

๐‘ฆ12โ€ฒโ€ฒ ๐‘ฅ1 โˆ’ ๐‘Ž1 ๐‘ฅ2 โˆ’ ๐‘Ž2 +

1

2๐‘ฆ22โ€ฒโ€ฒ (๐‘ฅ2 โˆ’ ๐‘Ž2)

2 +โ‹ฏ

๐ท > 0 ๐‘Ž๐‘›๐‘‘ ๐‘ฆ11โ€ฒโ€ฒ > 0 (๐‘ฆ22

โ€ฒโ€ฒ > 0)

๐ท > 0 ๐‘Ž๐‘›๐‘‘ ๐‘ฆ11โ€ฒโ€ฒ < 0 (๐‘ฆ22

โ€ฒโ€ฒ < 0)

๐ท < 0 ๐‘Ž๐‘›๐‘‘ ๐‘ฆ11โ€ฒโ€ฒ < 0 (๐‘ฆ22

โ€ฒโ€ฒ < 0)

16/18

Page 17: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

Chapter 8. Lagrange Multipliers

Example 8.4 : Test for maximum or minimum

Optimal values of ๐‘ฅ1 and ๐‘ฅ2, test max, min

๐‘ฆ =๐‘ฅ12

4+

2

๐‘ฅ1๐‘ฅ2+ 4๐‘ฅ2

(Solution)

๐œ•๐‘ฆ

๐œ•๐‘ฅ1=๐‘ฅ12โˆ’

2

๐‘ฅ12๐‘ฅ2

๐œ•๐‘ฆ

๐œ•๐‘ฅ2= โˆ’

2

๐‘ฅ1๐‘ฅ22 + 4

๐‘ฅ1โˆ— = 2, ๐‘ฅ2

โˆ— =1

2

๐œ•2๐‘ฆ

๐œ•๐‘ฅ12 =

3

2,๐œ•2๐‘ฆ

๐œ•๐‘ฅ22 = 16,

๐œ•2๐‘ฆ

๐œ•๐‘ฅ1๐œ•๐‘ฅ2= 2

At ๐‘ฅ1 and ๐‘ฅ2

โ†’3

22

2 16> 0 ๐‘Ž๐‘›๐‘‘ ๐‘ฆ11

โ€ฒโ€ฒ > 0 minimum

17/18

Page 18: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) โ€“Unconstrained Optimization Have to put 100m tubes in the shell: ๐œ‹๐ท 2 4 m2 200tubes/m2 โˆ—๐ฟm

In example 8.3, if the total length of the tube increases from 100m torandom value โ€˜Hโ€™, what would be the increase in minimum cost ?

Extra meter of tube for the heat exchanger would cost additional $8.78

Chapter 8. Lagrange Multipliers

8.10 Sensitivity coefficients

- represents the effect on the optimal value of slightlyrelaxing the constraints

- variation of optimized objective function ๐‘ฆโˆ—

50๐œ‹๐ท2๐ฟ = ๐ป โ†’ ๐ทโˆ— = 0.7๐‘š, ๐ฟโˆ— = 0.013๐ป

๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘œ๐‘ ๐‘กโˆ— = 900 + 1100๐ทโˆ—2.5๐ฟโˆ— + 320๐ทโˆ—๐ฟโˆ— = 900 + 8.78๐ป

๐‘†๐ถ =๐œ•(๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘๐‘œ๐‘ ๐‘กโˆ—)

๐œ•๐ป= 8.78 = ๐œ†

18/18