Chemistry in Polymer and Material

Embed Size (px)

Citation preview

  • 8/15/2019 Chemistry in Polymer and Material

    1/30

    ‘Click’ Chemistry in Polymer and Material

    Science: An Update

    Wolfgang H. Binder,* Robert Sachsenhofer

    Introduction

    Who will be reading a review on a topic that was reviewed

    only 15 months previously[1] by the very same author?

    According to a SciFinder search in January 2008, the  azide/ 

    alkyne ‘click’ reaction   (also termed CuAAc) has had

    enormous impact within the field of polymer science.

    Thus,   220 original papers have been published in the

    context of click chemistry and polymer science, more than

    20 reviews and at least 10 patents have appeared,

    altogether stressing the importance of this reaction. Given

    the short timeline for discovery of CuI catalysis

    (2001–2002 by Meldal et al.[2,3] and 2002 by Sharpless

    et al.[4]) and the first published applications in polymer

    science (2004),[5–10] someone may ask the question

    ‘where does it stem from’, and - in the same line - find a

    quick answer: a high efficiency reaction, coupled with a

    high functional group tolerance and solvent insensitivity

    (also highly active in water), working equally well under

    homogeneous and heterogeneous conditions certainlyranks high on the polymer scientists’ wish list. Therefore,

    this reaction is a solution to many problems that have

    been encountered in polymer science for a long time, such

    as: a) a poor degree of functionalization with many

    conventional methods, especially when involvingmultiple

    functional groups (i.e.: at graft-, star-, and block copoly-

    mers, dendrimers, as well as on densely packed surfaces

    and interfaces); b) purification problems associated with

    the often emerging partially functionalized mixtures; c)

    incomplete reaction on surfaces and interfaces; and d)

    harsh reaction conditions of conventional methods, which

    often lead to the break-up of associates and assemblies, in

    particular in the newly emerging supramolecular sciences.

    As a main surplus, the click reaction combines excellently

    with many controlled polymerization reactions developed

    during the past decades,[11] thus opening the way to a

    nearly unlimited investigation of new functionalized

    polymeric architectures, hitherto unreachable by the

    polymerization methods themselves. With   azide/alkyne

    click chemistry  in hand, polymer chemistry now approa-

    ches the level of small-molecule organic chemistry in

    terms of functional broadness, structural integrity, and

    molecular addressability.

    Review

    W. H. Binder, R. Sachsenhofer

    Martin-Luther University Halle-Wittenberg, Faculty of Natural

    Sciences II (Chemistry and Physics), Institute of Chemistry/

    Division Technical and Macromolecular Chemistry, Heinrich-

    Damerowstr. 4/12; 06120 Halle (Saale), Germany

    E-mail: [email protected]

    The metal catalyzed azide/alkyne ‘click’ reaction (a variation of the Huisgen 1,3-dipolarcycloaddition reaction between terminal acetylenes and azides) has vastly increased inbroadness and application in the field of polymer science. Thus, this reaction representsone of the few universal, highly efficient functionalization reactions, which combines bothhigh efficiency with an enormously high tolerance of functional groups and solvents underhighly moderate reaction temperatures

    (25–70 8C). The present review assembles anupdate of this reaction in the field of polymerscience (linear polymers, surfaces) with a focus onthe synthesis of functionalized polymeric archi-tectures and surfaces.

    952

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    2/30

    Briefly, the azide/alkyne click reaction[12–14] represents a

    metal-catalyzed variant of the Huisgen 1,3-dipolar

    cycloaddition reaction[15,16] between C–C triple, C –N triple

    bonds[17] and alkyl-/aryl-/sulfonyl azides. The relevant

    outcomes of this reaction are a) tetrazoles, [13,18] b) 1,2,3-

    triazoles,[2–4,19] or c) 1,2-oxazoles, respectively. In addition,classical Diels–Alder-type reactions have been used

    extensively for the functionalization of polymeric materi-

    als[20] and surfaces.[21] According to the definition of 

    Sharpless et al.,[12] a ‘click reaction’ is defined by a gain of 

    thermodynamic enthalpy of at least 20 kcal mol1, thus

    opening the way to a high yielding and thus nearly

    substrate-insensitive reaction. The present review focuses

    entirely on the azide/alkyne reaction catalyzed by CuI

    species, and the now more widely used purely thermal

    (‘Huisgen-type’) processes in polymer science and on

    surfaces. A survey of the most recent literature related to

    the polymer science and materials field in the years 2006to 2008 (deadline: 15th March 2008) will draw a line to a

    previous review in this journal[1] and other reviews

    describing the azide/alkyne click reaction in general,[12,22]

    for application in polymer chemistry,[1,23–28] dendri-

    mers,[25,29] carbohydrate chemistry,[30–32] materials chem-

    istry,[1] and organic chemistry,[28,33] as well as for

    peptides[34] and drug discovery.[35] In addition, this whole

    special issue of  Macromolecular Rapid Commununication

    is dedicated to this topic, including many more specialized

    reviews and original papers. Thus special reviews will

    cover topics such as the role of the copper species on

    polymer ‘clicking’ (by M. Meldal), the generation of 

    polymeric architectures (by Turro et al.), the combination

    of biodegradable polymers and azide/alkyne click reac-

    tions (by R. Jerome et al.); the synthesis of multistep

    reactions in combination with azide/alkyne click reactions

    (by M. Malkoch et al.); click chemistry for the synthesis of 

    macromolecular chimeras (polymer/biopolymer hybrids,

    by K. Velonia); and reversible addition fragmentation

    transfer (RAFT) from silica nanoparticles (by W. Brittain

    et al.). The present review will briefly and concisely update

    the topic azide/alkyne click chemistry in polymer science,

    including literature up to March 2008.

    Mechanistic Details/Catalysts

    Briefly, the basic process of the Huisgen 1,3-dipolar

    cycloaddition[2,10,11] generates 1,4- and 1,5-triazoles

    respectively (Scheme 1). Nearly all functional groups are

    compatible with this process, except those that are a) eitherself reactive or b) able to yield stable complexes with

    the CuI metal under catalyst deactivation. Main interfering

    functional groups are terminal azides and alkynes,[36]

    strongly activated cyanides,[13,14,18] free (accessible) thiol-

    moieties (R–SH) via the Staudinger reaction, as well as

    strained or electronically activated alkenes.[16,37] However,

    the possibility to use free-thiols prior to an azide/alkyne

    click reaction has been demonstrated recently on poly-

    mers[38] and surfaces,[39] thus enabling the use of free

    thiols despite the often interfering azide/amine reduction

    by the free thio-moiety.

    In addition to the use of CuI

    salts (amounts of approx.0.25–2 mol-%, also coupled to regenerative systems with

    ascorbic acid), copper clusters (Cu/Cu-oxide nanoparticles,

    sized 7–10 nm[40] or4 nm[41]), metallic Cu0 clusters [41–43])

    as well as copper/charcoal[44] have been described. A new

    and highly innovative approach towards a polymeric-

    bound CuI catalyst has been described by Bergbreiter

    et al.,[45] attaching a bipyridyl ligand to a polyisobutylene,

    subsequently ligating the CuI species to the polymer. This

    generates a CuI species with a high solubility in hexane

    solvents for catalytic applications. Recently, the use of 

    a CuI-free variant using the ring-strain of substituted

    cyclooctynes to promote the dipolar cycloaddition process

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Wolfgang H. Binder   is currently full professor of Macromolecular Chemistry at the Martin–Luther University Halle–

    Wittenberg. He studied chemistry at the University of Vienna and received a Ph.D. in organic chemistry (University of 

    Vienna, 1995). Postdoctoral studies (1995–1997) with Prof. F. M. Menger at Emory University, Atlanta, USA, and with Prof.

    Mulzer (Vienna, Austria) completed his education. After Habilitation at the Vienna University of Technology (TU-Wien,

    2004) and acting as an Associate Professor of Macromolecular Chemistry (TU-Wien, 2004–2007), he became full professor

    at the University Halle-Wittenberg (MLU) in 2007. His research interests include polymer synthesis, supramolecular

    chemistry, and nanotechnology

    Robert Sachsenhofer is currently a Ph.D. student at the Martin–Luther University Halle–Wittenberg, Germany, in the group

    of Prof. W. H. Binder. After finishing a diploma thesis under the supervision of Prof. Binder on the surface modification of 

    luminescent cadmium selenide nanoparticles by ‘click’-type reactions at the Vienna University of Technology, Austria, he

     joined the group of Prof. Binder for his Ph.D. in the field of self-assembly of amphiphilic block copolymer.

    Scheme 1. Azide/alkyne - ‘‘click’’ - reaction.

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   953

  • 8/15/2019 Chemistry in Polymer and Material

    3/30

    has been described, enabling mild reactions on living

    (cellular) systems.[46,47]

    Most known solvents and biphasic reaction systems

    (mixtures of water/alcohol to water/toluene) can be

    applied with excellent results. Cocatalytic systems[48]

    often used include amino bases,[49]

    (triethylamine (TEA),2,6-lutidine, N , N -diisopropylethylamine (DIPEA), N , N , N 0, N 0,

     N 00-pentamethylethylenetetramine (PMDETA), hexame-

    thyltriethylenetetramine (HMTETA), tris[(2-pyridyl)-

    methyl]amine (TPMA), tris[(2-dimethylamino)ethyl]amine

    (Me6TREN), 2,20-bipyridines (bpy), 2,20:20,600-terpyridine

    (tpy), ammonium salts,[42] and mono- and multivalent

    triazoles[49]) but also phosphines such as tris(carboxy-

    ethyl)phosphine (TCPE). A detailed investigation[50] of 

    several amines has demonstrated a relative kinetic effect

    of the added ligands in the order: PMDETA (230)>

    HMTETA (55)>Me6-TREN (50)> tpy (8.6)> TPMA

    (1.7)>no ligand>bpy (0.43). The increase in reaction rate

    is mostly explained by promoting the formation of 

    the CuI-acetylide, reducing the oxidation of the CuI-

    species, but also by preventing side reactions of the

    acetylenes (Ullman couplings, Cadiot–Chodkiewizc cou-

    plings) or dimerization reactions of the finally formed

    triazoles.[51] The latter dimerization reaction is a very

    important one, generating 5,50-coupled dimeric triazoles

    when using carbonates as bases instead of the usual amine

    bases. Moreover, the copper-catalyzed hydrolysis of 

    O-propargylic-carbamates has recently been described.[52]

    Besides copper, other metals employed include Rucomplexes[53,54] such as (CpRuCl(PPh3), [Cp

    RuCl2]2,

    CpRuCl(NBD), and CpRuCl(COD) favoring not only the

    formation of 1,4-addition (e.g., with Ru(OAc)2(PPh3)2), but

    also the formation of 1,5-adducts by other Ru catalysts. In

    addition, the use of AuI-,[55] Ni-, Pd-,[56] and Pt-salts, has

    been described, although with significantly less catalytic

    activity.[50]

    Strong effects of alternative synthetic methodologies

    have been observed under microwave irradiation.[57–62] As

    it turns out, the click reaction can be strongly accelerated

    under microwave irradiation, however, favoring both the

    1,4-adduction as well as the side reactions.

    The mechanism (first experimentally proposed by

    Sharpless et al.[4] and changed by Finn et al.,[63,64] deter-

    mined by computational methods,[65,66] and finally revised

    by Bock et al.[22]) involves the following main features

    (Scheme 2): a) up to a   105 rate acceleration and an

    W. H. Binder, R. Sachsenhofer

    Scheme 2.  Proposed mechanism of the azide/alkyne - ‘‘click’’ - reaction.

    954

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    4/30

    absolute 1,4-regioselectivity of the CuI catalyzed process,

    b) a kinetic feature of the reaction that indicates at least

    second-order kinetics with respect to the concentration of 

    the copper species,[64] thus proposing at least two copper

    centers involved in this reaction, probably linking two

    acetylenes by a  m-bridge,[67]

    c) a significant autoaccelera-tion if multiple triazoles are formed,[48] which reveals

    intermolecular ligand effects, d) a significant rate-

    reduction with strongly increasing amount of copper,

    and e) the formation of a copper-acetylide, whose primary

    structure and, therefore, direct activity within the transi-

    tion state cannot be exactly predicted. In particular, the

    exact structure of the copper-acetylide is difficult to predict

    a) because of the large number of possible interactions

    (p-complexation, multiple copper species) and b) because

    of the many known (highly different) structures of 

    copper-acetylides. However, the basic feature (i.e., low-

    ering of the p K a value of the Cu-acetylide by up to 9.8 units

    as determined[66] by DFT calculations) is the most

    important contribution towards the rate acceleration.

    If the two reaction partners (azide and alkyne) are

    brought into close (enforced) spatial relationship, the

    reaction can be fast and efficient, as demonstrated in the

    case of proteins and enzymes (affinity based protein

    profiling (ABPP)),[19,36,68,69] microcontact printing,[70,71] or

    atomic force microscopy (AFM)-based techniques.[72] All

    three methods generate a closer-than-usual distance

    between the two reaction partners, thus linking reactivity

    in this reaction to molecular distance. The absolute value

    of the necessary minimal distance at which the azide/

    alkyne click reaction occurs spontaneously has, however,not been specified in the literature.

    A final remark should be made with respect to the

    optimal system for succeeding in an azide/alkyne click

    reaction. Honestly spoken, despite reviewing the literature

    as well as many of our own experiments[9,39,73–81], I cannot

    tell. The number of variables and requirements is simply

    too high as to provide a general answer to this

    certainly important question. The tables and examples

    below may provide a hint and explanation in themselves,

    and thus eventually lead to an answer with respect to a

    specific system. The only, scientifically unsatisfactory, but 

    truly honest answer I can provide is: check it out, it’s

    simple.

    Click Reactions on Linear Polymers

    The enormous interest in linear polymers lies primarily in

    the combination of click reactions with controlled poly-

    merization processes. This chapter lists examples

    published till the midst of January 2008, where

    known polymerization processes have been combined

    with the azide/alkyne processes, mostly relating to the

    chemical possibilities and the chemical realization of this

    endeavor.

    Table 1 lists the known click reactions on various linear-

    or graft-polymers, according to the polymerization method

    and the final chemical structure of the polymer, either

    before the click reaction, or after. Cases are shown in anexemplary manner, as to indicate the chemistry required

    in order to conduct a click reaction within or after a specific

    polymerization process. In general, as shown in Table 1,

    more than 60 entries are described, which indicates the

    enormous broadness of the investigations. For an example

    of click chemistry in conjunction with free-radical poly-

    merization see ref.[82].

    Atom Transfer Radical Polymerization (ATRP)

    As indicated in Table 1 (entries 1–18), a variety of click

    reactions in conjunction with ATRP have beendescribed.[45,50,83–115] The reaction has been investigated

    with polymers such as polystyrene, various polyacrylates

    and polymethacrylates, polyacrylnitrile, and poly(ethy-

    lene oxides). As the main methods for conducting ATRP

    and click reactions has been described in the previous

    review,[1] this issue will not be discussed here in more

    detail. In principle the following strategies can be applied

    to achieve a combination between the click reaction and

    ATRP:

    The initiator approach,[85,89,91,103,106,110] which relies on

    the use of an alkyne-functionalized initiator or azide-functionalized initiator[115] as shown in Table 1, entries

    6, 7, 8, 14 or 2. Relevant to this point is the fact that the

    acetylenic/azido initiator-moiety is not cross-reactive

    within the subsequent ATRP process.

    The Br  /N 3   approach[84,85,88,90,94,102,103,107–109,113,114,116]

    takes advantage of the terminal bromine-moiety, inher-

    ently present within the ATRP reaction. A final Br/

    N3 -nucleophilic reaction (usually performed in NaN3/

     N , N -dimethylformamide (DMF)) then completes the intro-

    duction of an azido-moiety to the terminus of the polymer

    (see Table 1, entries 3, 5, 6, 8, 10, 11, 12, 16, and 18). The full

    conversion of this reaction has been demonstrated by

    NMR methods and subsequent characterization by

    matrix-assisted laser desorption ionization mass spec-

    trometry (MALDI MS) experiments of the final ‘clicked’

    products.

    Side-chain modified polymers   [86,92,93,97,102,109,111] with

    pendant azido- or acetylenic moieties for the generation of 

    graft-polymers (e.g., Table 1, entry 1, 10, 13, 17a, and 17b)

    have been reported. Again, the full compatibility of the

    terminal azido or acetylenic moieties with the ATRP reac-

    tion is observed, which leads to a high density of func-

    tional side chains within the main-chain polymer.

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   955

  • 8/15/2019 Chemistry in Polymer and Material

    5/30

    W. H. Binder, R. Sachsenhofer

    Table 1. Overview of ‘click’-reactions with linear- or graft-polymers.

    Entry Polymer/substrate Polymerization

    method

    Catalyst/ 

    conditions

    Ref.

    1 ATRP CuBr/r.t. [86]

    2 ATRP   N -alkyl-2-

    pyridylmethanimine-

    CuBr/70 -C

    [115]

    3 ATRP CuBr/THF/r.t. 4,4(-

    di(5-nonyl:)-

    2,2(-bipyridine

    [84,90]

    4a ATRP NaN3/ZnCl2/120-C [10]

    4b ATRP NaN3/ZnCl2/120 -C [10]

    5 ATRP CuBr/PMDETA/r.t. [107]

    6 ATRP CuBr/DMF/r.t. [106]

    7 ATRP CuI/DBN/THF/35 -C [85]

    8 ATRP CuBr/PMDETA/THF/

    35 -C

    [108]

    9 ATRP CuBr/PMDETA [103]

    10 ATRP CuBr/DMF/r.t [102]

    ( Continued )

    956

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    6/30

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Entry Polymer/substrate Polymerization

    method

    Catalyst/ 

    conditions

    Ref.

    11 ATRP CuBr/PMDETA/r.t [94]

    12 ATRP CuBr/PMDETA/50 -C [98]

    13 ATRP CuBr/DMF [97]

    14 ATRP CuBr/bipyridine/DMF/120 -C

    [89]

    15 ATRP Cu0/CuBr or CuBr/

    PMDETA/DMF/r.t.

    [87]

    16 ATRP CuBr/PMDETA/sodium

    ascorbate/DMF

    [88]

    17a ATRP Cu(PPh3)3Br/DIPEA [109]

    17b ATRP Cu(PPh3)3Br/DIPEA [109]

    18 ATRP CuBr/bipyridine/

    THF/r.t.

    [113]

    19 NMP NaN3/ZnCl2/DMF/

    120 -C

    [119]

    Table 1. (Continued)

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   957

  • 8/15/2019 Chemistry in Polymer and Material

    7/30

    W. H. Binder, R. Sachsenhofer

    Entry Polymer/substrate Polymerization

    method

    Catalyst/ 

    conditions

    Ref.

    20 NMP Cu(PPh3)3Br/DIPEA/

    dioxane

    [120]

    21 NMP Cu(PPh3)3Br/DIPEA/

    THF

    [123]

    22 NMP [(CH3CN)4Cu]PF6/

    TBTA/DIPEA/DMF

    [81]

    23 NMP CuBr/PMDETA/

    DMF/r.t.

    [96]

    24 NMP Cu(PPh3)3Br/DIPEA [122]

    25 NMP toluene [121]

    ( Continued )

    Table 1. (Continued)

    958

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    8/30

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Entry Polymer/substrate Polymerization

    method

    Catalyst/ 

    conditions

    Ref.

    26 free radical CuSO4 5H2O/

    sodium ascorbate/

    H2O/DMSO

    [82]

    27 RAFTRNMP Cu(PPh3)3Br/DIPEA/

    THF/H2O/r.t./3d

    [118]

    28 RAFT CuI/DBU/DMAc/40 -C [129]

    29 RAFT CuBr/PMDETA/

    DMF/r.t

    [130]

    30 RAFT CuSO4/sodium

    ascorbate/

    H2O/t BuOH

    [128]

    31 ATRP CuBr/bipyridine/

    120 -C

    [104]

    32 RAFT CuSO4/sodium

    ascorbate/H2O

    [117]

    33 RAFT CuSO4 5H2O/sodium

    ascorbate/DMSO/50-C

    [101]

    Table 1. (Continued)

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   959

  • 8/15/2019 Chemistry in Polymer and Material

    9/30

    W. H. Binder, R. Sachsenhofer

    Entry Polymer/substrate Polymerization

    method

    Catalyst/ 

    conditions

    Ref.

    34 RAFT Cu(PPh3)3/DIPEA/

    DMF/r.t.

    [132]

    35 RAFT CuBr/PMDETA/

    DMF/r.t.

    [127]

    36 RAFT Cu(PPh3)3Br/DIPEA/

    THF/H2O

    [133]

    37 RAFT CuI/DBU/THF [131]

    38 RAFT [134]

    39 RAFT CuI/DBU/THF/40 -C [135]

    ( Continued )

    Table 1. (Continued)

    960

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    10/30

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Entry Polymer/substrate Polymerization

    method

    Catalyst/ 

    conditions

    Ref.

    40 ROMP Cu(I)/DIPEA/DMF/

    toluene/H2O

    [76]

    41 ROMP Cu(PPh3)3Br/DIPEA/

    DMF/50 -C

    [9,75]

    [74]

    42 ROMP [137]

    43 ROMP CuBr/PMDETA/

    DMF/50 -C

    [136]

    44 [150]

    45 living anionic [38]

    46 living cationic

    ring opening

    CuSO4 5H2O/

    water/t BuOH

    [145]

    47 living cationic

    polymerization

    of isobutene

    Cu(PPh3)3Br/DIPEA/

    toluene

    [77]

    48 living anionic

    polymerization

    CuBr/DMF/60 -C [149]

    Table 1. (Continued)

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   961

  • 8/15/2019 Chemistry in Polymer and Material

    11/30

    W. H. Binder, R. Sachsenhofer

    Entry Polymer/substrate Polymerization

    method

    Catalyst/ 

    conditions

    Ref.

    49 polyaddition Cu(I) [153,152]

    50 polyaddition 100 -C [154]

    51 polyaddition CuSO4.5H2O/

    sodium ascorbate/

    H2O/tBuOH

    [155]

    52 polyaddition CuSO4.5H2O/

    sodium ascorbate/H2O/

    tBuOH

    [156]

    53 polyaddition [151]

    54 polyaddition CuSO4 5H2O/sodium

    ascorbate H2O:t BuOH (1: 1)/r.t.

    [6]

    55 polyaddition Cu/Cu(OAc)2/

    TBTA THF/

    CH3CN

    [161]

    56 polyaddition CuSO4 5H2O/sodium

    ascorbate

    [157]

    57 CVD CuSO4 5H2O/sodium

    ascorbate H2O:tBuOH (2: 1)

    [70]

    ( Continued )

    Table 1. (Continued)

    962

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    12/30

    As the main structural issues are solved within the

    combination of click reactions and ATRP, this method is

    a fully established reaction sequence that leads to all

    kinds of chain-end, head-end, and side-chain modified

    polymers by the ATRP process.

    An important point concerns the formation of  macro-

    cyclic polymers   by click reactions,[89] which was first

    described by Grayson et al. (Table 1, entry 14) with an  a ,v-

    bifunctional polystyrene, and has now been extended to

    the generation of cyclic poly( N -isopropylacrylamides)[104]

    (Table 1, entry 31) in yields that range from 60 to 80%. This

    verifies the prediction made in the previous review, [1] that

    the click reaction will be an efficient tool for the generation

    of polymeric macrocycles in the near future. In a similar

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Entry Polymer/substrate Polymerization

    method

    Catalyst/ 

    conditions

    Ref.

    58 topological CuI/CH3CN [164]

    59a/b polyaddition CuSO4 5H2O/H2O:tBuOH (2: 1)

    [163]

    60 anionic ring

    opening

    CuSO4 5H2O/sodium

    ascorbate/100 -C

    [143,141]

    [140]

    61 ROP CuSO4 5H2O/Cu wire/

    37 -C

    [146]

    62 sequential

    stepwise

    solid phase

    synthesis

    CuI/ascorbic acid/

    DIPEA butan-2-ol/

    DMF/pyridine

    [172]

    63 CuIIBr/ascorbic acid/

    propylamine DMSO/r.t.

    [176]

    64 DNA-synthesis DMSO/H2O/80 -C/72 h (no CuI!!) [188]

    65 solid phase synthesis or

    DNA-polymerase

    CuI [186]

    66 solid phase synthesis CuSO4 5H2O, sodium

    ascorbate H2O/MeOH

    [61,182]

    Table 1. (Continued)

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   963

  • 8/15/2019 Chemistry in Polymer and Material

    13/30

    manner (see Table 1, entry 32) the generation of cyclic

    poly( N -isopropylacrylamides) by RAFT/click methods has

    been described in high yields.[117]

    Nitroxide-Mediated Polymerization (NMP)As time has gone by, many NMP methods have been

    conducted in junction with the click reaction.[81,96,118–125]

    As with ATRP, the polymerization of side-chain function-

    alized monomers bearing azido-moieties is simple, and

    leads to copolymers onto which additional functional

    groups can be easily attached. Thus photolabile moieties

    (entry 20)[120] or potential crosslinking sites (entry 24)

    can be introduced by the corresponding acetylenes or

    azides.[124] The initiator approach (Table 1, entries 21–23)

    has been tested using an azide/alkyne-modified Hawker-

    type nitroxide to initiate the polymerization of sty-

    renes,[96,123]

    acrylates,[81,96]

    and N -isopropylacrylamide.[81]

    The attachment site can be easily functionalized by the

    azide/alkyne click reaction, to furnish the corresponding

    monofunctionalized, telechelic polymers. Furthermore, the

    simplicicity of the generation of a large structural variety

    of Hawker-type nitroxide initiators could be used to

    demonstrate remote effects between the end-group on the

    nitroxide and the growing radical.[81] A very fine example

    of a combination of a modified NMP initiator (prepared by

    the click approach) and ATRP has been reported (Table 1,

    entry 23).[96,126] Besides the nitroxide moiety, an ATRP-

    initiating site as well as a terminal alkyne moiety are

    bound to the initiator, which generates three possible

    sites for the attachment of three different polymers:

    initiation of polystyrene by the NMP method, followed by

    the attachment of poly(ethylene glycol) (PEG)- N 3 through

    the terminal alkyne, followed by ATRP of methyl

    methacrylate (MMA) was used to generate multivalent,

    three-arm star polymers with three different polymers on

    each arm.

    Reversible Addition Fragmentation Transfer (RAFT)

    Since the last review, an enormous increase in publications

    combining RAFT with the azide/alkyne click reaction have

    been described.[25,101,105,117,118,127–135] As many monomers

    (such as   N -isopropylacrylamides,[117,130] substituted sty-

    renes,[118] hydroxylated methacrylates,[132] and glycosy-

    lated methacrylates[129]) are easier to combine with RAFT

    than with ATRP or NMP, the RAFT/click methodology

    seems to be the method of choice for several polymers in

    this context.

    As in the case of ATRP, azido-/alkyne-modified RAFT

    initiators   [25,101,105,127,129–131,135] as well as side-chain

    modified monomers[128,131,133] can be used in this strategy.

    Whereas azido-modified RAFT-initiators can be used

    without detriment to initiate a living polymerization,

    which leads to fully endgroup-functionalized telechelic

    polymers (proven by MALDI and NMR experiments), there

    is a divergence in the literature concerning the use of 

    acetylene-RAFT initiators. Some authors definitely claim

    the necessity to use trimethylsilyl (TMS)-protected ter-minal acetylenes within the monomers[131,133] or initia-

    tors[129] for a successful RAFT polymerization (otherwise

    observing crosslinking during the polymerization reaction

    with the free acetylenes), some authors use unprotected

    RAFT initiators for the polymerization of styrene, [101,135]

    acrylamides,[101] and vinylacetate.[135] With azido moieties

    within the initiator part, the interference is much

    lower, since they can be used both within the initiating

    RAFT agent[117,127,130] as well as within the sidechain[128]

    of the used monomer. In addition, the use of triazole

    units within the monomer, close to the growing radical

    centre, leads to good results for the final RAFT polymeri-

    zation.[134]

    An outstanding example for the generation of cyclic

    poly( N -isopropylacrylamides) by RAFT/click methods has

    been described in high yields (see Table 1, entry 32). [117]

    The use of an azido-modified RAFT initiator, subsequent

    polymerization of  N -isopropylacrylamide, and final trans-

    formation of the terminal isobutylsulfanylthiocarbonyl-

    sulfanyl moiety into the propargylic moiety by a one-pot

    aminolysis/Michael addition sequence is reported.

    Although no yield was provided, the publication repre-

    sents the first example for the preparation of cyclic

    poly( N -isopropylacrylamide).

    Ring-Opening Metathesis Polymerization (ROMP) and

    Ring-Opening Polymerization (ROP)

    ROMP/click methodologies[9,39,75] (see Table 1, entries

    40–43) inherently offer an enormously broad aspect in

    polymer chemistry, since ROMP chemistry is a simple

    and highly efficient approach towards functionalized

    polymers, in particular towards block-copolymers. We

    have first developed efficient attachment strategies of 

    various ligands, in particular of supramolecular receptors

    (hydrogen-bonding structures) onto poly(oxynorbor-

    nenes).[9,74–76] Using oxynorbornenes with pendant azido

    and acetylenic units, the copolymerization into either

    homo-,[9] block-,[74,76] and statistical copolymers[75] could

    be demonstrated. The important aspect of this synthetic

    approach lies in the fact that these polymers represent

    universal scaffolds for the attachment of supramolecular

    units onto the backbone, which allows modulation of the

    density, distribution, and thus stickiness on a molecular

    scale. Oxynorbornene monomers are advantageous over

    the corresponding norbornenes because of their reduced

    ring-strain, thus eliminating the concurring dipolar

    W. H. Binder, R. Sachsenhofer

    964

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    14/30

    cycloaddition reaction onto the norbornene ring.[16,37] A

    very fine example to generate a three-arm star polymer,

    based on ROMP and side-chain liquid-crystalline cyclooc-

    tene moieties is provided by ref.[136]. Polymerization using

    a bis-bromoalkene initiator furnished the bistelechelic

    poly(norbornene). Subsequent exchange against the azideand coupling to a central core yielded the final polymeric

    star-architecture. Purely thermal strategies have also been

    employed also, e.g., see ref.[137]. Recently, these results

    were also demonstrated on other poly(norbornene)s using

    the same strategy.[138] In addition, a paper on the

    preparation of   N -heterocyclic carbenes from poly( p-

    azidomethylstyrenes) and click reactions have been

    described.[139]

    Several ROP/click strategies[113,140–148] (see Table 1, i.e.:

    entries 46, 60, and 61) have been described recently, either

    using an alkyne moiety[143–145] or an   a-chlorocapro-

    lacton[140–142] as functional monomers or an appropriate

    alkyne endgroup.[147] In this way, functionalized poly-

    (glycolides),[148] poly(lactides),[146] poly(caprolac-

    tones),[140–144,147] poly(oxazolines),[145] and poly(L-valine)-

    block-poly(acrylic acid) copolymers[113] have been

    successfully prepared.

    Anionic and Cationic Polymerization

    Few examples that combine living anionic[38,149] and

    cationic[45,73,77,145] polymerization reactions with click

    reactions have been described (Table 1, entries 45–48).

    As shown in Table 1, entry 45, living anionic polymeriza-tion of ethylene oxide has been combined with subsequent

    hydroxyl/mesyl/bromide/azide exchange.[38] Interestingly,

    the photochemical addition of 2-mercaptoethylamine

    onto an allylic bond is described in the presence of the

    azido moiety, which represents one of the examples of 

    successful thiol chemistry in the presence of the azide

    moiety without concomitant reduction. Another example

    of living anionic polymerization and click chemistry has

    been reported with poly( p-propargyloxy styrenes).[149]

    With living cationic polymerization, supramolecular

    ligands have been fixed onto mono-,[73] bi-, and trivalent

    telechelic poly(isobutylenes), prepared by quasi-living

    cationic polymerization ( M n ¼3 100 g mol1,   M w= M n ¼

    1.10).[77] The reaction has been performed in biphasic

    reaction systems, featuring toluene/water solvent mix-

    tures and CuIBr as the catalyst with yields above 94%,

    which demonstrates the high efficiency in heterogeneous

    reaction systems. Poly(1,3-oxazolines) using 2-(pent-4-

    ynyl)-2-oxazoline as monomer have also been polymerized

    by living cationic polymerization and functionalized

    by a subsequent click reaction.[145] Furthermore, the

    Ni-catalyzed polymerization of alkyne-functionalized iso-

    cyanides has been described.[150]

    Polyaddition/Polycondensation

    A variety of examples have been reported (see Table 1,

    entries 49–59), that demonstrate polyaddition[6,70,151–160]

    or polycondensation processes in junction with the azide/

    alkyne click reaction. In principle, two approaches should

    be discerned: a) chain-growth or network-formation bydirect azide/alkyne click reaction[6,152–156,158,161] or b) the

    introduction of azide or alkyne groups into the growing

    chains[70,151,157] or endgroups by the respective monomer

    units for further attachment. Using strategy ‘a’ a variety of 

    functional polymers such as high glass transition tem-

    perature (T g) polymers,[152] metal adhesive polymers,[6,153]

    polymers with optical non-linearity,[154,160] organic semi-

    conductors,[158] or high temperature-stable polymers[155]

    have been prepared. Strategy ‘b’ has been used to

    prepare side-chain-functionalized polyurethanes[151]

    poly( p-phenylene vinylenes),[157] poly[(4-ethynyl- p-

    xylylene)-co-( p-xylylene)]s,[70]

    poly(fluorenes),[160]

    andpoly(pyrroles).[162]

    Gels and networks[6,82,88,136,152,153,159,163–166] have also

    been formed by azide/alkyne click reactions. This strategy

    has proven useful as a simple crosslinking strategy, but

    also for the formation of highly sensitive gel and network

    structures not accessible by other methods.[164] As

    supramolecularily preorganized molecules often tend to

    disintegrate upon thermal treatment, the azide/alkyne

    click reactions represent an important step towards stable

    networks of defined crosslinking density, thus ‘freezing-in’

    a specific supramolecular structure.[88,166]

    Click Reactions on Other Polymers

    The field of ‘other’ polymers in click chemistry is large and

    can be hardly overseen putting all other polymers not

    presented in the previous groups into this category.

    Thus azide/alkyne click chemistry has been

    described vastly with peptides,[59,64,143,150,167–172] carbohy-

    drates,[30,31,34,109,111,137,173–184] cellulose,[185] and oligonu-

    cleotides,[61,186–188] Suffice to say that the broadness is

    enormous and exceeds the scope of this article. Details will

    be partly presented in special reviews within this special

    issue.

    Complex Polymeric Architectures

    The beauty and usefulness of the azide/alkyne click

    reaction is best demonstrated in the build-up of larger

    polymeric structures, in particular the polymeric archi-

    tecture. As already mentioned, the field of dendrimers

    has been reviewed recently,[29] therefore putting a focus

    on the polymeric architecture itself, mentioning

    new publications on azide/alkyne click chemistry on

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   965

  • 8/15/2019 Chemistry in Polymer and Material

    15/30

    W. H. Binder, R. Sachsenhofer

    Table 2. Overview of ‘click’-reactions for the synthesis of complex polymer architectures.

    Entry Polymer/substrate Type Catalyst/conditions Ref.

    1 star polymers CuI/TBTA/DIPEA [77]

    2 graft-polymer CuBr/PMDETA/THF/DMF [210]

    3 star polymers CuSO4.5H2O/sodium

    ascorbate/70 -C

    [105]

    4 tadpole-shaped

    polymers

    CuI/N(Et)3/THF/35 -C [142]

    5 star polymers CuSO4 5H2O/sodium

    ascorbate/H2O/r.t.

    [203]

    6 graft-polymer CuSO4 5H2O/sodium

    ascorbate/H2O/MeOH/60 -C

    [211]

    ( Continued )

    966

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    16/30

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Entry Polymer/substrate Type Catalyst/conditions Ref.

    7 capsule CuSO4 5H2O/sodium

    ascorbate

    [225]

    8 terpolymers CuBr/Me6TREN/DMF/50 -C [100]

    9 copolymer Cu(PPh3)3Br/DIPEA/CH2Cl2   [144]

    10 graft-polymer [212]

    11 rod-coil block

    polymers

    CuBr/PMDETA/r.t [171]

    12 star polymers CuBr/PMDETA [91]

    13 block-copolymer CuBr/bipyridine/NMP/r.t [207]

    14 CuSO4 5H2O/sodium

    ascorbate/70 -C

    [92]

    15 triblock copolymers CuBr/PMDETA/

    DMF/120 -C

    [208]

    Table 2. (Continued)

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   967

  • 8/15/2019 Chemistry in Polymer and Material

    17/30

    W. H. Binder, R. Sachsenhofer

    Entry Polymer/substrate Type Catalyst/conditions Ref.

    16 block-copolymer CuBr/bipyridine/THF/r.t. [209]

    17 polymer brushes CuBr/PMDETA/DMF [93]

    18 multisegmented

    block-copolymers

    CuBr/PMDETA/DMF/r.t. [95]

    19 graft-polymer CuSO4.5H2O/sodium

    ascorbate/H2O/CH2Cl2/r.t.

    [213]

    20 star polymers CuBr/PMDETA/DMF/r.t. [204]

    21   star polymers CuBr/PMDETA/DMF/r.t. [126]

    ( Continued )

    Table 2. (Continued)

    968

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    18/30

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Entry Polymer/substrate Type Catalyst/conditions Ref.

    22 star polymers CuSO4/sodium ascorbate/

    100 -C/mW-irradiation

    [147]

    23 comb polymers CuBr/PMDETA/THF/r.t. [214]

    24 star polymers CuI/PMDETA/DMF/80-C [205]

    25 graft polymers CuBr/PMDETA/DMF/r.t. [114]

    26 dendrimers CuSO4 5H2O/sodium

    ascorbate/H2O/THF (1: 4)/r.t.

    [221]

    Table 2. (Continued)

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   969

  • 8/15/2019 Chemistry in Polymer and Material

    19/30

    W. H. Binder, R. Sachsenhofer

    Entry Polymer/substrate Type Catalyst/conditions Ref.

    27 dendrimers CuSO4 5H2O/sodium

    ascorbate/H2O/THF (1: 4)/r.t.

    [202]

    28 hyperbranched

    polymers

    CuSO4 5H2O/sodium

    ascorbate/H2O/t BuOH/

    hexane (5: 5: 1)/r.t.

    [222]

    29 dendrimers Cu/CuSO4/TBTA DMF/r.t [223]

    30 graft-polymer CuI/DMF/80 -C [215]

    31 dendrimers CuBr/PMDETA/THF/r.t. [99]

    32 dendrimers CuSO4 5H2O/sodium

    ascorbate/H2O/THF/40 -C

    [216]

    ( Continued )

    Table 2. (Continued)

    970

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    20/30

    dendrimers[59,99,112,175,189–202] and hyperbranched poly-

    mers[5,7,130]

    more on the side.The main polymeric architectures available are shown

    in Table 2 (see selected formulas for details within

    Table 2). It is clearly visible that quite complex polymeric

    structures, which bear a large variety of different func

    tional groups, can be accessed easily with azide/alkyne

    click chemistry. Thus star-polymers,[77,91,105,106,147,203–206]

    (block)-copolymers,[92,100,114,144,207–209] multisegmented

    block-copolymers,[95] rod-coil-block copolymers,[171] graft-

    polymers,[142,210–215] dendrimers,[1,27,29,31,59,99,112,132,133,175,-

    177,189,191,194–196,198–202,216–224] polymer-brushes,[93] and

    crosslinked capsules[225,226] can be prepared, relying on

    the aforementioned living polymerization methods and

    subsequent transformations. Yields are often high, putting

    these reactions far above others in terms of yield,

    efficiency, and easiness. As can be easily judged, nearly

    every polymeric architecture is now available by proper

    planning and appropriate manpower.

    Click Reactions on Surfaces

    An interesting aspect of the azide/alkyne click reaction lies

    in the fact that a reduced or enforced distance between the

    reaction partners leads to a strongly enhanced reaction

    rate. This effect has been demonstrated in the azide/alkyneclick reaction within the pocket of enzymes (based protein

    profiling (ABPP))[19,36,69,227] by direct microcontact print-

    ing,[70,71] or by AFM tips,[72] thus opening the chance for a

    sufficiently complete reaction at an interface. Moreover,

    since surfaces and interfaces are a chronic source of 

    incomplete or insufficient chemical reactions, the azide/

    alkyne click reaction here definitely has changed the world

    of the interfacial scientist, enabling easy access to

    functionalized surfaces of reliable and reproducible surface

    densities. Thus a large variety of click reactions on

    self-assembled monolayers (SAMs),[39,80,132,173,174,228–236]

    polymeric surfaces,[45,116,162,185,237,238] layer by layer

    assemblies,[238,239] block copolymer (BCP) micelles,[124,125]

    polymersomes[240–242] and liposomes[243–245] have been

    reported (see Table 3). In the case of SAMs the use

    of appropriately azide-[39,101,228–231] or alkyne-

    functionalized[132,173,174,232–234] surfaces by direct ligand-

    adsorption have been described. Alternatively, in-situ

    generation of terminal azides by bromide/azide exchange

    directly on the v-bromoalkyl-functional monolayer can be

    effected,[231,235] which eliminates the pressing instability

    of    v-azido-1-thioalkanes prior to the SAM-formation

    process. Dynamic or labile assembly structures (such as

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Entry Polymer/substrate Type Catalyst/conditions Ref.

    33 dendrimers CuSO4 5H2O/sodium

    ascorbate/H2O/THF

    [224]

    34 dendrimers CuSO4 5H2O/sodium

    ascorbate/H2O/THF/r.t.

    [189]

    35 dendrimers CuBr/PMDETA/DMF/80 -C [112]

    36 block-copolymer CuBr/PMDETA/CH2Cl2/r.t. [241]

    Table 2. (Continued)

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   971

  • 8/15/2019 Chemistry in Polymer and Material

    21/30

    W. H. Binder, R. Sachsenhofer

    Table 3.  Overview of ‘click’ reactions on surfaces, nanoparticles, polymersomes, vesicles, micelles, carbon nanotubes, and resins.

    Entry Polymer/substrate Surface Catalyst/conditions Ref.

    1 SAM on Au/planar CuSO4 5H2O/sodium

    ascorbate/H2O/EtOH

    [228]

    2 SAM on SiO2/planar thermal/70 -C/neat [231]

    3 SAM on Au/planar CuSO4 5H2O/sodium

    ascorbate/H2O/EtOH

    [232]

    4 SAM on Au/planar CuSO4 5H2O/sodium

    ascorbate and

    Cu(Ph3)3Br/H2O/EtOH

    [39]

    5 SAM on Au/planar CuSO4 5H2O/sodium

    ascorbate/H2O/EtOH

    and DMSO/H2O

    [229]

    6 SAM on SiO2/planar no catalyst/r.t./m-contact

    printing

    [233]

    7 SAM on Au/planar TBTA CuBF4/hydroquinone/

    DMSO/H2O

    [230]

    8 porous Si CuSO4/ascorbic acid,MeCN/

    tris-buffer/pH 8.0/r.t.

    [234]

    9 SAM on Au/planar CuSO4/sodium ascorbate/

    H2O/EtOH

    [174]

    10 SAM on glass CuSO4 5H2O/TBTA/TCEP/

    PBS-buffer/t BuOH/4 -C

    [173]

    11 SAM on Au-nanoparticles

    1,8W0,4 nm

    dioxane/hexane/r.t. [80]

    12 SAM on SiO2/planar CuSO4 5H2O/sodium

    ascorbate

    [235]

    13 SAM on SiO2/planar CuSO4 5H2O/sodium

    ascorbate/DMSO/50 -C

    [101]

    14 SAM on Au/planar CuSO4 5H2O/sodium

    ascorbate/r.t.

    [116]

    ( Continued )

    972

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    22/30

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Entry Polymer/substrate Surface Catalyst/conditions Ref.

    15 liposome CuSO4 5H2O/sodium

    ascorbate/H2O

    [243]

    16 polymersomes CuSO4 5H2O/sodium

    ascorbate/TBTA

    [240]

    17 bionanoparticle/virus CuBr/PCDS [257]

    18 liposome CuSO4/sodium ascorbate/

    HEPES-buffer/pH¼6.5

    [245]

    19 liposome CuBr/H2O [244]

    20 polymer layer AFM-tip/225 -C [237]

    21 responsive polymer

    click capsules

    CuSO4 5H2O/sodium

    ascorbate

    [238]

    22 layer by layer (LbL) film

    of polymer

    CuSO4 5H2O/sodium

    ascorbate/H2O

    [239]

    Table 3.  (Continued)

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   973

  • 8/15/2019 Chemistry in Polymer and Material

    23/30

    W. H. Binder, R. Sachsenhofer

    Entry Polymer/substrate Surface Catalyst/conditions Ref.

    23 surface-functionalized

    micelles

    CuSO4.5H2O/sodium

    ascorbate/H2O/r.t.

    [125,124]

    24 CdSe-NP CuBr [80]

    25 CdSe-NP CuBr/TBTA/DIPEA or  DT    [78]

    26 Fe2O3-NP   DT /toluene [79]

    27 Fe2O3-NP CuSO4   [256]

    28 SAM on

    Au-nanoparticles

    dioxane/hexane/r.t. [254]

    29 SAM on

    Au-nanoparticles

    CuI/r.t. [255]

    30 Au-nanorods CuSO4/ascorbic acid/4 -C [258]

    31 SWNT- nanocomposites CuI [247]

    ( Continued )

    Table 3.  (Continued)

    974

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    24/30

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Entry Polymer/substrate Surface Catalyst/conditions Ref.

    32 SWNT- nanocomposites CuI [246]

    33 self-separating

    homogeneous

    CuI catalysts

    CuCl/heptane/EtOH [45]

    34 CuI/NEt3/THF [198]

    35 cotton surface CuBr/ N -(n-propyl)-2-

    pyridylmethanimine/

    toluene/70 -C

    [110]

    36 Wang resins Cu(PPh3)3Br/DIPEA/DMSO/60 -C [111]

    37 enantioselectivecatalysts

    on resins

    CuI/DIPEA/

    DMF:H2O (1: 1)/35 -C

    [250]

    38 Merrifield resins CuI/DIPEA/DMF/H2O/40 -C [251]

    39 pybox resins CuI/DIEA/THF/35-

    C [252]

    Table 3.  (Continued)

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   975

  • 8/15/2019 Chemistry in Polymer and Material

    25/30

    polymersomes, BCP micelles, and liposomes) offer either a

    direct approach to modify the already existing surface of 

    the assembly,[124,125,240,244] or to modify the molecule by

    click reaction before the assembly.[241,242,245] The latter

    strategy is definitely less elegant, but sometimes more

    efficient.

    Grafting-to[101,110,236] and grafting-from[81,116] tech-

    niques have been employed to effect the attachment of 

    polymers onto surfaces. Moreover, the reaction has been

    extended to carbon nanotubes[246–248] and fullerenes,[249]

    solid resins,[111,172,197,250–253] colloidal polymer parti-

    cles,[226] and nanoparticles.[78–81,246,254–256] Thus a large

    variety of nanoparticles (Au,[80,246,254,255] CdSe,[78]

    Fe2O3,[79,81,256] SiO2

    [101]) as well as viruses[257] and

    Au-nanorods[258] have been surface-functionalized by this

    method. Compared to conventional surface-modification

    methods, the azide/alkyne methodology enables an

    elegant, fast, and efficient approach to functionalized

    nanoparticles in a simple mode. An important point has

    been observed upon comparing the CuI-catalyzed reaction

    with the uncatalyzed, purely thermal click reaction on

    CdSe nanoparticles[78] without the use of the CuI catalyst,

    the photoluminescence of the final, surface-modified CdSe

    nanoparticles remains nearly unchanged, whereas

    under CuI catalysis a significant drop in the quantum

    yield is observed. Therefore, the purely thermal azide/

    alkyne reaction may sometimes be advantageous over the

    metal-catalyzed click process.

    Conclusion and Outlook

    Click chemistry, in particular azide/alkyne click chemistry,

    has advanced and found its way into the chemists’ mind.

    W. H. Binder, R. Sachsenhofer

    Entry Polymer/substrate Surface Catalyst/conditions Ref.

    40 functionalized

    cross-linked solid

    supports

    CuBr/PMDETA/DMF/80-C [197]

    41 5-substituted tetrazoles toluene/–40 to 120 -C [17]

    42 pH sensitive releasing

    systems

    CuSO4 5H2O/sodium ascorbate/

    t -BuOH:H2O (1: 1)

    [52]

    43 polysaccharides CuSO4 5H2O/sodium

    ascorbate/DMSO/r.t.

    [185]

    44 polymersomes CuSO4.5H2O/sodium

    ascorbate/

    bathophenanthroline/4 -C

    [241]

    Table 3.  (Continued)

    976

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    26/30

    As with many novel and unconventional approaches (to

    cite ‘combinatorial chemistry’ as one prominent example)

    the reaction has had its ‘induction period’, and subse-

    quently its royal uprise and present general acceptance in

    chemistry. Given the short period between discovery to the

    present, the reaction has been radically revolutionizing theway organic, material, surface, and in particular polymer

    chemists will approach future projects and experiments.

    Using azide/alkyne click chemistry, not only more, but

    also more complex molecules and materials can now be

    approached in cases where in earlier times longer

    experiments and planning had been required. With

    azide/alkyne click chemistry in hand, polymer chemistry

    now approaches the level of small-molecule organic

    chemistry in terms of functional broadness, structural

    integrity, and molecular addressability. This alone suffices

    as the outlook.

    In the close future, however, another question will more

    urgently press us polymer chemists: ‘‘Useful or not

    Useful?’’—It might be this change-in-mind, rather than

    the ‘‘New or not New’’ question that remains and will be

    posed for a longer period in our hastily changing scientific

    world.

    Acknowledgements: The authors are thankful for the grant FWF 18740 B03  for financial support.

    Received: February 11, 2008; Revised: March 31, 2008; Accepted:March 31, 2008; DOI: 10.1002/marc.200800089

    Keywords: 1,3-dipolar cycloaddition; azide/alkyne ‘click’ reac-

    tion; polymerization (general); surfaces

    [1] W. H. Binder, R. Sachsenhofer,   Macromol. Rapid Commun.2007,  28, 15.

    [2] M. Meldal, C. W. Tornoe, ‘‘Peptides, The wave of the Future’’in:  Proceedings of the Second International and the Seven-teenthAmerican Peptide Symposium, M. lebl, R. A. Houghten,Eds., American Peptide Society, San Diego 2001, p. 263.

    [3] C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem.   2002,67 ,  3057.

    [4] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed.   2002,  41, 2596.[5] M. Smet, K. Metten, W. Dehaen,  Collect. Czech. Chem. Com-

    mun.   2004,  69, 1097.[6] D. D. Dı́az, S. Punna, P. Holzer, A. K. McPherson, K. B. Sharp-

    less, V.V. Fokin,M. G. Finn, J. Polym. Sci., Part A: Polym. Chem.2004,  42, 4392.

    [7] A. J. Scheel, H. Komber, B. I. Voit, Macromol. Rapid Commun.2004,  25, 1175.

    [8] B. Helms, J. L. Mynar, C. J. Hawker, J. M. J. Frechet,  J. Am.Chem. Soc.   2004,  126, 15020.

    [9] W. H. Binder, C. Kluger, Macromolecules   2004,  37 ,  9321.[10] N. V. Tsarevsky, K. V. Bernaerts, B. Dufour, F. E. DuPrez,

    K. Matyjaszewski,  Macromolecules   2004, 37 ,  9308.[11] K. Matyjaszewski, A. E. Müller, Progr. Polym. Sci. 2007, 32, see

    whole issue on ‘‘50 Years of Living Polymerization’’.[12] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed.

    2001,  40, 2004.[13] Z. P. Demko, K. B. Sharpless,  J. Org. Chem.   2001,  66, 7945.

    [14] Z. P. Demko, K. B. Sharpless,  Org. Lett.   2001, 3,  4091.[15] R. Huisgen,  Pure Appl. Chem.   1989,  61, 613.[16] R. Huisgen, G. Szeimies, L. Möbius,   Chem. Ber.   1967,   100,

    2494.[17] V. Aureggi, G. Sedelmeier,  Angew. Chem. Int. Ed.   2007,  46,

    8440.[18] Z. P. Demko, K. B. Sharpless, Angew. Chem. Int. Ed.  2002, 41,

    2110.[19] W. G. Lewis, L. G. Green, F. Grynszpan, Z. Radic, P. R. Carlier,

    P. Taylor, M. G. Finn, K. B. Sharpless,  Angew. Chem. Int. Ed.2002,  41, 1053.

    [20] G. W. Goodall, W. Hayes,  Chem. Soc. Rev.   2006,  35, 280.[21] K. Ruck-Braun, T. H. E. Freysoldt, F. Wierschem,  Chem. Soc.

     Rev.   2005,  34, 507.[22] V. D. Bock, H. Hiemstra, J. H. v. Maarseveen, Eur. J. Org. Chem.

    2006,  2006,  51.[23] H. Nandivada, X. Jiang, J. Lahann,   Adv. Mater.   2007,   19,

    2197.[24] L. Jean-François, Angew. Chem. Int. Ed.   2007,  46, 1018.[25] L. Barner, T. P. Davis, M. H. Stenzel, C. Barner-Kowollik,

     Macromol. Rapid Commun.   2007,  28, 539.[26] D. Fournier, R. Hoogenboom, U. S. Schubert, Chem. Soc. Rev.

    2007,  36, 1369.[27] R. A. Evans,  Aust. J. Chem.   2007,  60, 384.[28] W. H. Binder, C. Kluger,  Curr. Org. Chem.   2006,  10, 1791.[29] B. Voit,  New J. Chem.   2007,  31, 1139.[30] S. Dedola, S. A. Nepogodiev, R. A. Field,  Org. Biomol. Chem.

    2007,  5, 1006.[31] D. Alessandro, Chem. Asian J.   2007,  2, 700.[32] S. G. Spain, M. I. Gibson, N. R. Cameron, J. Polym. Sci., Part A:

     Polym. Chem.   2007,  45,  2059.[33] M. V. Gil, M. J. Arévalo, Ó. López,  Synthesis   2007, 1589.[34] Y. L. Angell, K. Burgess,  Chem. Soc. Rev.   2007, 36,  1674.[35] H. C. Kolb, K. B. Sharpless,   Drug Discovery Today   2003,   8,

    1128.[36] V. P. Mocharla, B. Colasson, L. V. Lee, S. Röper, K. B. Sharpless,

    C.-H. Wong, H. C. Kolb, Angew. Chem. Int. Ed.  2005, 44, 116.[37] P. Scheiner, J. H. Schomaker, S. Deming, W. J. Libbey, G. P.

    Nowack, J. Am. Chem. Soc.   1965, 87 ,  306.[38] S. Hiki, K. Kataoka,  Bioconjugate Chem.   2007,  18, 2191.[39] R. Zirbs, F. Kienberger, P. Hinterdorfer, W. H. Binder,  Lang-

    muir   2005,  21,  8414.[40] G. Molteni, C. I. Bianchi, G. Marinoni, N. Santo, A. Ponti, New 

     J. Chem.   2006,  30, 1137.[41] L. D. Pachón, J. H. van Maarseveen, G. Rothenberg,   Adv.

    Synth. Catal.   2005,  347 , 811.[42] H.A. Orgueira,D. Fokas,Y. Isome, P. C.M. Chan,C. M.Baldino,

    Tetrahedron Lett.  2005, 46,  2911.[43] M. B. Thathagar, J. Beckers, G. Rothenberg, J. Am. Chem. Soc.

    2002,  124,  11858.[44] B. H. Lipshutz, B. R. Taft,   Angew. Chem. Int. Ed.   2006,   45,

    8235.[45] D. E. Bergbreiter, P. N. Hamilton, N. M. Koshti, J. Am. Chem.

    Soc.   2007,  129,  10666.[46] J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V.

    Chang, I. A. Miller, A. Lo, J. A. Codelli, C. R. Bertozzi, Proc. Natl. Acad. Sci.   2007,  104, 16793.

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   977

  • 8/15/2019 Chemistry in Polymer and Material

    27/30

    [47] X. Ning, J. Guo, M. A. Wolfert, G.-J. Boons, Angew. Chem. Int. Ed.  2008,  47 ,  2253.

    [48] J.-C. Meng, V. V. Fokin, M. G. Finn, Tetrahedron Lett.2005, 46,4543.

    [49] W. G. Lewis, F. G. Magallon, V. V. Fokin, M. G. Finn,  J. Am.Chem. Soc.   2004,  126,  9152.

    [50] P. L. Golas, N. V. Tsarevsky, B. S. Sumerlin, K. Matyjaszewski, Macromolecules   2006,  39, 6451.[51] Y. Angell, K. Burgess,  Angew. Chem. Int. Ed.   2007, 46, 3649.[52] P. Bertrand, J. P. Gesson,  J. Org. Chem.   2007,  72,  3596.[53] L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B.

    Sharpless, V. V. Fokin, G. Jia,   J. Am. Chem. Soc.   2005,  127 ,15998.

    [54] S. Oppilliart, G. Mousseau, L. Zhang, G. Jia, P. Thuery, B.Rousseau, J.-C. Cintrat,  Tetrahedron   2007,  63, 8094.

    [55] D. V. Partyka, J. B. Updegraff, M. Zeller, A. D. Hunter, T. G.Gray,  Organometallics   2007,  26, 183.

    [56] C. Chowdhury, S. B. Mandal, B. Achari,   Tetrahedron Lett.2005,  46, 8531.

    [57] B. Khanetskyy, D. Dallinger, C. O. Kappe,   J. Comb. Chem.2004,  6,  884.

    [58] P. Appukkuttan, W. Dehaen, V. V. Fokin, E. VanderEycken,Org. Lett.   2004,  6, 4223.

    [59] D. T. S. Rijkers, G. W. v. Esse, R. Merkx, A. J. Brouwer, H. J. F.Jacobs, R. J. Pieters, R. M. J. Liskamp, Chem. Commun.  2005,4581.

    [60] Y. Wang, Z. Iqbal, S. Mitra,  Carbon   2005,  43, 1015.[61] C. Bouillon, A. Meyer, S. Vidal, A. Jochum, Y. Chevolot, J. P.

    Cloarec, J. P. Praly, J. J. Vasseur, F. Morvan, J. Org. Chem. 2006,71,  4700.

    [62] J. Li, H. Grennberg,  Chem. Eur. J.   2006,  12, 3869.[63] V. O. Rodionov, V. V. Fokin, M. G. Finn, Angew. Chem. Int. Ed.

    2005,  44, 2210.[64] S. Punna, J. Kuzelka, Q. Wang, M. G. Finn, Angew. Chem. Int.

     Ed.  2005,  44,  2215.[65] G. Molteni, A. Ponti,  Chem. Eur. J.   2003,  9, 2770.

    [66] F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman,K. B. Sharpless, V. V. Fokin,  J. Am. Chem. Soc.  2005, 127 , 210.

    [67] B. F. Straub,  Chem. Commun.  2007, 3868.[68] J.-C. Meng, G. Siuzdak, M. G. Finn,  Chem. Commun.   2004,

    2108.[69] J. Wang, G. Sui, V. P. Mocharla, R. J. Lin, M. E. Phelps,

    H. C. Kolb, H.-R. Tseng,   Angew. Chem. Int. Ed.   2006,   45,5276.

    [70] H. Nandivada, H.-Y. Chen, L. Bondarenko, J. Lahann, Angew.Chem. Int. Ed.   2006,  45, 3360.

    [71] D. I. Rozkiewicz, D. Janczewski, W. Verboom, B. J. Ravoo,D. N.Reinhoudt, Angew. Chem. Int. Ed.   2006,  45,  5292.

    [72] D. A. Long, K. Unal, R. C. Pratt, M. Malkoch, J. Frommer, Adv. Mater.   2007,  19, 4471.

    [73] W. H. Binder, D. Machl, C. Kluger, Polym. Prepr. (Am. Chem.

    Soc. Div. Polym. Chem.)   2004,  45, 692.[74] W. H. Binder, C. Kluger, C. J. Straif, G. Friedbacher,  Macro-

    molecules   2005,  38,  9405.[75] W. H. Binder, C. Kluger, M. Josipovic, C. J. Straif, G.

    Friedbacher, Macromolecules   2006,  39,  8092.[76] C. Kluger, W. H. Binder,  J. Polym. Sci., Part A: Polym. Chem.

    2007,  45, 485.[77] W. H. Binder, L. Petraru, T. Roth, P. W.Groh, V. Pálfi, S. Keki, B.

    Ivan, Adv. Funct. Mater.   2007,  17 ,  1317.[78] W. H. Binder, R. Sachsenhofer, C. J. Straif, R. Zirbs, J. Mater.

    Chem.   2007,  17 , 2125.[79] W. H. Binder, H. C. Weinstabl,   Monatsh. Chem.   2007,

    138, 315.

    [80] W. H. Binder, L. Petraru, R. Sachenshofer, R. Zirbs, Monatsh.Chem.   2006,  137 ,  835.

    [81] W. H. Binder, D. Gloger, H. Weinstabl, G. Allmaier, E. Pitte-nauer,  Macromolecules   2007,  40, 3097.

    [82] D. A. Ossipov, J. Hilborn,  Macromolecules   2006,  39,  1709.[83] N. V. Tsarevsky, B. Dufour, K. Matyjaszewski,   PMSE Prepr.

    2004,  45, 1065.[84] J.-F. Lutz, H. G. Börner, K. Weichenhan,   Macromol. RapidCommun.   2005,  26, 514.

    [85] J. A. Opsteen, J. C. M. v. Hest,  Chem. Commun.   2005, 57.[86] B. S. Sumerlin, N. V. Tsarevsky, G. Louche, R. Y. Lee, K.

    Matyjaszewski, Macromolecules   2005,  38, 7540.[87] H. Gao, K. Matyjaszewski,  Macromolecules   2006,  39,  4960.[88] J. A. Johnson, D. R. Lewis, D. D. Diaz, M. G. Finn, J. T.

    Koberstein, N. J. Turro,  J. Am. Chem. Soc.  2006,  128, 6564.[89] B. A. Laurent, S. M. Grayson,   J. Am. Chem. Soc.   2006,   128,

    4238.[90] J. F. Lutz, H. G. Borner,K. Weichenhan, Macromolecules2006,

    39,  6376.[91] G. Deng, D. Ma, Z. Xu,  Eur. Polym. J.   2007,  43, 1179.[92] B. L. Droumaguet,G. Mantovani, D. M. Haddleton, K. Velonia,

     J. Mater. Chem.  2007,  17 ,  1916.[93] H. Gao, K. Matyjaszewski, J. Am. Chem. Soc.  2007, 129, 6633.[94] H. Gao, K. Min, K. Matyjaszewski,  Macromol. Chem. Phys.

    2007,  208,  1370.[95] P. L. Golas, N. V. Tsarevsky, B. S. Sumerlin, L. M. Walker, K.

    Matyjaszewski, Aust. J. Chem.   2007,  60, 400.[96] E. Gungor, G. Cote, T. Erdogan, H. D. A. L. Demirel, G. Hizal, U.

    Tunca, J. Polym. Sci., Part A: Polym. Chem.   2007,  45,  1055.[97] X. Jiang, M. C. Lok, W. E. Hennink, Bioconjugate Chem.  2007,

    18,  2077.[98] J. A. Johnson, M. G. Finn, J. T. Koberstein, N. J. Turro, Macro-

    molecules   2007,  40, 3589.[99] Q. Liu, P. Zhao, Y. Chen,  J. Polym. Sci., Part A: Polym. Chem.

    2007,  45, 3330.[100] J. A. Opsteen, J. C. M. v. Hest,  J. Polym. Sci., Part A: Polym.

    Chem.   2007,  45, 2913.[101] R. Ranjan, W. J. Brittain,  Macromolecules  2007,  40, 6217.[102] N. V. Tsarevsky, S. A. Bencherif, K. Matyjaszewski,  Macro-

    molecules   2007,  40, 4439.[103] W. Van Camp, V. Germonpre, L. Mespouille, P. Dubois, E. J.

    Goethals, F. E. Du Prez,  React. Funct. Polym.  2007, 67 ,  1168.[104] J. Xu, J. Ye, S. Liu, Macromolecules  2007,  40,  9103.[105] J. Zhu, X. Zhu, E. T. Kang, K. G. Neoh, Polymer  2007, 48, 6992.[106] N. V. Tsarevsky, B. S. Sumerlin, K. Matyjaszewski,   Macro-

    molecules   2005,  38, 3558.[107] H. Gao, G. Louche, B. S. Sumerlin, N. Jahed, P. Golas, K.

    Matyjaszewski, Macromolecules   2005,  38,  8979.[108] A. J. Dirks, S. S. v. Berkel, N. S. Hatzakis, J. A. Opsteen, F. L. v.

    Delft, J. J. L. M. Cornelissen, A. E. Rowan, J. C. M. v. Hest, F. P.J. T. Rutjes, R. J. M. Nolte, Chem. Commun.   2005, 4172.

    [109] V. Ladmiral, G. Mantovani, G. J. Clarkson, S. Cauet, J. L. Irwin,D. M. Haddleton,  J. Am. Chem. Soc.   2006,  128,  4823.

    [110] G. Chen, L. Tao, G. Mantovani, V. Ladmiral, D. P. Burt, J. V.Macpherson, D. M. Haddleton,  Soft Matter   2007,  3, 732.

    [111] G. Chen, L. Tao, G. Mantovani, J. Geng, D. Nystrom, D. M.Haddleton, Macromolecules   2007,  40, 7513.

    [112] C. N. Urbani, C. A. Bell, D. Lonsdale, M. R. Whittaker, M. J.Monteiro,  Macromolecules   2008,  41, 76.

    [113] A.Sinaga, P.Ravi, T.A. Hatton, K. C.Tam, J. Polym. Sci., Part A: Polym. Chem.   2007,  45, 2646.

    [114] A. P. Vogt, B. S. Sumerlin,  Macromolecules   2006,  39,  5286.[115] G. Mantovani, V. Ladmiral, L. Tao, D. M. Haddleton,  Chem.

    Commun.   2005, 2089.

    W. H. Binder, R. Sachsenhofer

    978

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    28/30

    [116] B.S. Lee,J. K.Lee, W.J. Kim,Y. H.Jung, S.J. Sim,J. Lee,I. S.Choi, Biomacromolecules  2007,  8, 744.

    [117] X. P. Qiu, F. Tanaka, F. M. Winnik, Macromolecules  2007, 40,7069.

    [118] R. K. O’Reilly, M. J. Joralemon, C. J. Hawker, K. L. Wooley,Chem. Eur. J.   2006,  12,  6776.

    [119] D. Gromadzki, J. Lokaj, P. Cernoch, O. Diat, F. Nallet, P.Stepanek,  Eur. Polym. J.   2008,  44, 189.[120] B. Sieczkowska, M. Millaruelo, M. Messerschmidt, B. Voit,

     Macromolecules   2007,  40, 2361.[121] B. Gacal, H. Durmaz, M. A. Tasdelen, G. Hizal, U. Tunca, Y.

    Yagci, A. L. Demirel,  Macromolecules   2006,  39, 5330.[122] M. Malkoch, R. J. Thibault, E. Drockenmuller, M. Messersch-

    midt, B. Voit, T. P. Russell, C. J. Hawker,   J. Am. Chem. Soc.2005,  127 ,  14942.

    [123] S. Fleischmann, H. Komber, D. Appelhans, B. I. Voit,  Macro-mol. Chem. Phys.   2007,  208,  1050.

    [124] R. K. O’Reilly, M. J. Joralemon, K. L. Wooley, C. J. Hawker,Chem. Mater.   2005,  17 , 5976.

    [125] R. K. O’Reilly, M. J. Joralemon, C. J. Hawker, K. L. Wooley, J. Polym. Sci., Part A: Polym. Chem.  2006,  44,  5203.

    [126] O. A. Tintas, G. Hizal, U. Tunca, J. Polym. Sci., Part A: Polym.Chem.   2006,  44, 5699.

    [127] S. R. Gondi, A. P. Vogt, B. S. Sumerlin, Macromolecules  2007,40, 474.

    [128] Y. Li, J. Yang, B. C. Benicewicz,  J. Polym. Sci., Part A: Polym.Chem.   2007,  45, 4300.

    [129] S. R. S. Ting, A. M. Granville, D. Quemener, T. P. Davis,M. H. Stenzel, C. Barner-Kowollik,  Aust. J. Chem.   2007,   60,405.

    [130] A. P. Vogt, S. R. Gondi, B. S. Sumerlin, Aust. J. Chem.  2007, 60,396.

    [131] D. Quémener, M. L. Hellaye, C. Bissett, T. P. Davis, C. Bar-ner-Kowollik, M. H. Stenzel,   J. Polym. Sci., Part A: Polym.Chem.   2008,  46, 155.

    [132] R. Vestberg, M. Malkoch, M. Kade, P. Wu, V. V. Fokin, K. B.

    Sharpless, E. Drockenmuller, C. J. Hawker, J. Polym. Sci., Part  A: Polym. Chem.   2007, 45,  2835.

    [133] R. K. O’Reilly, M. J. Joralemon, C. J. Hawker,K. L. Wooley, New  J. Chem.   2007, 31,  718.

    [134] R. J. Thibault, K. Takizawa, P. Lowenheilm, B. Helms, J. L.Mynar, J. M. J. Frechet, C. J. Hawker,  J. Am. Chem. Soc.  2006,128, 12084.

    [135] D. Quemener, T. P. Davis, C. Barner-Kowollik, M. H. Stenzel,Chem. Commun.   2006, 5051.

    [136] Y. Xia, R. Verduzco, R. H. Grubbs, J. A. Kornfield, J. Am. Chem.Soc.   2008,  130, 1735.

    [137] J. J. Murphy, K. Nomura, R. M. Paton, Macromolecules  2006,39, 3147.

    [138] S. K. Yang, M. Weck,  Macromolecules   2008,  41,  346.[139] D. J. Coady, C. W. Bielawski, Macromolecules  2006, 39, 8895.

    [140] R. Riva, S. Schmeits, F. Stoffelbach, C. Jerome, R. Jerome, P.Lecomte, Chem. Commun.  2005, 5334.

    [141] P. Lecomte, R. Riva, S. Schmeits, J. Rieger, K. Van Butsele, C.Jérôme, R. Jérôme,  Macromol. Symp.   2006,  240, 157.

    [142] H.Li, R. Riva, R. Jerome, P. Lecomte, Macromolecules2007, 40,824.

    [143] B. Parrish, R. B. Breitenkamp, T. Emrick,   J. Am. Chem. Soc.2005,  127 ,  7404.

    [144] B. Parrish, T. Emrick, Bioconjugate Chem.   2007,  18, 263.[145] R. Luxenhofer, R. Jordan, Macromolecules   2006,  39,  3509.[146] Q. Shi, X. Chen, T. Lu, X. Jing,  Biomaterials   2008,  29, 1118.[147] R. Hoogenboom, B. C. Moore, U. S. Schubert, Chem. Commun.

    2006, 4010.

    [148] X. Jiang, E. B. Vogel, M. R. Smith, G. L. Baker, Macromolecules2008,  41,  1937.

    [149] A. D. Thomsen, E. Malmström, S. Hvilsted, J. Polym. Sci., Part  A: Polym. Chem.   2006,  44, 6360.

    [150] E. Schwartz, H. J. Kitto, Rd. Gelder, R. J. M. Nolte, A. E. Rowan,J. J. L. M. Cornelissen,  J. Mater. Chem.   2007,  17 ,  1876.

    [151] Z. Li, Q. Zeng, S. Dong, Z. Zhu, Q. Li, C. Ye, C. Di, Y. Liu, J. Qin, Macromolecules   2006,  39, 8544.[152] N. L. Baut, D. D. Diaz, S. Punna, M. G. Finn, H. R. Brown,

     Polymer   2007,  48,  239.[153] Y. Liu, D. D. Dı́az, A. A. Accurso, K. B. Sharpless, V. V. Fokin,

    M. G. Finn,   J. Polym. Sci., Part A: Polym. Chem.   2007,   45,5182.

    [154] A. Qin, C. K. W. Jim, W. Lu, J. W. Y. Lam, M. Haussler, Y. Dong,H. H. Y. Sung, I. D. Williams, G. K. L. Wong, B. Z. Tang,

     Macromolecules   2007,  40, 2308.[155] Y. Zhu, Y. Huang, W.-D. Meng, H. Li, F.-L. Qing, Polymer  2006,

    47 , 6272.[156] V. Aucagne, D. A. Leigh,  Org. Lett.   2005,  8, 4505.[157] B. C. Englert, S. Bakbak, U. H. F. Bunz, Macromolecules  2005,

    38, 5868.

    [158] S. Bakbak, P. J. Leech, B. E. Carson, S. Saxena, W. P. King,U. H. F. Bunz,  Macromolecules   2006,  39, 6793.

    [159] A. R. Katritzky, N. K. Meher, S. Hanci, R. Gyanda, S. R. Tala, S.Mathai, R. S. Duran, S. Bernard, F. Sabri, S. K. Singh, J.Doskocz, D. A. Ciaramitaro,   J. Polym. Sci., Part A: Polym.Chem.   2008, 46,  238.

    [160] Za. Li, Q.Zeng,G. Yu, Z.Li,C. Ye, Y.Liu, J.Qin, Macromol. RapidCommun.  2008,  29, 136.

    [161] D. J. V. C. v. Steenis, O. R. P. David, G. P. F. v. Strijdonck, J. H. v.Maarseveen, J. N. H. Reek,  Chem. Commun.   2005, 4333.

    [162] Y.Li, W.Zhang,J. Chang, J. Chen,G. Li, Y. Ju, Macromol. Chem. Phys.   2008, 209,  322.

    [163] M. Malkoch, R. Vestberg, N. Gupta, L. Mespouille, P. Dubois,A. F. Mason, J. L. Hedrick, Q. Liao, C. W. Frank, K. Kingsbury,C. J. Hawker,  Chem. Commun.   2006, 2774.

    [164] D. D. Diaz, K. Rajagopal, E. Strable, J. Schneider, M. G. Finn, J. Am. Chem. Soc.   2006,  128, 6056.

    [165] P. Screenivas, D. D. Diaz, L. Chunmei, K. B. Sharpless, V. V.Fokin, M. G. Finn, PMSE Prepr.   2004,  45, 778.

    [166] D. D. Diaz, J. J. Marrero Tellado, D. G. Velazquez, A. G. Ravelo,Tetrahedron Lett.   2008,  49, 1340.

    [167] W. S. Horne, M. K. Yadav, C. D. Stout, M. R. Ghadiri,  J. Am.Chem. Soc.   2004,  126, 15366.

    [168] W. S. Horne, C. D. Stout, M. R. Ghadiri, J. Am. Chem. Soc. 2003,125,  9372.

    [169] M. Salvati, F. M. Cordero, F. Pisaneschi, F. Bucelli, A. Brandi,Tetrahedron   2005,  61, 8836.

    [170] C. D. Tatko, M. L. Waters,   J. Am. Chem. Soc.   2002,   124,9372.

    [171] W. Agut, D. Taton, S. Lecommandoux, Macromolecules  2007,

    40, 5653.[172] J. M. Holub, H. Jang, K. Kirshenbaum,  Org. Biomol. Chem.

    2006,  4, 1497.[173] X. L. Sun, C. L. Stabler, C. S. Cazalis, E. L. Chaikof, Bioconjugate

    Chem.   2006, 17 ,  52.[174] Y. Zhang, S. Luo, Y. Tang, L. Yu, K. Y. Hou, J. P. Cheng, X. Zeng,

    P. G. Wang,  Anal. Chem.   2006,  78, 2001.[175] E. Fernandez-Megia, J. Correa, I. Rodriguez-Meizoso, R.

    Riguera,  Macromolecules   2006,  39, 2113.[176] S. Hotha, S. Kashyap,  J. Org. Chem.  2006,  71,  364.[177] E. Fernandez-Megia, J. Correa, R. Riguera, Biomacromolecules

    2006,  7 , 3104.[178] J.-F. Lutz, H. G. Borner,  Progr. Polym. Sci.   2008,  33, 1.

    ‘Click’ Chemistry in Polymer and Material Science: An Update

    Macromol. Rapid Commun. 2008, 29 ,  952–981  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mrc-journal.de   979

  • 8/15/2019 Chemistry in Polymer and Material

    29/30

    [179] J. M. Langenhahn, J. S. Thorson, Curr. Org. Synth.  2005, 2, 59.[180] S. Dorner, B. Westermann,  Chem. Commun.  2005, 2852.[181] F. Fazio, M. C. Bryan, O. Blixt, J. C. Paulson, C. H. Wong, J. Am.

    Chem. Soc.  2002,  124,  14397.[182] Q. Chen, F. Yang, Y. Du,  Carbohydr. Res.   2005,  340,  2476.[183] T. Hasegawa, M. Umeda, M. Numata, C. Li, A.-H. Bae, T.

    Fujisawa,S. Haraguchi, K. Sakurai, S. Shinkai, Carbohydr.Res.2006,  341, 35.

    [184] V. Crescenzi, L. Cornelio, C. DiMeo, S. Nardecchia, R.Lamanna,  Biomacromolecules   2007,  8, 1844.

    [185] T. Liebert, C. Hänsch, T. Heinze,  Macromol. Rapid Commun.2006,  27 , 208.

    [186] J. Gierlich, G. A. Burley,P. M. E. Gramlich, D. M. Hammond, T.Carell, Org. Lett.   2006,  8,  3639.

    [187] N. Minakawa, Y. Ono, A. Matsuda,  J. Am. Chem. Soc.   2003,125, 11545.

    [188] T. S. Seo, Z. Li, H. Ruparel, J. Ju,  J. Org. Chem.   2003, 68, 609.[189] C. Ornelas, J. Ruiz Aranzaes, E. Cloutet, S. Alves, D. Astruc,

     Angew. Chem. Int. Ed.   2007,  46,  872.[190] J. W. Lee, B. K. Kim, H. J. Kim, S. C. Han, W. S. Shin, S. H. Jin,

     Macromolecules   2006,  39, 2418.

    [191] S. Svenson, D. A. Tomalia, Adv. Drug Delivery Rev.  2005, 57 ,2106.

    [192] P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B.Voit, J. Pyun, J. M. J. Fréchet, K. B. Sharpless, V. V. Fokin,

     Angew. Chem. Int. Ed.   2004,  43,  3928.[193] P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B.

    Voit, J. Pyun, J. M. J. Fréchet, K. B. Sharpless, V. V. Fokin, Angew. Chem.   2004,  116, 4018.

    [194] J.W. Lee,B. K.Kim, J.H. Kim,W. S.Shin,S. H.Jin, J. Org. Chem.2006,  71, 4988.

    [195] J. Lenoble, N. Maringa, S. Campidelli, B. Donnio, D. Guillon, R.Deschenaux, Org. Lett.   2006,  8, 1851.

    [196] P. Wu, M. Malkoch, J. N. Hunt, R. Vestberg, E. Kaltgrad, M. G.Finn, V. V. Fokin, K. B. Sharpless, C. J. Hawker,  Chem. Com-mun.   2005, 5775.

    [197] C. N. Urbani, C. A. Bell, D. E. Lonsdale, M. R. Whittaker, M. J.Monteiro, Macromolecules  2007,  40,  7056.

    [198] A. Gissibl, C. Padie, M. Hager, F. Jaroschik, R. Rasappan, E.Cuevas-Yanez, C. O. Turrin, A. M. Caminade, J. P. Majoral, O.Reiser,  Org. Lett.   2007,  9,  2895.

    [199] R. K. O’Reilly, M. J. Joralemon, C. J. Hawker, K. L. Wooley, PMSE Prepr.   2005,  46, 92.

    [200] J. W. Lee, J. H. Kim, B.-K. Kim,   Tetrahedron Lett.   2006,  47 ,2683.

    [201] J.W. Lee, J.H. Kim,B.-K. Kim,W. S.Shin, S.-H. Jin, Tetrahedron2006,  62, 894.

    [202] J. W. Lee, J. H. Kim, H. J. Kim, S. C. Han, W. S. Shin, S. H. Jin, Bioconjugate Chem.   2007,  18,  579.

    [203] X. M. Liu, A. Thakur, D. Wang,  Biomacromolecules   2007,  8,2653.

    [204] O. Altinas, B. Yankul, G. Hizal, U. Tunca, J. Polym. Sci., Part A: Polym. Chem.   2006,  44,  6458.

    [205] M. R. Whittaker, C. N. Urbani, M. J. Monteiro,  J. Am. Chem.Soc.   2006,  128, 11360.

    [206] O. Altintas, G. Hizal, U. Tunca,  J. Polym. Sci., Part A: Polym.Chem.   2008,  46, 1218.

    [207] J. Lutz, H. G. Baerner, K. Weichenhan, Aust. J. Chem. 2007, 60,410.

    [208] H. Durmaz,A. Dag, O. Altintas, T. Erdogan, G. Hizal, U. Tunca, Macromolecules   2007,  40, 191.

    [209] M. Ergin, B. Kiskan, B. Gacal, Y. Yagci, Macromolecules  2007,40, 4724.

    [210] Q. Zeng, Z. Li, C. Ye, J. Qin, B. Z. Tang,  Macromolecules  2007,40, 5634.

    [211] F. Morvan, A. Meyer, A. Jochum, C. Sabin, Y. Chevolot, A.Imberty, J. P. Praly, J. J. Vasseur, E. Souteyrand, S. Vidal,

     Bioconjugate Chem.   2007,  18,  1637.[212] H. Pu, S. Ye, D. Wan,  Electrochim. Acta   2007,  52,  5879.

    [213] J.-H. Jung, Y.-G. Lim, K.-H. Lee, B. T. Koo,   Tetrahedron Lett.2007,  48,  6442.

    [214] Q. Liu, Y. Chen,  J. Polym. Sci., Part A: Polym. Chem.  2006, 44,6103.

    [215] X.-Y. Wang, A. Kimyonok, M. Weck,  Chem. Commun.   2006,3933.

    [216] P. Antoni, D. Nystrom, C. J. Hawker, A. Hult, M. Malkoch,Chem. Commun.  2007, 2249.

    [217] M. Malkoch, K. Schleicher, E. Drockenmuller, C. J. Hawker,T. P. Russell, P. Wu, V. V. Fokin,  Macromolecules   2005,  38,3663.

    [218] S. Campidelli, J. Lenoble, J. Barbera, F. Paolucci, M. Marcaccio,D. Paolucci, R. Deschenaux,   Macromolecules   2005,   38,7915.

    [219] M. J. Joralemon, A. K. Nugent, J. B. Matson, R. K. O’Reilly, C. J.

    Hawker, K. L. Wooley, PMSE Prepr.   2004,  91, 195.[220] S. Campidelli, E. Vazquez, D. Milic, M. Prato, J. Barbera, D. M.

    Guldi, M. Marcaccio, D. Paolucci, F. Paolucci, R. Deschenaux, J. Mater. Chem.   2004,  14,  1266.

    [221] J. W. Lee, J. H. Kim, B.-K. Kim, J. H. Kim, W. S. Shinc, S.-H. Jinc,Tetrahedron   2006,  62,  9193.

    [222] C. Li, M. G. Finn, J. Polym. Sci., Part A: Polym. Chem.  2006, 44,5513.

    [223] A. Gopin, S. Ebner, B. Attali, D. Shabat,  Bioconjugate Chem.2006,  17 ,  1432.

    [224] W. Z. Chen, P. E. Fanwick, T. Ren,  Inorg. Chem.   2007,   46,3429.

    [225] B. G. D. Geest, W. V. Camp, F. E. D. Prez, S. C. D. Smedt,J. Demeesterb, W. E. Hennink, Chem. Commun.  2008, 190.

    [226] J. D. D. Evanoff,S. E. Hayes,Y. Ying, G. H. Shim, J. R. Lawrence,

    J. B. Carroll, R. D. Roeder, J. M. Houchins, C. F. Huebner, S. H.Foulger, Adv. Mater.   2007,  19, 3507.

    [227] L. V. Lee, M. L. Mitchell, S. J. Huang, V. V. Fokin, K. B.Sharpless, C. H. Wong,  J. Am. Chem. Soc.  2003,  125,  9588.

    [228] J. P. Collman, N. K. Devaraj, C. E. D. Chidsey, Langmuir  2004,20, 1051.

    [229] J. P. Collman, N. K. Devaraj, T. P. A. Eberspacher, C. E. D.Chidsey, Langmuir   2006,  22, 2457.

    [230] N. K. Devaraj, R. A. Decreau, W. Ebina, J. P. Collman, C. E. D.Chidsey, J. Phys. Chem. B   2006,  110, 15955.

    [231] T. Lummerstorfer, H. Hoffmann, J. Phys. Chem. B   2004, 108,3963.

    [232] J. K. Lee, Y. S. Chi, I. S. Choi,  Langmuir   2004,  20, 3844.[233] R. D. Rohde, H. D. Agnew, W. S. Yeo, R. C. Bailey, J. R. Heath,

     J. Am. Chem. Soc.   2006,  128, 9518.

    [234] J.-C. Meng, C. Averbuj, W. G. Lewis, G. Siuzdak, M. G. Finn, Angew. Chem. Int. Ed.   2004,  43,  1255.

    [235] S. Prakash, T. M. Long, J. C. Selby, J. S. Moore, M. A. Shannon, Anal. Chem.   2007,  79,  1661.

    [236] R. V. Ostaci, D. Damiron, S. Capponi, G. Vignaud, L. Leger,Y. Grohens, E. Drockenmuller,  Langmuir   2008,  24,  2732.

    [237] G. K. Such, J. F. Quinn, A. Quinn, E. Tjipto, F. Caruso,  J. Am.Chem. Soc.   2006,  128, 9318.

    [238] G. K. Such, E. Tjipto, A. Postma, A. P. R. Johnston, F. Caruso, Nano Lett.   2007,  7 , 1706.

    [239] D. E. Bergbreiter, B. S. Chance,  Macromolecules   2007,   40,5337.

    W. H. Binder, R. Sachsenhofer

    980

    Macromol. Rapid Commun. 2008 ,  29 , 952–981

     2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim   DOI: 10.1002/marc.200800089

  • 8/15/2019 Chemistry in Polymer and Material

    30/30

    [240] J. A. Opsteen, R. P. Brinkhuis, R. L. M. Teeuwen, D. W. P. M.Lowik, J. C. M. v. Hest,  Chem. Commun.   2007, 3136.

    [241] S. F. M. v. Dongen, M. N. Sanne, S. Jeroen, J. L. M. Cornelissen,R. J. M. Nolte, J. C. M. v. Hest,   Macromol. Rapid Commun.2008,  29, 321.

    [242] B. Li, A. L. Martin, E. R. Gillies, Chem. Commun.  2007, 5217.

    [243] F. SaidHassane, B. Frisch, F. Schuber,   Bioconjugate Chem.2006,  17 , 849.

    [244] S. Cavalli, A. R. Tipton, M. Overhand, A. Kros,   Chem. Com-mun.   2006, 3193.

    [245] H.-J. Musiol, S. Dong, M. Kaiser, R. Bausinger, A. Zumbusch,U. Bertsch, L. Moroder,  Chem. Bio. Chem.   2005,  6,  625.

    [246] R. Voggu, P. Suguna, S. Chandrasekaran, C. N. R. Rao,  Chem. Phys. Lett.   2007,  443,  118.

    [247] Y. G. H. Xiong, H. M. Li,  ePolymers   2007, 416.[248] H.Li, F. Cheng, A.M. Duft, A.Adronov, J. Am. Chem. Soc. 2005,

    127 , 14518.[249] W.-B. Zhang, Y. Tu, R. Ranjan, R. M. Van Horn, S. Leng, J.

    Wang, M. J. Polce, C. Wesdemiotis, R. P. Quirk, G. R. New-kome, S. Z. D. Cheng,  Macromolecules   2008,  41, 515.

    [250] A. Bastero, D. Font, M. A. Pericas,   J. Org. Chem.   2007,   72,2460.

    [251] E. Alza, X. C. Cambeiro, C. Jimeno, M. A. Pericas,  Org. Lett.2007,  9, 3717.

    [252] M. Tilliet, S. Lundgren, C. Moberg, V. Levacher,   Adv. Synth.Catal.   2007,  349, 2079.

    [253] S. Lober, P. Rodriguez-Loaiza, P. Gmeiner, Org. Lett.   2003,  5,1753.[254] D. A. Fleming, C. J. Thode, M. E. Williams, Chem. Mater.2006,

    18, 2327.[255] J. L. Brennan, N. S. Hatzakis, T. R. Tshikhudo, N. Dirvians-

    kyite, V. Razumas, S. Patkar, J. Vind, A. Svendsen, R. J. M.Nolte, A. E. Rowan, M. Brust,  Bioconjugate Chem.   2006,  17 ,1373.

    [256] M. A. White, J. A. Johnson, J. T. Koberstein, N. J. Turro, J. Am.Chem. Soc.   2006,  128, 11356.

    [257] Q. Zeng, T. Li, B. Cash, S. Li, F. Xie, Q. Wang, Chem. Commun.2007, 1453.

    [258] A. Gole, C. J. Murphy,  Langmuir   2008,  24, 266.

    ‘Click’ Chemistry in Polymer and Material Science: An Update