Chp 1 Hypersonics

Embed Size (px)

Citation preview

  • 8/17/2019 Chp 1 Hypersonics

    1/76

    Hypersonic Educational Initiative

    Advanced

    Hypersonic Aerothermodynamics

     Iain D. Boyd

    Dept. Aerospace Eng.

    University of Michigan

     Ann Arbor, MI

    Graham V. Candler 

    Dept. Aerospace Eng. & Mech.

    University of Minnesota

    Minneapolis, MN

  • 8/17/2019 Chp 1 Hypersonics

    2/76

    Hypersonic Educational Initiative

    1. Hypersonic Gas Dynamics

    1.1 Introduction

    Outline (1)

    1. Hypersonic Gas Dynamics (4.0 hours)1.1 Introduction and Examples

    Vehicle trajectories and properties

    1.2 Hypersonic gas dynamic processes

    Shock waves / boundary layers wakes

    1.3 Fundamental equations of gas dynamicsBoltzmann / Euler / Navier-Stokes Equations

  • 8/17/2019 Chp 1 Hypersonics

    3/76

    Hypersonic Educational Initiative

    Outline (2)

    1. Hypersonic Gas Dynamics (4.0 hours)1.4 Real gas effects:

    Quantum mechanics + statistical mechanics

    Perfect gasVibrational activation

    Chemical reactions – nonequilibrium vs. equilibrium

    Ionization, radiation

    1.5 Shock wave analysis

    Perfect gasIterative approach for equilibrium gas

    1.6 Transport phenomena

  • 8/17/2019 Chp 1 Hypersonics

    4/76

    Hypersonic Educational Initiative

    Outline (3)

    2. Hypersonic Aerodynamics: Pressure (1.0 hour)

    2.1 Exact and approximate equilibrium gas solutions:

    Stagnation points

    Cones and wedges2.2 Mach number independence

    2.3 Newtonian and Modified Newtonian aerodynamics

  • 8/17/2019 Chp 1 Hypersonics

    5/76

    Hypersonic Educational Initiative

    Outline (4)

    3. Hypersonic Aerothermodynamics: Heat Transfer 

    (2.0 hours)

    3.1 Introduction:

    role of aerodynamic heating

    hypersonic boundary layers

    3.2 Boundary layer equations, similarity transformation

    3.3 Flat plate / wedge / cone solutions

    3.4 Stagnation point solution and scaling

    3.5 Laminar and turbulent boundary layers; transition

    3.6 Wall catalysis

  • 8/17/2019 Chp 1 Hypersonics

    6/76

    Hypersonic Educational Initiative

    Outline (5)

    4. Viscous Interactions (1.0 hour)

    4.1 Leading edge interactions

    4.2 Effect on high-altitude L/D; scaling for vehicles

    4.3 Shock-BL interactions, shock-shock interactions

    5. Thermal Protection Systems (1.5 hours)

    5.1 Passive:

    Re-radiative cooling, equilibrium wall boundary condition

    Role of wall temperature, material properties5.2 Ablative

    Surface ablators

    Pyrolyzing ablators

  • 8/17/2019 Chp 1 Hypersonics

    7/76

    Hypersonic Educational Initiative

    Outline (6)

    6. Computational Analysis (2.0 hours)6.1 Continuum CFD methods

    Requirements for aeroheating predictions

     Approaches for real gas effects

    Current code capabilities6.2 Non-continuum method - DSMC

    7. Experimental Testing (1.0 hour)7.1 Types of facilities:

    Blow-down tunnelsVitiated-air facilities

    Impulse facilities

    7.2 Overview of measurement techniques

  • 8/17/2019 Chp 1 Hypersonics

    8/76

    Hypersonic Educational Initiative

    Outline (7)

    8. Aerothermodynamics of Hypersonic Vehicles(1.5 hours)

    Ballistic entry

    Lifting capsule re-entry: Apollo

    High-lift re-entry: Shuttle Aerocapture / Aerobraking

     Airbreathing scramjets

  • 8/17/2019 Chp 1 Hypersonics

    9/76

    Hypersonic Educational Initiative

    What is Hypersonic Flow?

    • Hypersonic aerothermodynamic phenomena: – strong shock waves with high temperature

     – not calorifically perfect (variable !)

     – chemical reactions

     – significant surface heat flux – several different types of vehicles:

    • missiles, space planes, capsules, air-breathers

    • Working definition of hypersonic flow:

     M = (U / a) >> 1

  • 8/17/2019 Chp 1 Hypersonics

    10/76

    Hypersonic Educational Initiative

    Hypersonic Examples:

    I. Missiles

    • Mission: high-speed delivery of explosives•  Aerodynamics: slender body with blunt nose

    • Propulsion: rockets, ramjets

    • Examples: AMRV, SCUD, Patriot, Hy-Fly

  • 8/17/2019 Chp 1 Hypersonics

    11/76

    Hypersonic Educational Initiative

    Hypersonic Examples:

    II. Space Planes

    • Mission: orbital re-entry•  Aerodynamics: gliders with thermal protection

    • Propulsion: none (except small control thrusters)

    • Examples: Space Shuttle, Buran, Hermes

  • 8/17/2019 Chp 1 Hypersonics

    12/76

    Hypersonic Educational Initiative

    Hypersonic Examples:

    III. Air-breathing Systems

    • Missions: launch, cruise, orbital re-entry

    •  Aerodynamics: slender with integrated engines

    • Propulsion: ram/scram-jets, rockets, turbojets

    • Examples: X-15, NASP, X-43, X-51

  • 8/17/2019 Chp 1 Hypersonics

    13/76

    Hypersonic Educational Initiative

    Hypersonic Examples:

    IV. Planetary Entry

    • Missions: EDL, aero-braking, aero-capture•  Aerodynamics: very blunt, thick heat shield

    • Propulsion: none (sometimes RCS)

    • Examples: Apollo, MSL, CEV (Orion)

  • 8/17/2019 Chp 1 Hypersonics

    14/76

    Hypersonic Educational Initiative

    • Flight vehicles:

     – WAC Corporal missile (1949, M~8)

     – Vostok I (1961, M~25)

     – X-15 (1963-1967, M~7)

     – Space Shuttle (1981-???, M~25)

     – HyShot (2002, M~8)

     – X43 (2004, M>7)

     – Hy-CAUSE (2007)

    • Recent programs without flight:

     – NASP, Hermes, AFE, AOTV (1990)

     – VentureStar-X33 (2000)

    Hypersonic Vehicle

    Historical Overview

  • 8/17/2019 Chp 1 Hypersonics

    15/76

    Hypersonic Educational Initiative

    Some Current

    Hypersonic Programs

    Falcon (DARPA)

    Orion

    (NASA)

    X51

    (AFRL)

    HyBoLT (NASA/ATK)

  • 8/17/2019 Chp 1 Hypersonics

    16/76

    Hypersonic Educational Initiative

    Hypersonic Tales of Woe

    • Hypersonics produces unexpected phenomena

    • X15 test flight with dummy scramjet installed:

     – unexpected shock interactions generated

     – burned holes in connection pylon

    • First re-entry of Space Shuttle (STS-1):

     – larger than expected nose-up pitch generated

     – required near-maximum deflection of body flap

    • Shock-shock interactions:

     – heating amplified significantly

     – leading edges, cowl lips,

    engine flow paths

  • 8/17/2019 Chp 1 Hypersonics

    17/76

    Hypersonic Educational Initiative

    • Ballistic missiles:

     – mission: short flight, fast impact

     – rocket launch, ballistic entry – no thrust or lift during entry (T=0, L=0)

     – fixed flight path at large angle (!=const)

    Re-entry Trajectories

    • Trajectory equations for Earth centered system:

    W

    D

    LT, U

    !

    U ̇"  

    g=

     L

    W # 1#

    U 2

    gR

    % & 

    ( ) cos(" )

    T W 

    "

    ˙Ug=  DW 

    + sin(# )

  • 8/17/2019 Chp 1 Hypersonics

    18/76

    Hypersonic Educational Initiative

    •  Air-breathing vehicle:

     – missions: cruise, orbital return

     – completely reusable

     – powered take-off and entry

     – constant for engine efficiency

    • Space Shuttle:

     – mission: orbital return

     – rocket launch

     – equilibrium glide entry – no thrust, L/D~1, !~0 (shallow entry)

    Re-entry Trajectories

    1

    2" U 

    2

  • 8/17/2019 Chp 1 Hypersonics

    19/76

    Hypersonic Educational Initiative

    Flight Velocity

  • 8/17/2019 Chp 1 Hypersonics

    20/76

    Hypersonic Educational Initiative

    Stagnation Point Heating

  • 8/17/2019 Chp 1 Hypersonics

    21/76

    Hypersonic Educational Initiative

    Stagnation Point

    Temperature

  • 8/17/2019 Chp 1 Hypersonics

    22/76

    Hypersonic Educational Initiative

    Deceleration Levels

  • 8/17/2019 Chp 1 Hypersonics

    23/76

    Hypersonic Educational Initiative

    1.2 Hypersonic Gas Dynamics

    • Goal of hypersonic gas dynamics analysis:

     – predict flow field around a hypersonic vehicle

     – predict properties on vehicle surface (pressure,

    shear stress, heat transfer)

     – hence predict aerodynamic and thermal

    performance of a vehicle

    • Three main gas dynamic flow phenomena:

     – shock waves

     – boundary layers

     – wakes

  • 8/17/2019 Chp 1 Hypersonics

    24/76

    Hypersonic Educational Initiative

  • 8/17/2019 Chp 1 Hypersonics

    25/76

    Hypersonic Educational Initiative

    • Formed when an object is placed in supersonic flow:

     – Mach number M = U / a  (a~330 m/s at STP)

     – supersonic: M > 1

    • A shock wave is an extremely thin layer of fluid acrosswhich there are significant changes in properties:

     – at STP, thickness ~ 10-7 m

     – T, p, ! all increase; M, U decrease

     – variable-! = compressible; high-T=real gas

    • Several different types:

     – normal (strongest), oblique, bow

    1.2.1 Shock Waves

  • 8/17/2019 Chp 1 Hypersonics

    26/76

    Hypersonic Educational Initiative

    • Thin fluid layer formed next to vehicle surface:

     – created by friction between gas and wall

    • Boundary layer (BL) determines surface properties:

     – pressure (nearly constant across BL) – shear stress and heat transfer 

     – flow separation

    • Different types with very different properties:

     – laminar 

     – turbulent

     – transition between the two

    1.2.2 Boundary Layers

  • 8/17/2019 Chp 1 Hypersonics

    27/76

    Hypersonic Educational Initiative

    • Region of flow in the rear of the vehicle:

     – smaller influence on aerothermodynamics

    • Often involves strong expansion processes:

     – T, p, ! all decrease; M, U increase

    • Recompression:

     – leads to increased heating on a capsule backshell

     – base pressure effects on missiles

     – flow may become turbulent

     – complex vortex dynamics

    1.2.3 Wakes

  • 8/17/2019 Chp 1 Hypersonics

    28/76

    Hypersonic Educational Initiative

    1.3.1 Boltzmann Equation

    • Consider gas flow at the molecular level:

     – molecule has position x, velocity C

     – enormous volume of information (at STP, there

    is about 1026 air molecules per cubic meter)

     – adopt a statistical approach

     – velocity distribution function, VDF:

     f(t, x, C) dx dC

     – probability of finding a particle at time t, in

    physical space element dx, and in velocityspace element dC

  • 8/17/2019 Chp 1 Hypersonics

    29/76

    Hypersonic Educational Initiative

    1d VDF’s

  • 8/17/2019 Chp 1 Hypersonics

    30/76

    Hypersonic Educational Initiative

    • VDF is affected by:

     – particle transport across dx due to C

     – particle transport across dC due to a

     – scattering in/out of dC due to molecular collisions

    • Leads to the Boltzmann Equation:

     – n=number density,a

    =acceleration (force), g=relativevelocity, !=collision cross section, "=solid angle,

    C’=particle velocity after collision, Z=velocity of 

    particle with which C-particle collides

     

    " (nf  )

    " t +C #

    " (nf  )

    " x+ a #

    " (nf  )

    " C=   n

    2{ f  (C') f  (Z') $   f  (C) f  (Z)}g% d &dZ  '' 

    1.3.1 Boltzmann Equation

  • 8/17/2019 Chp 1 Hypersonics

    31/76

    Hypersonic Educational Initiative

    • Equilibrium solution:

     – no net change in VDF, f , requires LHS = RHS = 0

     – RHS = 0 satisfied by

     – thus, log[f] is a linear combination of collision

    invariants (mass, momentum, energy)

     – leads to Maxwellian (equilibrium) VDF

     

     f  (C) f  (Z) =   f  (C') f  (Z')

    1.3.1 Boltzmann Equation

     

    log[ f  (C)]+ log[ f  (Z)]= log[ f  (C')]+ log[ f  (Z')]

     

     f  (C)d C =m

    2" kt 

    $ % 

    ' ( 3 / 2

    exp )  m

    2kT C 1 ) u1( )

    2+   C 2 ) u2( )

    2+   C 3 ) u3( )

    2( )* 

    + , - 

    . / d C

  • 8/17/2019 Chp 1 Hypersonics

    32/76

    Hypersonic Educational Initiative

    • Very difficult to obtain solutions:

     – seven-dimensional space

     – non-linear collision integral on RHS

     – expensive computations required

    • Solution only required for strongly nonequilibrium flow:

     – Knudsen number: Kn = # / L

     – at Kn < 0.01, f  is close to Maxwellian

     – for L=1 m, Kn~0.01 at h=90 km in atmosphere

     – for small Kn, Boltzmann equation can be used to

    derive sets of macroscopic transport equations

    1.3.1 Boltzmann Equation

  • 8/17/2019 Chp 1 Hypersonics

    33/76

    Hypersonic Educational Initiative

    • Take moments of Boltzmann Eq (Maxwell):

     – Q=Q(C) is a particle property, e.g. momentum mC

     –   $[Q]=rate of change of Q due to collisions

     –

    •  Assumptions for f , Q lead to sets of partial differential

    equations describing macroscopic flow

    1.3.2 Method of Moments

     

    " n Q

    " t +

    " n  CQ

    " x= #   Q[ ]

     

    Q =   Qf  (C )dC  " 

  • 8/17/2019 Chp 1 Hypersonics

    34/76

    Hypersonic Educational Initiative

    •  Assumptions:

     – local thermodynamic equilibrium

     – VDF’s are Maxwellian everywhere

     – use Q=m, mC, 0.5mC2 for which $[Q]=0

     – leads to 5 PDE’s: the Euler equations

     – no viscosity, no thermal conductivity

    1.3.2 Euler Equations

     

    "# 

    " t +

    "# u

    " x= 0

     

    "# u

    " t +

    "#  CC

    " x= 0 = # 

    " u

    " t + # u $ %u+% p

     

    " 0.5

    #  C

    2

    " t + " 

    0.5#  C

    2

    " x= 0 = 3

    2

    "  p" t 

    + 32$ %  pu+  p$ % u

  • 8/17/2019 Chp 1 Hypersonics

    35/76

    Hypersonic Educational Initiative

    • Chapman-Enskog distribution:

     – VDF is small perturbation from equilibrium

     – where %(C)=1+F(Kn)=1+F(heat flux, shear stress)

    • Navier-Stokes equations from transfer equation:

     – same five relations as Euler Equations

     – also: Q=mCiC j, mCiC jCk (15 further relations)

     – replace heat flux tensor by heat flux vector 

     – derive and substitute linear transport relations

    1.3.3 Navier-Stokes Eqns.

     

     f  (C)d C = "(C) f  M  (C)d C

  • 8/17/2019 Chp 1 Hypersonics

    36/76

    Hypersonic Educational Initiative

    •  Again, a set of five PDE’s:

    1.3.3 Navier-Stokes Eqns.

     

    " t U+

    " xF +

    " yG +

    " zH = 0

     

    U =

    " u

    " v

    " w

    "  E 

    % % % 

    % % % 

    % % % 

    % % % 

    F =

    " u

    " u2+  p# $ 

     xx

    " uv # $  xy" uw # $  xz

    "  E +  p# $  xx( )u # $  xyv # $  xzw + q x

    ' ' ' 

    ' ' ' 

    ' ' ' 

    ' ' ' 

    G =

    " v

    " uv # $  yx

    " v2+  p# $  yy

    " vw # $  yz

    "  E +  p# $  yy( )v # $  yxv # $  yzw + q y

    ' ' 

    ' ' ' 

    ' ' 

    ' ' ' 

    H =

    " w

    " uw # $  zx" vw # $ 

     zy

    " w2+  p # $  zz

    "  E +  p# $  zz( )w # $  zxu # $  zyv + q z

    ' ' 

    ' ' ' 

    ' ' 

    ' ' ' 

  • 8/17/2019 Chp 1 Hypersonics

    37/76

    Hypersonic Educational Initiative

    • Stress tensor modeled using Stokes’ hypothesisfor Newtonian fluid:

     – 

      µ = viscosity coefficient

    • Heat flux vector modeled using Fourier’s Law:

     –   ! = coefficient of thermal conductivity

    1.3.3 Navier-Stokes Eqns.

     

    "  xx 

    = 2µ # u

    #  x $ 1

    3% &u

    ( ) * 

    + , "  xy

    = "  yx

    = µ # u

    #  y+

    # v

    #  x

    % & 

    ( ) 

    q x = "#  $ T 

    $  x

  • 8/17/2019 Chp 1 Hypersonics

    38/76

    Hypersonic Educational Initiative

    1.4 Real Gas Effects

    • In low-speed flows, air is a perfect gas:

     – simplified thermodynamics, no chemistry

    • In most hypersonic flows, air is a real gas:

     – mainly due to high temperatures – complex thermodynamics, chemical reactions

    • Requires us to consider:

     – quantum+statistical mechanics

     – vibrational activation, chemistry – equilibrium and finite rate processes

     – ionization and radiation

  • 8/17/2019 Chp 1 Hypersonics

    39/76

    Hypersonic Educational Initiative

    1.4.1 Quantum Mechanics

    •  An atom / molecule has several energy modes:

     – translation (due to 3D motion)

     – rotation (gyration of atoms in a molecule)

     – vibration (oscillation of atoms in a molecule)

     – electronic (arrangement of electrons in orbits)

    • Quantum mechanics provides energy states:

     – solution of Schrodinger equation

     – separate analysis for each energy mode – each atom / molecule may only occupy certain

    quantized energy states in each energy mode

  • 8/17/2019 Chp 1 Hypersonics

    40/76

    Hypersonic Educational Initiative

    1.4.1 Quantum Mechanics

    • Translational energy:

     – h=Planck’s constant, L=dimension, m=mass

     – n1, n2, n3 are translational quantum numbers

     –   !"t ~10-38 J so continuum can be assumed

    • Rotational energy (rigid rotor):

     – k=Boltzmann const, #r =char. temp. for rotation – J=rotational quantum number 

     – for air, !"r  ~10-23 J so continuum OK

     

    " t =

    h2

    8mL2  n

    1

    2+  n

    2

    2+  n

    3

    2( )

     

    " r=  k # 

    r $  J ( J +1)

  • 8/17/2019 Chp 1 Hypersonics

    41/76

  • 8/17/2019 Chp 1 Hypersonics

    42/76

    Hypersonic Educational Initiative

    1.4.2 Statistical Mechanics

    • Each atom / molecule has an enormous number of 

    possible energy levels:

     – degenerate energy states for each energy level

    • Large number of atoms/molecules in a gas: – huge volume of information

    • Statistical mechanics:

     – distributions of particles across energy states

     – macroscopic thermodynamics viaintegration/summation of atomic/molecular 

    behavior 

  • 8/17/2019 Chp 1 Hypersonics

    43/76

    Hypersonic Educational Initiative

    1.4.2 Statistical Mechanics

    • Boltzmann energy distribution:

     – gi=degeneracy of energy level i

     – summation in denominator is partition function, Q

    • Overall partition function:

    (diatomic)

     

     f  (" i) =gi exp #" i /kT ( )gi exp  #" i /kT ( )$

     

    Qt  =V   2" mkT 

    h2

    $ % 

    ' ( 

    3 / 2

     

    Qr=

    " r

     

    Qv =

    1

    1" exp  "# v /T ( )

     

    Qe = g0 + g1exp  "# 1 /T ( )  $ g0

     

    Q = Qt  "Q

    r "Q

    v "Q

    e

  • 8/17/2019 Chp 1 Hypersonics

    44/76

    Hypersonic Educational Initiative

    1.4.2 Statistical Mechanics

    • Internal energy (thermodynamics):

    • Specific heats:

     

    cv=

    " e

    " T 

    $ % 

    ' ( v

    =

    3 R

    2+  R +  R

      ) v /2T 

    sinh() v /2T )

    + , 

    . / 

    2

     

    et =

    3 RT 

    2

     

    er=  RT 

     

    ev=

     R" v

    exp  " v /T ( )#1

     

    ee  " 0

     

    e = et + e

    r + e

    v+ e

    e

     

    c p = cv + R

     

    " =c

     p

    cv

  • 8/17/2019 Chp 1 Hypersonics

    45/76

    Hypersonic Educational Initiative

    1.4.2 Statistical Mechanics

    • Specific heats (non-reacting):

  • 8/17/2019 Chp 1 Hypersonics

    46/76

    Hypersonic Educational Initiative

    1.4.3 Perfect Gas

    •  Assumption often invoked in hypersonics:

     – no vibrational activation, no chemistry

     – cp, cv, $ are all constants

    • For air: 

     p=

     "  RT 

     

    e=

     c vT 

     

    h=

     c pT 

     

    c p=

    7 R

    2

     

    " =7

    5

     

    cv=

    5 R

    2

     

    c p=

    "  R

    "  #1

     

    cv=

     R

    "  #1

  • 8/17/2019 Chp 1 Hypersonics

    47/76

    Hypersonic Educational Initiative

    •  At high temperatures (T>1,000K) air molecules

    become vibrationally activated:

     – equilibrium (infinite rate) results provided by

    quantum mechanics + statistical mechanics

     – finite rate activation modeled using

     – where e*v=equilibrium value at temperature T

     –   %v=vibrational relaxation time (Millikan & White)

     

    dev

    dt =

    ev

    *(T ) " e

    v

    # v

    1.4.4 Vibrational Activation

  • 8/17/2019 Chp 1 Hypersonics

    48/76

    Hypersonic Educational Initiative

    •  Analysis of Earth hypersonic vehicles at U

  • 8/17/2019 Chp 1 Hypersonics

    49/76

    Hypersonic Educational Initiative

    Rate Processes

    • For illustration, consider:

     – 2-species: N2, N

    • Each reaction proceeds at a finite rate:

    • Forward rate coefficients measured experimentally, k f (T)

    • Backward rate coefficients from equilibrium constant:

    partition functions Q from quantum+statistical mechanics

     

     N 2+  M "  N +  N +  M 

     

     N 2 + N 2"k b1

    k  f 1

     N + N + N 2

     

     N 2 + N "k b 2

    k  f  2

     N + N + N 

     

    K e =k  f 

    k b=

    "Qproducts

    "Qreactants

  • 8/17/2019 Chp 1 Hypersonics

    50/76

    Hypersonic Educational Initiative

    Rates of Change

    • Net rate of change in concentration of a species:

     – contributions from forward and backward directions

    • Chemical equilibrium: – final state reached instantaneously

     – production of each species balanced by its destruction

     – analytical solution for our system:

     –   &=mass fraction, m=atom mass, '=density, V=volume,

    #d=dissociation temperature

     

    d [ N 2]

    dt = "k  f 1[ N 2][ N 2]" k  f  2[ N 2][ N ]+ k b1[ N ][ N ][ N 2]+ k b2[ N ][ N ][ N ]

     

    2

    1#" = m$ V 

    Q N 2

    Q N 2exp(#% d  /T )

  • 8/17/2019 Chp 1 Hypersonics

    51/76

    Hypersonic Educational Initiative

    Infinite Rate of Reactions

    • Chemical equilibrium:

     – O2 dissociates before N2 (has lower #d)

     – fewer atoms at high pressure (more recombination)

  • 8/17/2019 Chp 1 Hypersonics

    52/76

    Hypersonic Educational Initiative

    Finite Rate of Reactions

    • Chemical nonequilibrium: – equilibrium end state reached only after finite time

     – in a flow field, this translates as finite distance

  • 8/17/2019 Chp 1 Hypersonics

    53/76

    Hypersonic Educational Initiative

    Nonequilibrium

    • Impact of chemical nonequilibrium:

     – chemical composition mainly affects energy of flow

    • endothermic reactions consume energy

    • catalysis: fraction of atoms reaching the vehicle

    surface may recombine releasing heat – scaling:

    • nonequilibrium flow occurs at lower density

    and/or smaller body length scales

     

    large Kn "  # $ L%

    1

    & $ L

     

    small Re " # 

    $U $ L

    µ $

  • 8/17/2019 Chp 1 Hypersonics

    54/76

    Hypersonic Educational Initiative

    Ionization

    • Very high temperature reacting air (U>8km/s): – N2, O2, NO, N, O, N2+, O2+, NO+, N+, O+, e-

    • Reactions:

     – dissociation-recombination:

     – exchange:

     – associative Ionization:

     – direct Ionization:

     

     N 2 +  M "  N +  N +  M 

     

     N 2+O"  NO+  N 

     

     N +  N "  N 2

    +

    + e#

     

     N + e"#  N 

    +

    + e"+ e

    "

  • 8/17/2019 Chp 1 Hypersonics

    55/76

    Hypersonic Educational Initiative

    Ionization

    • Equilibrium solution (Saha) for [N, N+, e-] system:

     –   (=ion mole fraction,

     – C=constant, – p=pressure,

     –   #i=ionization

      temperature

     

    " 2

    1#" 2= C 

     T 5 / 2

     pexp(#$ i /T )

  • 8/17/2019 Chp 1 Hypersonics

    56/76

  • 8/17/2019 Chp 1 Hypersonics

    57/76

    Hypersonic Educational Initiative

    Radiation

    •  Another important process at high temperature: – activation-deactivation:

     – spontaneous emission:

     – analysis is complex, no closed form expressions – research area, e.g. NEQAIR (NASA-ARC)

    • Radiative heating important at U>12km/s:

     – e.g. stagnation point heating correlation (Martin)

     – also proportional to shock layer thickness

     – Stardust: radiation provides 10% of total heating

     

     N *"  N +  h# 

     

     N + e"#  N 

    *+ e

    "

     

    q̇rad  " R N U 8.5

    # 1.6

  • 8/17/2019 Chp 1 Hypersonics

    58/76

    Hypersonic Educational Initiative

    1.5 Post-Shock Conditions

    • Perfect-gas shock relations:

    • Density ratio asymptotes to:

    • Pressure and temperature are quadratic in  M 

     – Makes sense: energy is conserved

  • 8/17/2019 Chp 1 Hypersonics

    59/76

    Hypersonic Educational Initiative

    Post-Shock Conditions

    • Post-Shock Temperature:

    Temperatures rapidly

    become huge!

  • 8/17/2019 Chp 1 Hypersonics

    60/76

    Hypersonic Educational Initiative

    Post-Shock Conditions

    • Variation of air internal energy with T:

    10% departure from

    calorically perfect gas

    equation of state =

    onset of hypersonic flow

  • 8/17/2019 Chp 1 Hypersonics

    61/76

    Hypersonic Educational Initiative

    Post-Shock Conditions

    • More fundamentally – 1D gas dynamics:

    • Plus equations of state:

    • No exact solutions

    Thermally perfect,

    calorically imperfect

    General equilibrium

    gas mixture

  • 8/17/2019 Chp 1 Hypersonics

    62/76

    Hypersonic Educational Initiative

    Post-Shock Conditions

    • Hypersonic limit:

    • Note that post-shock enthalpy and pressure only

    depend on upstream conditions in hypersonic limit.

    Can solve for the

    thermodynamic state

    !

  • 8/17/2019 Chp 1 Hypersonics

    63/76

    Hypersonic Educational Initiative

    Post-Shock Conditions

    • Iterative solution to shock relations:

    • Guess a value of ! = !i and iterate:

    Use tables, NASA CEA, etc.

  • 8/17/2019 Chp 1 Hypersonics

    64/76

    Hypersonic Educational Initiative

    Equilibrium Air 

    Temperature (K)  Z  = Compressibility

  • 8/17/2019 Chp 1 Hypersonics

    65/76

    Hypersonic Educational Initiative

    Post-Shock Conditions

    • Example:  M  = 12 at 30 km altitude:

    Imperfect Perfect

  • 8/17/2019 Chp 1 Hypersonics

    66/76

    Hypersonic Educational Initiative

    Post-Shock Conditions

    • Perfect-gas vs. equilibrium post-shock conditions:

    Difference is due to

    energy storage ininternal energy

    modes + chemistry

  • 8/17/2019 Chp 1 Hypersonics

    67/76

    Hypersonic Educational Initiative

    Post-Shock Conditions

    • Post-shock pressure has weak dependence on non-ideal gas effects (just through (1- !))

    • Post-shock temperature and density have strong Mach

    number (free-stream speed) dependence

     – Density ratio > (" + 1)/(" - 1) = 6 – Temperature decreases significantly

    • Concept of " no longer has much meaning; if:

    • Matlab code:

     ftp://ftp.aem.umn.edu/users/candler/HEI/mollier.m

  • 8/17/2019 Chp 1 Hypersonics

    68/76

    Hypersonic Educational Initiative

    1.6 Transport Phenomena

    • Generated by gradients in flow properties:

     – diffusion (Fick’s Law):

    DAB

    =diffusion coefficient

     – viscosity (Newtonian fluid):

    µ = viscosity coefficient

     – thermal conduction (Fourier’s Law):

    ! = thermal conductivity coefficient

     

     J  A = "#  D ABdC  A

    dy

     

    "  = µ du

    dy

     

    q = "# dT 

    dy

  • 8/17/2019 Chp 1 Hypersonics

    69/76

    Hypersonic Educational Initiative

    Diffusion

    •  Affects continuity and energy equations

    • Influences transport of species to surface

    • Coefficient evaluation:

     – for simple gas (self diffusion)

     – for gas mixture

     – are diffusion collision integrals

     – averaged binary coefficient D1m  often used

     

     Dii =3

    8" 

    # mikT 

    # $ii

    (1,1)

     

     Dij "kT 

     p

    (mi + m  j )kT 

    mim  j 

    1

    # $ij (1,1)

     

    "ij (1,1)

  • 8/17/2019 Chp 1 Hypersonics

    70/76

    Hypersonic Educational Initiative

    Diffusion

    Depends on temperature, pressure, species

  • 8/17/2019 Chp 1 Hypersonics

    71/76

    Hypersonic Educational Initiative

    Viscosity

    •  Affects momentum and energy equations

    • Influences surface shear stress

    • Coefficient evaluation:

     – for simple gas

     – various mixing rules

     – are viscosity collision integrals

    µ i =5

    16

    " mikT 

    " #ii

    (2,2)

     

    µ = µ ("ij (1,1)

    ,"ij (2,2)

    )

     

    "ij (2,2)

  • 8/17/2019 Chp 1 Hypersonics

    72/76

    Hypersonic Educational Initiative

    Viscosity

    • Sutherland law kg/m/s

     – depends on pressure at high T due to chemistry

     

    µ air =1.458"10#6   T 

    1.5

    T +110.4

  • 8/17/2019 Chp 1 Hypersonics

    73/76

    Hypersonic Educational Initiative

    Thermal Conductivity

    •  Affects energy equations

    • Influences surface convective heat flux

    • Coefficient evaluation:

     – for simple gas (Eucken)

     – various mixing rules

     – are again viscosity collision integrals – curve fits for collision integrals from the literature

     

    " i

    =

    5

    16

    # mikT 

    # $ii(2,2)1

     M i

    cv

    +

    9

    4 R

    u

    & ' 

    ) * 

    "  =" (#ij (1,1)

    ,#ij (2,2)

    )

     

    "ij (2,2)

  • 8/17/2019 Chp 1 Hypersonics

    74/76

    Hypersonic Educational Initiative

    Thermal Conductivity

    • Sutherland law W/m/K

     – complex behavior due to chemistry

     

    " air =1.993#10$3   T 

    1.5

    T +112

  • 8/17/2019 Chp 1 Hypersonics

    75/76

    Hypersonic Educational Initiative

    Prandtl Number 

    • Often used to evaluate thermal conductivity:

    • Eucken’s relation:

     – monatomic gas: Pr=0.67

     – diatomic gas ("=1.4): Pr=0.737

     

    Pr =c

     pµ 

     

    Pr =4" 

    9"  # 5

  • 8/17/2019 Chp 1 Hypersonics

    76/76

    Hypersonic Educational Initiative

    Prandtl Number 

    • Real gas:

     – again, complex behavior due to chemistry