Class 09 Handout

Embed Size (px)

Citation preview

  • 7/25/2019 Class 09 Handout

    1/18

    Fluid Mechanics AS102

    Class Note No: 09

    Monday. August 20, 2007

  • 7/25/2019 Class 09 Handout

    2/18

    Review of Last Lecture: Hydrostatics & Aerostatics

    derivation of the static pressure equation- for a fluidstationaryin a non-inertial frame undergoingRBM

    # inertial (xi) and non-inertial (x

    i ), r= r + b

    # control volum inside the fluid domain# Newtons 2nd law# volume integral eq to differential eq

    [ ( r) + a g] + P=0 (1)

    constant

    and constant a:=

    d2b

    dt2 certain combination among

    ,

    d2b

    dt2 ,g

    ff

    r the position measured in(xm)

  • 7/25/2019 Class 09 Handout

    3/18

    Review of Last Lecture: Hydrostatics & Aerostatics

    derivation of the static pressure equation- for a fluidstationaryin a non-inertial frame undergoing

    RBM# the component form in(xm):

    kx

    k

    i

    k

    kx

    i + a

    i g

    i

    +

    P

    xi=0 (2)

    where

    =ki

    k, r =xk i

    k, a= a

    ki

    k, g= g

    ki

    k

    # the component form in(xn)obtained similarly.[note thatr is the position measured in(xm)]the link is throughr = r + b or xi=x

    j i

    j ii+ bii

    xj i

    j =xiii biii x

    j =i

    j ii(xi bi),

    =ik

    xk

    =ik

    xk

    xi

    =ii ik

    xk,

    =

    ki

    k=kik ...

    k =i

    kimm ...

  • 7/25/2019 Class 09 Handout

    4/18

    Hydrostatics & Aerostatics

    todays topic:

    rederive the static pressure equation

    applications of the pressure equation

  • 7/25/2019 Class 09 Handout

    5/18

    Hydrostatics & Aerostaticsstatic pressure Eq ininertial frame

    x1

    x2

    P 12Px1

    dx1

    P 12Px2

    dx2

    P+ 12Px1

    dx1

    P+ 12Px2

    dx2

    r

    g

    dx1

    dx2

    Figure:control volumedx1dx2dx3 in inertial frame(xi)

    hints:

    P(x1+1

    2 dx1, x2, x3) =P(xi) + P

    x1

    1

    2 dx1+ higher order terms ...

    applyNewtons 2 lawto the fluid in the C.V.:

    inx1 direction,

    v1 =0 d

    dt v1 dx1 dx2 dx3= 0 (3)

  • 7/25/2019 Class 09 Handout

    6/18

    Hydrostatics & Aerostatics

    static pressure Eq in inertial frame

    x1

    x2

    P 1

    2

    P

    x1

    dx1

    P 12Px

    2

    dx2

    P+ 12Px1

    dx1

    P+ 1

    2

    P

    x2 dx2

    r

    g

    dx1

    dx2

    Figure:control volume: static pressure Eq in inertial frame (xi)

    2nd law

    P 12Px1

    dx1

    dx2 dx3

    P+

    1

    2

    P

    x1dx1

    dx2 dx3

    + g1 dx1 dx2 dx3=0 (4)

  • 7/25/2019 Class 09 Handout

    7/18

    Hydrostatics & Aerostaticsstatic pressure Eq in inertial frame

    x1

    x2

    P 12Px1

    dx1

    P 12Px2

    dx2

    P+ 12Px1

    dx1

    P+ 12Px2

    dx2

    r

    g

    dx1

    dx2

    Figure:control volume: static pressure Eq in inertial frame (xi)

    inx1 direction,

    Px1

    g1 =0 (5)

    inxidirection,

    P

    xi

    gi=0 (6)

  • 7/25/2019 Class 09 Handout

    8/18

    Hydrostatics & Aerostaticsstatic pressure Eq intranslational frame

    x1

    x2

    x1

    x2

    P 12

    Px1 dx

    1

    P 12Px

    2dx2

    P+ 12Px

    1dx1

    P+ 12Px

    2

    dx2

    r r

    g

    b

    dx1

    dx2

    Figure:control volumedx1 dx

    2 dx

    3 in translational frame(x

    i )

    r=r + b, r=xiii, r =xj i

    j, b=biii, i

    i

    pick= ii (7)

    dii

    dt =0, viin(xm)

    = dxidt , v

    i

    in(xm)= dx

    idt =0 (8)

    xi=x

    i + b

    i, dx

    i=dx

    i , v

    i= b

    i (9)

  • 7/25/2019 Class 09 Handout

    9/18

    Hydrostatics & Aerostaticsstatic pressure Eq in translational frame

    x1

    x2

    x1

    x2

    P 1

    2

    P

    x

    1

    dx

    1

    P 12Px

    2dx2

    P+ 12Px

    1dx1

    P+ 12Px

    2dx2

    r r

    g

    b

    dx1

    dx2

    Figure:control volumedx1 dx

    2 dx

    3 in translational frame(x

    i )

    applyNewtons 2 lawto the fluid in the C.V.:

    inx1 direction,

    rate of l. m.= d

    dt

    v1 dx1dx2dx3

    =

    d

    dt

    b1 dx

    1 dx

    2 dx

    3 c.m.

    = b1 dx

    1 dx

    2 dx

    3 (10)

  • 7/25/2019 Class 09 Handout

    10/18

    Hydrostatics & Aerostaticsstatic pressure Eq in translational frame

    x1

    x2

    x1

    x2

    P 1

    2

    P

    x

    1

    dx

    1

    P 12Px

    2dx2

    P+ 12Px

    1dx1

    P+ 12Px

    2dx2

    r r

    g

    b

    dx1

    dx2

    Figure:control volumedx1 dx

    2 dx

    3 in translational frame(x

    i )

    inx1 direction,

    the force=

    P 12

    Px1

    dx1

    dx2dx

    3

    P+

    1

    2

    P

    x1dx1

    dx2dx

    3

    + g1 dx

    1dx

    2dx

    3 (11)

  • 7/25/2019 Class 09 Handout

    11/18

    Hydrostatics & Aerostaticsstatic pressure Eq in translational frame

    inx1 direction,

    2nd law (b1 g1) +

    P

    x1=0 (12)

    inxidirection,

    (bi gi) + P

    xi=0 (13)

    generally, in a translational(xi)withi

    i =ii,

    (bi g

    i) + P

    xi=0 ,

    d

    dtbi

    rest in(xm)= 0 (14)

    where

    b= biii=b

    j i

    j, g= giii=g

    j i

    j,

  • 7/25/2019 Class 09 Handout

    12/18

    Hydrostatics & Aerostatics

    IN GENERAL, the static pressure equation

    - for a fluidstationary in a non-inertial frame (xm)

    undergoingRBM# the component form in(xm):

    kx

    k

    i

    k

    kx

    i + a

    i g

    i

    +

    P

    xi=0 (15)

    where=ki

    k, r =xk i

    k, a= a

    ki

    k, g= g

    ki

    k

    r the position measured in(xm) Q? can we derive the above eq from tensoral

    transformations?

    Not straightforward! there is a relative motion between(xm)and(xn)and /tshould be treated adequately

    memorize the above equation

  • 7/25/2019 Class 09 Handout

    13/18

    Hydrostatics & Aerostatics

    the static pressure equation

    # incompressiblefluids like water

    every quantity is known except P solve eq (15) forP

    # compressiblefluids like air

    = (P, T)

    more equations needed to make the model determinate perfect gas:

    P=RT , R=R

    M, R =8.314

    J

    mol.oK (16)

    [P] = Nm2

    , [] = kgm3

    , [R] = Jkg.oK

    , [T] = oK

    Rspecific gas constant, R universal gas constant,M

    chemical molecular weight for air: M=28.97 g

    mol, R=287 J

    kg.oK

    2eqs. &3unknowns givenT =T(x)like in ISA, etc.

  • 7/25/2019 Class 09 Handout

    14/18

    Review of Last Lecture: Hydrostatics & Aerostaticshydrostatic pressure distribution - static

    a body of liquid, say, water at rest in an inertial frame

    M

    g h

    O

    x3

    Patm

    Figure:hydrostatic pressure distribution

    assumptions: v= 0 in an inertial frame a constantPatmon the body from above the gravityg acts in the body downward

    ( a top plane surface) the liquid is incompressible with

  • 7/25/2019 Class 09 Handout

    15/18

    Review of Last Lecture: Hydrostatics & Aerostatics

    hydrostatic pressure distribution - static

    fix a RCS(xm)to the body withx3 downward and the origin

    in the top plane =0; b= 0; (supposedly static) g= gi3; P=Patm atx3 =0

    Eq (15)reduces to

    P

    x1=0,

    P

    x2=0,

    P

    x3= g

    P=g x3+ C b.c. P=Patm+g x3 =Patm+ g h,

    P=Patm+ g h ,

    Pgage :=P Patm= g h, h 0

    H d i A i

  • 7/25/2019 Class 09 Handout

    16/18

    Hydrostatics & Aerostatics

    forces on a submerged plane static

    M

    A

    x1

    x2 x

    1

    x2

    P

    Cf

    dA

    g h

    O

    Patm

    Patm

    Patm

    Figure:forces on a plane submerged: liquid on one side; air on theother side. C- plane centroid,f- pressure center

    H d i & A i

  • 7/25/2019 Class 09 Handout

    17/18

    Hydrostatics & Aerostaticsforces on a submerged plane static

    M

    A

    x1

    x2 x1x2

    P

    C

    f

    dA

    g hO

    Patm

    Patm

    Patm

    assumptions: v= 0 in an inertial frame a constantPatmon the body from above the gravityg acts in the body downward

    ( a top plane surface) the liquid is incompressible with

    P=Patm+ g h

    H d t ti & A t ti

  • 7/25/2019 Class 09 Handout

    18/18

    Hydrostatics & Aerostatics

    forces on a submerged plane - static

    set up a RCS as shown in the sketch the resultant force at MondA,normal tothe plane, is

    dFR=P dA Patm dA= g h d A= gsinx2 dA

    FR=gsin

    A

    x2 dA= gsinx2CA =PCA

    x2C the plane centroidC; PC the gage pressure atC

    thecenter of pressure,f with(x1f

    , x2f

    ):

    x1fFR=

    A

    x1 dFR, x2fFR=

    A

    x2 dFR ...