55
Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi <50 sono denominati peptidi, se >50 proteine (macromolecole più abbondanti negli esseri viventi (50% del peso cellulare secco) cazione in base alla composizione chimica composizione chimica i: per idrolisi → n -amminoacidi (n=50÷8300) te: per idrolisi → n -amminoacidi + gruppo pros gruppo pros

Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Embed Size (px)

Citation preview

Page 1: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Classificazione delle proteine (1)

1

Per convenzione i polipeptidi con un numero di residui amminoacidi <50 sono denominati peptidi, se >50 proteine (macromolecole più abbondanti

negli esseri viventi (50% del peso cellulare secco)

Classificazione in base alla composizione chimicacomposizione chimicaSemplici: per idrolisi → n -amminoacidi (n=50÷8300)Coniugate: per idrolisi → n -amminoacidi + gruppo prostetico gruppo prostetico

Page 2: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Classificazione delle proteine (2)

2

Classificazione in base loro funzione biologica funzione biologica e formaforma

Page 3: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura delle proteine

3

La struttura primaria è costituita dalla sequenza di amminoacidi legati tra loro da legami peptidici covalenti e eventualmente, se presenti, da ponti disolfuro.

La risultante catena polipeptidica a causa delle interazioni dei suoi residui amminoacidici intracatena e intercatena può avvolgersi (foldingfolding) e formare

strutture più complesse (struttura secondaria, terziaria e quaternaria)

Page 4: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura primaria (1)

4

I ponti disolfuro possono essere intracatenaintracatena o intercatenaintercatena e possono essere rotti da agenti riducenti (es: -mercaptoetanolo).

Nel secondo caso la proteina oligomerica proteina oligomerica si scinde in subunitàsubunità

S

S

S

S

SH

SH

+ 2HS-CH2-CH2-OH → +S-CH2-CH2-OH

S-CH2-CH2-OH

SH

SH

Page 5: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura primaria (2)

5

Mutazioni puntiformi del DNA possono essere conservativeconservative o non conservativenon conservative

Mutazioni conservativeMutazioni conservativeSostituzione di uno o più amminoacidi con caratteristiche simili (polare con polare o

apolare con apolare) senza nessuna sensibile conseguenza

Mutazioni non conservativeMutazioni non conservativeSostituzione di uno o più amminoacidi con

caratteristiche diverse (polare con apolare o viceversa) con conseguenze positive

(adattamento evolutivo) o negative (anomalie funzionali, vedi tabella)

Page 6: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura primaria (3)

Struttura primaria & evoluzione Struttura primaria & evoluzione

Dal confronto delle sequenze amminoacidiche di proteine

omologhe si è risaliti all’albero evolutivo delle specie

6

Page 7: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura secondaria (1)

7

Sulla base delle possibili rotazioni intorno ai legami C-N e C-C () sono state determinate teoricamente le conformazioni che conferiscono massima stabilità alla catena

Grafico di Ramachandran

Page 8: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura secondaria (2)

8

StrutturaStruttura-elica-elica

Ogni gruppo C=O e NH del legame peptidico si trova nella posizione giusta per formare legami idrogeno intraintracatenacatena

I residui laterali RR si trovano

all’esterno dell’-elica

L’-elica può esseredestrogiradestrogira o levogiralevogira

Page 9: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura secondaria (3)

9

Restrizioni alla stabilità dell’Restrizioni alla stabilità dell’-elica-elica

Repulsione (o attrazione) elettrostatica tra i residui amminoacidici (gruppi laterali RR) carichi, adiacenti o spaziati di 3-4 residui

Impedimento sterico di gruppi R voluminosi Presenza di prolina

manca la libera rotazione C-N manca l’H libero per formare il legame idrogeno

Interazione tra gruppi RR carichi alle estremità dell’elica e il dipolo elettrico generato dalla struttura

AspAsp-CH2-COO-

ArgArg-(CH2)3-NH-C=NH2

+

NH2

Page 10: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura secondaria (4)

10

Presenza dell’Presenza dell’-elica nelle proteine globulari-elica nelle proteine globulari

Es: mioglobina ed emoglobina (78% di struttura -elica)

Page 11: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura secondaria (5)

11

Presenza dell’Presenza dell’-elica nelle proteine fibrose-elica nelle proteine fibrose

Es: -cheratina dei capelli

L’ insolubilità è dovuta alla predominanza di gruppi RR non polari.Le -eliche sono tenute insieme da ponti disolfuro intercatena:

più sono numerosi più la struttura è resistente(nel guscio di tartaruga e nelle corna di rinoceronte il 18% dei gruppi R

sono cisteine impegnate in ponti disolfuro)

Le -cheratine sono prodotte dalle cellule epidermiche.

Sono presenti nei capelli, lana, peli,

unghie,corna,piume, gusci di

tartaruga

Page 12: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura secondaria (6)

Il collageno: una proteina fibrosa costituita da un’Il collageno: una proteina fibrosa costituita da un’-elica particolare-elica particolare

12

Page 13: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Il collagene è composto da tre eliche sinistrorse (catene da non

confondere con le -eliche delle cheratine) superavvolte a formare

una triplice elica destrorsa. L’alto contenuto di questi residui

conferisce alla triplice elica 13

Collagene (1)

E’ la proteina più abbondante nei mammiferiE’ la proteina più abbondante nei mammiferi(30% delle proteine totali)

Tutte le varie forme di collagene hanno una composizione amminoacidica ripetitiva di glicina

(35%) con alte percentuali di prolina e idrossiprolina (21%), tutti amminoacidi non

essenziali (basso valore nutrizionalebasso valore nutrizionale)

Page 14: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Collagene (2)

14

Struttura è molto compatta e non elastica a causa dei numerosi residui di glicina che trovano posto all’interno della spirale e della prolina che crea

delle anse che ne impediscono l’allungamento.

La sostituzione di un solo residuo di Gly con Lys o Ser causa

l‘osteogenesi imperfetta e la sindrome di Ehlers-Danlos

Page 15: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

15

testa

coda

Sezione di una molecola di tropocollagenotropocollageno(unità base del collageno)

I legami trasversali tra i filamenti di tropo-

collagene aumentano la resistenza meccanica

della struttura(superiore a un filo di

acciaio di pari spessore)

L’entità dei legami dipende dalla funzione biologica e dall’età del tessuto

Numero legami

Rigidità e fragilità fibrille

Fragilità ossea

Opacità cornea

Collagene (3)

Inibita dai semi di lathyrus odoratus:

latirismolatirismo (anomalie nelle ossa e

giunzioni)

*

Page 16: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

16

Biosintesi del collagene: un esempio di modificazioni post-traduzionali (1)

P. Champe, Zanichelli Editore S.p.A. Copyright © 2006

Fe2+

L’ascorbato (vitamina C)previene l’ossidazione del Fe2+ Se carente può causare lo scorbutoscorbuto(malattia dei marinai)

**

**Se carente nei bovini causa una malattia del tessuto connettivo

“la dermatospassiadermatospassia”

FibroblastoFibroblasto

Page 17: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

17

Biosintesi del collagene: un esempio di modificazioni post-traduzionali (2)

P. Champe, Zanichelli Editore S.p.A. Copyright © 2006

Page 18: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura secondaria (7)

18

Struttura Struttura o foglietto ripiegato (o foglietto ripiegato (-cheratine)-cheratine)

Ogni gruppo C=O e NH del legame peptidico forma legami idrogeno interintercatenacatena

I residui laterali R R sono piccoli piccoli e idrofobici idrofobici e si trovano sopra sopra e sotto il piano sotto il piano della molecola

Struttura prevalente nelle proteine fibroseproteine fibroseLegami idrogeno interintercatena

Struttura prevalente nelle proteine globulariproteine globulariLegami idrogeno intraintracatena

Page 19: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

19

Le catene sono più distese rispetto all’-elica: stirando una catena -elica si ottiene una struttura (la distanza tra due amminoacidi è 3.5 Å contro 1,5 Å dell’-elica)

Struttura secondaria (8)

Sfruttando questa proprietà si ottiene la “permanente dei capellipermanente dei capelli”

-cheratina -cheratina -cheratina

Page 20: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura secondaria (9)

20

Le Le -cheratine sono prevalentemente proteine insolubili -cheratine sono prevalentemente proteine insolubili flessibili e non allungabiliflessibili e non allungabili

Es: fibroina della seta e della tela di ragno

Residui piccoli e idrofobici disposti alternativamente sopra e

sotto la struttura a zig zag

Fili di fibroina estrusi dalla

filiera di un ragno

Page 21: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

21

Struttura secondaria (10)

Tabella riassuntiva delle proteine fibrose con struttura secondariaTabella riassuntiva delle proteine fibrose con struttura secondaria

Page 22: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura secondaria (11)

22

La struttura La struttura è presente anche nelle proteine globulari è presente anche nelle proteine globulari

Le proteine globulari con zone a struttura sono possibili grazie ai ripiegamenti ripiegamenti il gruppo carbonilici del 1°amminoacido

forma un legame idrogeno con il gruppo amminico del 4° residuo.

I residui coinvolti sono glicina e prolina, il primo perché piccolo e flessibile, il

secondo perché il legame peptidico con l’azoto imminico della prolina assume la configurazione ciscis, una forma che si

adatta al cambio di direzione.

Il ripiegamento parallelo è meno probabile

Page 23: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura terziaria (1)

23

La struttura terziaria consiste in un ripiegamento della catena (folding) La struttura terziaria consiste in un ripiegamento della catena (folding) per formare una struttura tridimensionale ben definita (conformazione) per formare una struttura tridimensionale ben definita (conformazione)

Parti lontane della catena vengono a trovarsi spazialmente vicine

creando siti specifici di riconoscimento per particolari molecole

Es: Enzima-SubstratoAnticorpo-

AntigeneRecettore-OrmoneEmoglobina-

Ossigeno

Il folding comporta un compattamento delle dimensioni (Es: albumina bovina

con 584 residui amminoacidici)

Esempi di proteine globulari con domini a struttura e

Statisticamente una proteina globulare contiene:

50-60% -elica25-35% struttura 15% struttura disordinata

Page 24: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura terziaria (2)

24

La sequenza amminoacidica è la base molecolare dell’attività biologicaLa sequenza amminoacidica è la base molecolare dell’attività biologica

SequenzaSequenza (Struttura primaria )

ConformazioneConformazione (Struttura terziaria )

FunzioneFunzione

Page 25: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

25

Interazioni che concorrono al folding e alla stabilizzazione delle proteineInterazioni che concorrono al folding e alla stabilizzazione delle proteine

Struttura terziaria (3)

Tutti questi legami concorrono alla formazione della struttura terziaria

In genere i residui polari si dispongono rivolti verso la superficie

a contatto con H2O, mentre quelli apolari all’interno della proteina

Page 26: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura terziaria (4)

26

Esperimento di AnfinsenEsperimento di Anfinsen

Denaturazione e rinaturazione della ribonucleasi

Questo esperimento dimostra che:La sequenza specifica la conformazione e quindi l’attività biologicaLa conformazione è funzione

dell’ambiente La conformazione nativa è

quella termodinamicamente più stabile (minor contenuto energetico)

allontanamento del mercapto-etanolo

Stato inattivo con ponti disolfuro non corretti (es: cys 58 con cys 95)

aggiunta di mercapto-etanolo e successivo allontanamento di mercapto-etanolo e urea

Page 27: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura terziaria (5)

27

Alcune proteine hanno un ripiegamento assistito da chaperoni e chaperonineAlcune proteine hanno un ripiegamento assistito da chaperoni e chaperonine

I chaperonichaperoni (es: DnaK e DnaJ nell’e-coli) si legano in via transitoria alla proteina non ripiegata impedendo un folding prematuro

Le proteine parzialmente ripiegate dai chaperoni vengono

successivamente ripiegate dalle chaperonine chaperonine

Page 28: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Struttura terziaria (6)

28

Molte proteine hanno un ripiegamento assistito da due enzimi (PDI e PPI)Molte proteine hanno un ripiegamento assistito da due enzimi (PDI e PPI)

La P Proteinaroteina D Disolfuroisolfuro I Isomerasi (somerasi (PDIPDI)) è un enzima che rimuove ponti disolfuro

non corretti (caso acaso a) e facilita la formazione di quelli corretti (caso bcaso b)

La PPeptide eptide PProlil cis-trans rolil cis-trans IIsomerasi (somerasi (PPIPPI))catalizza la interconversione dei legami

peptidici cis-trans della prolina

Page 29: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

PrP

PrPSc

Struttura terziaria (7)

29

Morte per ripiegamento sbagliato: le malattie da “prione”Morte per ripiegamento sbagliato: le malattie da “prione”

I prioni (PrP) sono delle normali proteine presenti nel cervello degli organismi superiori la cui funzione non è nota.

Per eventi ancora non completamente chiariti la proteina può modificare un tratto della sua struttura da -elica a

foglietto (PrPSc) innescando un processo a cascata che porta alla completa trasformazione di tutti i PrPc in PrPSc. Il PrPSc non subisce degradazione proteolitica (turnover

proteico) e si accumula nel tessuto cerebrale determinando una degenerazione spongiforme che porta a lungo termine a forme di demenza e morte (BSE o mucca pazza mucca pazza nei bovini, scrapie scrapie negli ovini, morbo di morbo di Creutzfeld-Jacob nell’uomo)

Sezione colorata di corteccia

cerebrale spongiforme

Il termine “Prione” è stato introdotta da Stanley Prusiner nel 1984

PrionPrion (PrProteinaceus iinfections ononly)

Sc in PrPSc = Scrapie

Page 30: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

30

Struttura quaternaria delle proteine (1)

L a struttura quaternaria deriva dalle interazioni deboli (identiche a quelle che stabilizzano la struttura terziaria) che si stabiliscono tra più catene polipeptidiche (subunitàsubunità) identiche o

diverse per dare complessi proteici tridimensionali chiamati oligomerioligomeri o multimerimultimeri se il numero delle subunità è molto elevato

Struttura quaternaria della emoglobina: oligomero con

quattro subunità a due a due identiche (22)

Rivestimento proteico icoesaedrico di molti virus

sferici (poliovirus, rinovirus). L’icoesaedro è un poliedro regolare a 12 vertici con 20 facce a triangolo equilatero.

Multimero con subunità identiche autoaggreganti (risparmio di materiale (risparmio di materiale

genomico)genomico)

Page 31: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

31

Struttura quaternaria delle proteine (2)

Esempi di proteine con struttura quaternaria

Vi sono dei limiti alle dimensioni delle proteineVi sono dei limiti alle dimensioni delle proteine E’ più semplice ed efficace sintetizzare molte copie di una proteina piccola che una sola

copia di una proteina molto grande La maggior parte delle proteine che hanno massa superiore a 100.000 possiedono più

subunità, uguali o diverse, per evitare la formazione di proteine danneggiate (diminuisce la probabilità di errori durante la sintesi proteica)

Page 32: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

32

Struttura & funzione delle proteine

Le subunità di molte proteine oligomeriche, per azione di un ligandoligando vanno incontro ad un adattamento indotto adattamento indotto che provoca una modificazione conformazionale modificazione conformazionale che permette

all’intera proteina di svolgere una determinata funzione biologica(Es: trasporto ossigeno, attività enzimatica, risposta immunitaria, contrazione muscolare)

Interazione proteina-legando Interazione proteina-legando

LigandoSito di legame

Modificazione conformazionale

Adattamento indotto

Proteine allosteriche(Emoglobina, enzimi allosterici)

Sistema immunitario(Antigene-Anticorpo)

Motori molecolari(Contrazione muscolare)

Page 33: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Emoglobina: un esempio di proteina allosterica (1)La mioglobina (Mb) e le singole catene e dell’emoglobina

(Hb) hanno una struttura terziaria molto simile idonea a legare reversibilmente O2 al Fe+2 senza ossidarlo a Fe+3, grazie alla

tasca idrofobica in grado di alloggiare il gruppo eme

Voet, Zanichelli Editore S.p.A. Copyright © 2007

Questa somiglianza fa ipotizzare che Mb e Hb derivino dallo

stesso gene ancestralestesso gene ancestrale che nel corso dell’evoluzione ha subito

modifiche indipendenti per adattarsi alle esigenze

dell’organismo

Mb

Hb

33

Page 34: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Champe, Zanichelli Editore S.p.A. Copyright © 2006

Emoglobina: un esempio di proteina allosterica (2)

HbHb rispetto a Mb è una proteina allostericaproteina allostericaQuesto è frutto di due tipi di interazioni:

Interazioni omotropiche: Interazioni omotropiche: il legame O2-Hb facilita il legame di altro O2 alla stessa molecola di Hb (legame cooperativo) Interazioni eterotropiche: Interazioni eterotropiche: il legame con gli H+, la CO2 (effetto Bohr) e il 2,3 difosfoglicerato modificano l‘affinità di Hb con O2

Differenze funzionali fra Mb e HbDifferenze funzionali fra Mb e Hb

Funzione HbFunzione Hb: legare O2 nei polmoni e cederlo ai tessuti per la fosforilazione ossidativa; contemporaneamente legare CO2 nei tessuti e rilasciarla a livello polmonare (600 litri/24 ore di O2 e 400 litri/24 di CO2 valori che aumentano di circa 10 volte durante l’attività muscolare)Funzione MbFunzione Mb: legare O2 in eccesso trasportato dall’Hb e rilasciarlo all’occorrenza 34

Y

totalisiti

occupati sitiY

Page 35: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Istidina distaleIstidina distale(E7-His 64)

35

Emoglobina: un esempio di proteina allosterica (3)

Istidina Istidina prossimaleprossimale(F8-His 93)

EmeEme

Il sito di legame per OIl sito di legame per O22

O2 si lega al 6° legame di coordinazione del Fe+2 in modo non lineare a causa dell’ingombro sterico della istidina distale con il vantaggio di rendere più difficile

il legame Hb-CO (nell’eme libero CO è 25.000 più affine rispetto a O2 mentre nell’eme legato all’Hb è

solo 250 volte più affine)

Istidina Istidina prossimaleprossimale(F8-His 93)

Page 36: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

36

Emoglobina: un esempio di proteina allosterica (4)

L’Hb deossigenata è irrigidita da otto legami ionici L’Hb deossigenata è irrigidita da otto legami ionici tra le catene (ponti salini)tra le catene (ponti salini)

L’emoglobina esiste in due conformazioni in equilibrio:Stato TStato T (TTesa): forma deossigenata a bassa affinità per O2 irrigidita da otto legami ioniciStato R Stato R (RRilasciata): forma ossigenata ad alta affinità per O2 senza legami ionici

Page 37: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Y

30 60 90pO2 (mm Hg)

37

Emoglobina: un esempio di proteina allosterica (5)Cooperatività tra i siti Cooperatività tra i siti (interazioni omotropiche)(interazioni omotropiche)

Quando O2 si lega al Fe+2 nel primo dei quattro siti, trova difficoltà per la presenza degli otto ponti salini.

In seguito a questo legame il Fe+2 entra nel piano dell’eme (diminuisce di dimensioni passando da alto spin a basso spin) e trascina con se la catena F a cui e legato tramite l’istidina prossimale (His F8)

Questo spostamento provoca una modificazione della

conformazione che rompe i ponti salini e sposta l’equilibrio

dallo stato T a quello R. Ciò favorisce l’ingresso

successivo di O2 negli altri siti (andamento sigmoide della curva di saturazione Hb-O2)

Page 38: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Inoltre la CO2 si lega direttamente ai gruppi amminici liberi della Hb formando carbammati

che stabilizzano ulteriormente la forma T38

Emoglobina: un esempio di proteina allosterica (6)

Stryer, Zanichelli Editore S.p.A. Copyright © 2006

Nei tessuti l’aumento della [CO2] porta ad una diminuzione del pH. I protoni liberati favoriscono la formazione di coppie ioniche in particolare His 146 - Asp 94 His 146 - Asp 94 che stabilizzano la forma T

Interazioni eterotropiche tra Hb, HInterazioni eterotropiche tra Hb, H++ e CO e CO22 (Effetto Bohr) (Effetto Bohr)

CO2 + H2O → HCO3- + HH++

Page 39: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Trasporto di OTrasporto di O22 e CO e CO22

5%5%

85%85%

*Hb-NHCOO-

*39

Emoglobina: un esempio di proteina allosterica (2)

*

10%10%

Page 40: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Emoglobina: un esempio di proteina allosterica (2)

Stryer, Zanichelli Editore S.p.A. Copyright © 2006

Trasporto di COTrasporto di CO22 e lo scambiatore cloruro-bicarbonato e lo scambiatore cloruro-bicarbonato

40

Page 41: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

41

Emoglobina: un esempio di proteina allosterica (2)

Interazioni eterotropiche tra Hb e 2,3 difosfoglicerato Interazioni eterotropiche tra Hb e 2,3 difosfoglicerato (DPG o BPG)(DPG o BPG)

Il 2,3DPG (un intermedio della glicolisi nel globulo rosso) con le sue 5 cariche negative si lega, con altrettante cariche positive fornite dalle due subunità in una zona centrale dell’Hb

presente solo nello stato T. Per il principio di Le Chatellier l’equilibrio si sposta verso lo stato T con conseguente diminuzione dell’affinità dell’Hb per O2.

Stato T Stato R

Page 42: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Hb “in vivo”(~4 mM 2,3-DPG)

Hb “in vitro” (sangue conservato)(0.5 mM 2,3-DPG)

42

Effetto del 2,3-DPG sulla curva di saturazione Hb-OEffetto del 2,3-DPG sulla curva di saturazione Hb-O22

Emoglobina: un esempio di proteina allosterica (4)

Lo spostamento dell’equilibrio verso l’emoglobina deossigenata, a causa del DPG che si lega solo alla forma T, diminuisce affinità di Hb per O2 e aumenta sensibilmente l’efficienza del trasporto di O2 come dimostrato

dalla curva di saturazione Hb-O2

più sigmoide e spostata verso destra.

Hb-O2 + DPG Hb-DPG + OO22

Page 43: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

43

Emoglobina: un esempio di proteina allosterica (4)

Adattamento ad alta quota e ipossiaAdattamento ad alta quota e ipossia

20 60 100

4mM DPG8mM DPG

pO2 neipolmoni

(0 m)

pO2 neipolmoni(4500 m)

pO2 neitessuti

66%

66%

Aumentando la concentrazione di 2,3-DPG nel sangue, aumenta

ulteriormente l’efficienza del trasporto. Quando si va in alta

quota (>4000m) dopo poche ore aumenta [DPG] per adattare la

respirazione alla minore pressione di ossigeno. Una situazione

analoga si crea in soggetti che soffrono di ipossia dovuta ad una minore ossigenazione dei tessuti

periferici per un cattivo funzionamento dei polmoni o del

sistema circolatorio

Page 44: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

Emoglobina fetale (HbF) e DPGEmoglobina fetale (HbF) e DPG

Emoglobina: un esempio di proteina allosterica (4)

HbF (22) non lega DPG perché His 143 His 143 (carica ), presente nel sito di legame del DPG della catena β, è

sostituita da Ser (neutra) nella catena Ne consegue che il sangue fetale, avendo una affinità per O2 maggiore del sangue adulto (22), “strappa”

O2 al sangue materno attraverso la placenta

44

98%98%

2%2%

Page 45: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

45

Anemia falciforme: un esempio di malattia molecolare

Le proprietà di molte proteine possono variare in seguito a

modificazioni non conservative della sequenza amminoacidica

e causare malattie

Nell’anemia falciforme questo tipo di mutazione sulle catene di Hb ha invece portato ad un vantaggio. Gli individui con un solo allele di HbS hanno una

maggior resistenza alla malaria (il plasmodio ha più difficoltà a nutrirsi e riprodursi nel globulo rosso con HbS)

Un approccio terapeutico consiste nel mantenere l’equilibrio dell’HbS

verso la forma R che non polimerizza (aumento del pH del

sangue con bicarbonato e ossigenazione dei polmoni )

Page 46: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

46

Interazioni proteine-ligandi & sistema immunitario (1)

AntigeneAntigene (Ag, Antibody generator): molecola o parte di molecola in grado di indurre una risposta immunitariaAnticorpoAnticorpo (Ab, Antibody): proteina chericonosce specificamente un antigene

Risposta immunitariaRisposta immunitariaAnticorpale Anticorpale o Umorale Umorale (dal latino humor = fluido)Produzione di Ab solubili che circolano nel sangue. Sono immunoglobuline (Ig) prodotte dai linfociti B nel midollo osseo (Bone marrow). Ab si lega a Ag e il complesso Ab-Ag precipita la sostanza estranea (con l’aiuto del complemento) o la marca per la distruzione (nei macrofagi)CellulareCellulareProduzione di cellule T citossiche,TTCC (così chiamate in quanto l’ultima fase del loro differenziamento avviene nel Timo)

Componenti molecolari del sistema immunitarioComponenti molecolari del sistema immunitario

Leucociti Leucociti (globuli bianchi)(globuli bianchi)Macrofagi (ingestione per fagocitosi)Linfociti B (producono e secernono Ab)Linfociti TC (cellule killer)Linfociti TH (cellule Helper)

Page 47: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

47

Interazioni proteine-ligando & sistema immunitario (2)

IgG: immunoproteina più importante e abbondante IgG: immunoproteina più importante e abbondante del sistema immunitariodel sistema immunitario

Frammento cristallizzabile

Frammentoche lega

l’antigene (antigen binding)

Page 48: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

48

La molecola di IgG è molto flessibile molto flessibile per adattarsi ai diversi determinanti antigenici determinanti antigenici presenti sulla superficie dell’antigene e formare aggregati facilmente riconoscibili dai macrofagi.

Per avere risposta immunitaria di piccole molecole (apteniapteni) si aggiunge un coadiuvante

Le immunoglubuline G sono molto flessibili Le immunoglubuline G sono molto flessibili

Interazioni proteine-ligando & sistema immunitario (3)

Un determinante antigenico

Due determinanti antigenici

Tre determinantiantigenici

Page 49: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

49

Esempi di azione coordinata IgG e macrofagiEsempi di azione coordinata IgG e macrofagi

Interazioni proteine-ligando & sistema immunitario (4)

Fagocitosi di un virus Fagocitosi di un batterio

Page 50: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

50

Interazioni proteine-ligando & sistema immunitario (5)

Ogni linea di linfociti B produce un solo tipo di Ig

• Nei linfociti B non attivilinfociti B non attivi (vergini o memoria), Ig si presentano nella forma

insolubile nella membrana, ed hanno la funzione di

recettore per Ag• Nei linfociti B attivilinfociti B attivi, Ig si

presentano nella formasolubile secreta, ed hanno la funzione di attaccare Ag

Attivazione delle cellule BAttivazione delle cellule B

Page 51: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

51

Interazioni proteine-ligando & sistema immunitario (6)

Cellule B effettrici o plasmacellule producono Ig solubili nel sangue

La cellula staminale si diversifica in numerose cellule B “vergini”, ognuna con una Ig diversa, e con il sito antigenico verso l’esterno

Il contatto con uno specifico Ag genera la replica di un solo un clone e produce numerose cellule B contenenti solo quella Ig

La selezione clonaleLa selezione clonale

Page 52: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

52

Interazione tra proteine modulata dall’energia chimica (1)

Filamento spesso

Filamento sottile

F-actina (FFibrosa)

Miosina

G-actina (GGlobulare)

Actina

Page 53: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

53

Interazione tra proteine modulata dall’energia chimica (2)

Page 54: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

54

Interazione tra proteine modulata dall’energia chimica (3)

La contrazione muscolare è innescata da un rapido aumento citosolico di CaLa contrazione muscolare è innescata da un rapido aumento citosolico di Ca2+2+

I tubuli T (Trasversi) trasmettono il potenziale d’azione, innescato da uno stimolo del SNC,

che apre in pochi millisecondi i canali del Ca 2+ sul reticolo sarcoplasmatico. L’ingresso del Ca 2+ nel citosol è temporaneo perché dopo

circa 30 msec è pompato indietro dalla pompa Ca2+-ATPasi

Page 55: Classificazione delle proteine (1) 1 Per convenzione i polipeptidi con un numero di residui amminoacidi 50 proteine (macromolecole più abbondanti negli

La tropomiosinatropomiosina e le troponine T, I, Ctroponine T, I, C, (chiamate così per la loro attività rispettivamente di legame alla TTropomiosina, IInibitrice e di legame del CCa 2+), , sono proteine accessorie

strettamente associate ai filamenti sottili di actina. La tropomiosina, una molecola disposta lungo le scanalature dell’elica dell’actina, quando è legata con la troponina I maschera il sito di

legame della miosina con l’actina. Quando la troponina C si lega a Ca2+, va incontro ad un cambiamento conformazionale che si trasmette alla tropomiosina, inducendola a staccarsi

dalla troponina I e a muoversi verso il centro dell’elica del filamento sottile di actina. In questo modo i siti di legame sull’actina si rendono disponibili al legame con la testa della miosina,

permettendo la contrazione.

Interazione tra proteine modulata dall’energia chimica (4)

55

La contrazione muscolare innescata da CaLa contrazione muscolare innescata da Ca2+2+ è mediata da proteine accessorie è mediata da proteine accessorie