62
Introduction to CMOS VLSI Design MOS devices: static and dynamic behavior

CMOS Logic: Quantiative Analysis

Embed Size (px)

Citation preview

Page 1: CMOS Logic: Quantiative Analysis

Introduction toCMOS VLSI

Design

MOS devices: static and dynamic behavior

Page 2: CMOS Logic: Quantiative Analysis

MOS equations Slide 2CMOS VLSI Design

Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation

Page 3: CMOS Logic: Quantiative Analysis

MOS equations Slide 3CMOS VLSI Design

Activity1)     If the width of a transistor increases, the current will 

increase decrease not change 2)     If the length of a transistor increases, the current will

increase decrease not change3)     If the supply voltage of a chip increases, the maximum

transistor current willincrease decrease not change

4)     If the width of a transistor increases, its gate capacitance willincrease decrease not change

5)     If the length of a transistor increases, its gate capacitance willincrease decrease not change

6)     If the supply voltage of a chip increases, the gate capacitance of each transistor willincrease decrease not change

Page 4: CMOS Logic: Quantiative Analysis

MOS equations Slide 4CMOS VLSI Design

Activity1)     If the width of a transistor increases, the current will 

increase decrease not change 2)     If the length of a transistor increases, the current will

increase decrease not change3)     If the supply voltage of a chip increases, the maximum

transistor current willincrease decrease not change

4)     If the width of a transistor increases, its gate capacitance willincrease decrease not change

5)     If the length of a transistor increases, its gate capacitance willincrease decrease not change

6)     If the supply voltage of a chip increases, the gate capacitance of each transistor willincrease decrease not change

Page 5: CMOS Logic: Quantiative Analysis

MOS equations Slide 5CMOS VLSI Design

DC Response DC Response: Vout vs. Vin for a gate Ex: Inverter

– When Vin = 0 -> Vout = VDD

– When Vin = VDD -> Vout = 0

– In between, Vout depends on

transistor size and current– By KCL, must settle such that

Idsn = |Idsp|– We could solve equations– But graphical solution gives more insight

Idsn

Idsp Vout

VDD

Vin

Page 6: CMOS Logic: Quantiative Analysis

MOS equations Slide 6CMOS VLSI Design

Transistor Operation Current depends on region of transistor behavior For what Vin and Vout are nMOS and pMOS in

– Cutoff?– Linear?– Saturation?

Page 7: CMOS Logic: Quantiative Analysis

MOS equations Slide 7CMOS VLSI Design

nMOS OperationCutoff Linear SaturatedVgsn < Vgsn >

Vdsn <

Vgsn >

Vdsn >

Idsn

Idsp Vout

VDD

Vin

Page 8: CMOS Logic: Quantiative Analysis

MOS equations Slide 8CMOS VLSI Design

nMOS OperationCutoff Linear SaturatedVgsn < Vtn Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Idsn

Idsp Vout

VDD

Vin

Page 9: CMOS Logic: Quantiative Analysis

MOS equations Slide 9CMOS VLSI Design

nMOS OperationCutoff Linear SaturatedVgsn < Vtn Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

Page 10: CMOS Logic: Quantiative Analysis

MOS equations Slide 10CMOS VLSI Design

nMOS OperationCutoff Linear SaturatedVgsn < Vtn

Vin < Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn < Vgsn – Vtn

Vout < Vin - Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn > Vgsn – Vtn

Vout > Vin - Vtn

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

Page 11: CMOS Logic: Quantiative Analysis

MOS equations Slide 11CMOS VLSI Design

pMOS OperationCutoff Linear SaturatedVgsp > Vgsp <

Vdsp >

Vgsp <

Vdsp <

Idsn

Idsp Vout

VDD

Vin

Page 12: CMOS Logic: Quantiative Analysis

MOS equations Slide 12CMOS VLSI Design

pMOS OperationCutoff Linear SaturatedVgsp > Vtp Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Idsn

Idsp Vout

VDD

Vin

Page 13: CMOS Logic: Quantiative Analysis

MOS equations Slide 13CMOS VLSI Design

pMOS OperationCutoff Linear SaturatedVgsp > Vtp Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

Page 14: CMOS Logic: Quantiative Analysis

MOS equations Slide 14CMOS VLSI Design

pMOS OperationCutoff Linear SaturatedVgsp > Vtp

Vin > VDD + Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp > Vgsp – Vtp

Vout > Vin - Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp < Vgsp – Vtp

Vout < Vin - Vtp

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

Page 15: CMOS Logic: Quantiative Analysis

MOS equations Slide 15CMOS VLSI Design

I-V Characteristics Make pMOS is wider than nMOS such that n = p

Vgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

Page 16: CMOS Logic: Quantiative Analysis

MOS equations Slide 16CMOS VLSI Design

Current vs. Vout, Vin

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Page 17: CMOS Logic: Quantiative Analysis

MOS equations Slide 17CMOS VLSI Design

Load Line Analysis

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

For a given Vin:

– Plot Idsn, Idsp vs. Vout

– Vout must be where |currents| are equal in

Idsn

Idsp Vout

VDD

Vin

Page 18: CMOS Logic: Quantiative Analysis

MOS equations Slide 18CMOS VLSI Design

Load Line Analysis

Vin0

Vin0

Idsn, |Idsp|

VoutVDD

Vin = 0

Page 19: CMOS Logic: Quantiative Analysis

MOS equations Slide 19CMOS VLSI Design

Load Line Analysis

Vin1

Vin1Idsn, |Idsp|

VoutVDD

Vin = 0.2VDD

Page 20: CMOS Logic: Quantiative Analysis

MOS equations Slide 20CMOS VLSI Design

Load Line Analysis

Vin2

Vin2

Idsn, |Idsp|

VoutVDD

Vin = 0.4VDD

Page 21: CMOS Logic: Quantiative Analysis

MOS equations Slide 21CMOS VLSI Design

Load Line Analysis

Vin3

Vin3

Idsn, |Idsp|

VoutVDD

Vin = 0.6VDD

Page 22: CMOS Logic: Quantiative Analysis

MOS equations Slide 22CMOS VLSI Design

Load Line Analysis

Vin4

Vin4

Idsn, |Idsp|

VoutVDD

Vin = 0.8VDD

Page 23: CMOS Logic: Quantiative Analysis

MOS equations Slide 23CMOS VLSI Design

Load Line Analysis

Vin5Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Vin = VDD

Page 24: CMOS Logic: Quantiative Analysis

MOS equations Slide 24CMOS VLSI Design

Load Line Summary

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Page 25: CMOS Logic: Quantiative Analysis

MOS equations Slide 25CMOS VLSI Design

DC Transfer Curve Transcribe points onto Vin vs. Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Page 26: CMOS Logic: Quantiative Analysis

MOS equations Slide 26CMOS VLSI Design

Operating Regions Revisit transistor operating regions

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Region nMOS pMOSABCDE

Page 27: CMOS Logic: Quantiative Analysis

MOS equations Slide 27CMOS VLSI Design

Operating Regions Revisit transistor operating regions

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Region nMOS pMOSA Cutoff LinearB Saturation LinearC Saturation SaturationD Linear SaturationE Linear Cutoff

Page 28: CMOS Logic: Quantiative Analysis

MOS equations Slide 28CMOS VLSI Design

Beta Ratio If p / n 1, switching point will move from VDD/2 Called skewed gate Other gates: collapse into equivalent inverter

Vout

0

Vin

VDD

VDD

0.51

2

10p

n

0.1p

n

Page 29: CMOS Logic: Quantiative Analysis

MOS equations Slide 29CMOS VLSI Design

Noise Margins How much noise can a gate input see before it does

not recognize the input?

IndeterminateRegion

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logical HighInput Range

Logical LowInput Range

Logical HighOutput Range

Logical LowOutput Range

Page 30: CMOS Logic: Quantiative Analysis

MOS equations Slide 30CMOS VLSI Design

Logic Levels To maximize noise margins, select logic levels at

VDD

Vin

Vout

VDD

p/n > 1

Vin Vout

0

Page 31: CMOS Logic: Quantiative Analysis

MOS equations Slide 31CMOS VLSI Design

Logic Levels To maximize noise margins, select logic levels at

– unity gain point of DC transfer characteristic

VDD

Vin

Vout

VOH

VDD

VOL

VIL VIHVtn

Unity Gain PointsSlope = -1

VDD-|Vtp|

p/n > 1

Vin Vout

0

Page 32: CMOS Logic: Quantiative Analysis

MOS equations Slide 32CMOS VLSI Design

Transient Response DC analysis tells us Vout if Vin is constant Transient analysis tells us Vout(t) if Vin(t) changes

– Requires solving differential equations Input is usually considered to be a step or ramp

– From 0 to VDD or vice versa

Page 33: CMOS Logic: Quantiative Analysis

MOS equations Slide 33CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0( )(

)

)

(o

i

ut

n

out

V t tt

Vt

V

ddt

Vin(t) Vout(t)Cload

Idsn(t)

Page 34: CMOS Logic: Quantiative Analysis

MOS equations Slide 34CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0

0

( )( )

( )

( )

ou

DDin

t

out

u t t V

dd

tt t

V t

VV

t

Vin(t) Vout(t)Cload

Idsn(t)

Page 35: CMOS Logic: Quantiative Analysis

MOS equations Slide 35CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0

0(( ))

(

()

)

DD

Do

i

D

o t

n

ut

u

V tu t t V

Vdd

tt

V

V

tt

Vin(t) Vout(t)Cload

Idsn(t)

Page 36: CMOS Logic: Quantiative Analysis

MOS equations Slide 36CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0

0

( )( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

VV

u t t Vt t

V tV

ddt C

t

I t

0

( ) DD tout

ou

ds

t DD t

nI t V VVV V

Vt t

Vin(t) Vout(t)Cload

Idsn(t)

Page 37: CMOS Logic: Quantiative Analysis

MOS equations Slide 37CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0

0

( )( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

VV

u t t Vt t

V tV

ddt C

t

I t

0

22

0

2)

)( ( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

tV t V t

Vin(t) Vout(t)Cload

Idsn(t)

Page 38: CMOS Logic: Quantiative Analysis

MOS equations Slide 38CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0

0

( )( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

VV

u t t Vt t

V tV

ddt C

t

I t

0

22

0

2)

)( ( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

tV t V t

Vout(t)

Vin(t)

t0t

Vin(t) Vout(t)Cload

Idsn(t)

Page 39: CMOS Logic: Quantiative Analysis

MOS equations Slide 39CMOS VLSI Design

Delay Definitions tpdr:

tpdf:

tpd:

tr:

tf: fall time

Page 40: CMOS Logic: Quantiative Analysis

MOS equations Slide 40CMOS VLSI Design

Delay Definitions tpdr: rising propagation delay

– From input to rising output crossing VDD/2 tpdf: falling propagation delay

– From input to falling output crossing VDD/2 tpd: average propagation delay

– tpd = (tpdr + tpdf)/2 tr: rise time

– From output crossing 0.2 VDD to 0.8 VDD

tf: fall time– From output crossing 0.8 VDD to 0.2 VDD

Page 41: CMOS Logic: Quantiative Analysis

MOS equations Slide 41CMOS VLSI Design

Delay Definitions tcdr: rising contamination delay

– From input to rising output crossing VDD/2 tcdf: falling contamination delay

– From input to falling output crossing VDD/2 tcd: average contamination delay

– tpd = (tcdr + tcdf)/2

Page 42: CMOS Logic: Quantiative Analysis

MOS equations Slide 42CMOS VLSI Design

Simulated Inverter Delay Solving differential equations by hand is too hard SPICE simulator solves the equations numerically

– Uses more accurate I-V models too! But simulations take time to write

(V)

0.0

0.5

1.0

1.5

2.0

t(s)0.0 200p 400p 600p 800p 1n

tpdf = 66ps tpdr = 83psVin Vout

Page 43: CMOS Logic: Quantiative Analysis

MOS equations Slide 43CMOS VLSI Design

Delay Estimation We would like to be able to easily estimate delay

– Not as accurate as simulation– But easier to ask “What if?”

The step response usually looks like a 1st order RC response with a decaying exponential.

Use RC delay models to estimate delay– C = total capacitance on output node– Use effective resistance R– So that tpd = RC

Characterize transistors by finding their effective R– Depends on average current as gate switches

Page 44: CMOS Logic: Quantiative Analysis

MOS equations Slide 44CMOS VLSI Design

RC Delay Models Use equivalent circuits for MOS transistors

– Ideal switch + capacitance and ON resistance– Unit nMOS has resistance R, capacitance C– Unit pMOS has resistance 2R, capacitance C

Capacitance proportional to width Resistance inversely proportional to width

kgs

dg

s

d

kCkC

kCR/k

kgs

dg

s

d

kC

kC

kC

2R/k

Page 45: CMOS Logic: Quantiative Analysis

MOS equations Slide 45CMOS VLSI Design

Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen

to achieve effective rise and fall resistances equal to a unit inverter (R).

Page 46: CMOS Logic: Quantiative Analysis

MOS equations Slide 46CMOS VLSI Design

Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen

to achieve effective rise and fall resistances equal to a unit inverter (R).

Page 47: CMOS Logic: Quantiative Analysis

MOS equations Slide 47CMOS VLSI Design

Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen

to achieve effective rise and fall resistances equal to a unit inverter (R).

3

3

222

3

Page 48: CMOS Logic: Quantiative Analysis

MOS equations Slide 48CMOS VLSI Design

3-input NAND Caps Annotate the 3-input NAND gate with gate and

diffusion capacitance.

2 2 2

3

3

3

Page 49: CMOS Logic: Quantiative Analysis

MOS equations Slide 49CMOS VLSI Design

3-input NAND Caps Annotate the 3-input NAND gate with gate and

diffusion capacitance.

2 2 2

3

3

33C

3C

3C

3C

2C

2C

2C

2C

2C

2C

3C

3C

3C

2C 2C 2C

Page 50: CMOS Logic: Quantiative Analysis

MOS equations Slide 50CMOS VLSI Design

3-input NAND Caps Annotate the 3-input NAND gate with gate and

diffusion capacitance.

9C

3C

3C3

3

3

222

5C5C

5C

Page 51: CMOS Logic: Quantiative Analysis

MOS equations Slide 51CMOS VLSI Design

Elmore Delay ON transistors look like resistors Pullup or pulldown network modeled as RC ladder Elmore delay of RC ladder

R1 R2 R3 RN

C1 C2 C3 CN

nodes

1 1 1 2 2 1 2... ...

pd i to source ii

N N

t R C

RC R R C R R R C

Page 52: CMOS Logic: Quantiative Analysis

MOS equations Slide 52CMOS VLSI Design

Example: 2-input NAND Estimate worst-case rising and falling delay of 2-

input NAND driving h identical gates.

h copies

2

2

22

B

Ax

Y

Page 53: CMOS Logic: Quantiative Analysis

MOS equations Slide 53CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

Page 54: CMOS Logic: Quantiative Analysis

MOS equations Slide 54CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CY

pdrt

Page 55: CMOS Logic: Quantiative Analysis

MOS equations Slide 55CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CY 6 4pdrt h RC

Page 56: CMOS Logic: Quantiative Analysis

MOS equations Slide 56CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

Page 57: CMOS Logic: Quantiative Analysis

MOS equations Slide 57CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

pdft (6+4h)C2CR/2

R/2x Y

Page 58: CMOS Logic: Quantiative Analysis

MOS equations Slide 58CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

2 2 22 6 4

7 4

R R Rpdft C h C

h RC

(6+4h)C2CR/2

R/2x Y

Page 59: CMOS Logic: Quantiative Analysis

MOS equations Slide 59CMOS VLSI Design

Delay Components Delay has two parts

– Parasitic delay• 6 or 7 RC• Independent of load

– Effort delay• 4h RC• Proportional to load capacitance

Page 60: CMOS Logic: Quantiative Analysis

MOS equations Slide 60CMOS VLSI Design

Contamination Delay Best-case (contamination) delay can be substantially

less than propagation delay. Ex: If both inputs fall simultaneously

6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CYR

3 2cdrt h RC

Page 61: CMOS Logic: Quantiative Analysis

MOS equations Slide 61CMOS VLSI Design

7C

3C

3C3

3

3

222

3C

2C2C

3C3C

IsolatedContactedDiffusionMerged

UncontactedDiffusion

SharedContactedDiffusion

Diffusion Capacitance we assumed contacted diffusion on every s / d. Good layout minimizes diffusion area Ex: NAND3 layout shares one diffusion contact

– Reduces output capacitance by 2C– Merged uncontacted diffusion might help too

Page 62: CMOS Logic: Quantiative Analysis

MOS equations Slide 62CMOS VLSI Design

Layout Comparison Which layout is better?

AVDD

GND

B

Y

AVDD

GND

B

Y