21
Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke, F. Marzouki, G. Moritz, H. Mueller, C. Schroeder, A. Stafiniak, F. Walter, GSI Darmstadt WAMSDO, CERN May 23rd, 2008

Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

Embed Size (px)

Citation preview

Page 1: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results

P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke, F. Marzouki, G. Moritz, H. Mueller, C. Schroeder, A. Stafiniak, F. Walter,

GSI Darmstadt

WAMSDO, CERN

May 23rd, 2008

Page 2: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

OutlineOutline

FAIR @ GSI

Prototype Test Facility @ GSI

mandate

parameters to deliver

measurement equipment

measurement methods

test results

short SIS 100 model 4KDP6a: superferric WF, cooled by forced-flow 2-phase helium

model for SIS 300: GSI001 (cos θ, cooled by forced-flow supercritical helium)

Page 3: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

HESR

100 m

UNILACSIS 18

SynchrotronsSIS 100/300

SuperFRS

NESR

CR

RESR

ESR

Existing facility (in blue): provides ion-beam source and injector for FAIR

Existing facility (in blue): provides ion-beam source and injector for FAIR

New future facility (in red): provides ion and anti-matterbeams of highest-intensity and up to high energies

New future facility (in red): provides ion and anti-matterbeams of highest-intensity and up to high energies The FAIR FacilityThe FAIR Facility

rapidly-cycling sc magnets

Page 4: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

Mandate Prototype Test Facility (PTF)Mandate Prototype Test Facility (PTF)

Test FAIR Model-, Prototype- and Preseries sc magnets

Develop :• Test procedures for Factory Acceptance Tests

(FAT) and Site Acceptance Tests (SAT)• Acceptance Criteria for FAT and SAT• Diagnostic Methods

Investigate “non conforming” magnets for • SIS100 series• SIS300 series

Page 5: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

Parameters to deliverParameters to deliver

heat input due to eddy currents and hysteresis → power of the cryoplant

hydraulic resistance -> maximum acceptable heat load → e.g. parallel cooling channels in SIS 100

magnetic field (quality, strength, eddy current contribution ...) → beam dynamics

operation reliability and safety (insulation, quench detection (ramp voltage, cool down, cooling, static heat flow ...)

alignment and fiduzialisation

Page 6: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

Prototype Test Facility Prototype Test Facility

Page 7: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

Equipment of the Prototype Test FacilityEquipment of the Prototype Test Facility

cryo plant distribution box

feedbox 1cryo- magnet

power supply

TCF 50: 350W@4K Distribution and processing of thehelium;•Bath cooling•2 phase cooling 5g/s•Supercritical 150g/s•Temperatures down to 3.8K•Pressures between 1.2 and 5 bar

Feeds helium and current into the magnet;measurement of:•Mass flows •Temperatures•Pressures

Enables measurements directly on the magnet;•Field measurements within the anti-cryostat•Additional sensors•2 Void fraction sensors

11kA, 110 V

feedbox 2universal- cryostat forcold masses

Page 8: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

Cryogenic losses – V-I methodCryogenic losses – V-I method

iiNi i tIVE 1

Energy loss is calculated :

DVM’s - 8.5digit HP 3458A.

current → DCCT → DVM (generates trigger)

voltage across magnet DVM (receives trigger)

DVM:

integration time → 20 ms

processing delay 50 µs.

Et

Pi

Ni

1

1

Δti = 20.05ms

N – corresponds to 1 current cycle

Power loss is calculated :

Page 9: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

MF1

MF2

current lead-Box

PT11

PT13

MF3

SZF-Ventil

TT11

to the distribution box

TT22

from the distribution box

shield

GSI001

Current leads

warm to Coldbox LP

coldmassflow sensors

Pin

Pout

MF4

warmmass flow sensors

Tin

Tout

Cryogenic losses –calorimetric method Cryogenic losses –calorimetric method (supercritical cooling)(supercritical cooling)

Schematic sketch of the measurement

inininoutoutoutHemagnet PThPThmQ ,,

Mass flow through the magnet: cold mass flow - warm mass flow (measured)

Page 10: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

Cryogenic losses –calorimetric method Cryogenic losses –calorimetric method (supercritical cooling)(supercritical cooling)

Tin; Pin

4 6 8 10

4

5

6

7

8

h=35 J/g

h=45 J/g

h=40 J/g

h=30 J/gh=25 J/gh=20 J/gh=15 J/gh=10 J/gx=1.0x=0.8x=0.6x=0.4x=0.2x=0.0

Tem

pera

tur

[K]

Entropie [J/g K]

Tout; Pout

Page 11: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

Cryogenic losses – calorimetric method Cryogenic losses – calorimetric method (2-phase cooling)(2-phase cooling)

Coil

Yoke

Yoke

PI TITI

TI

I-9TITITITI

UI

PI

Pin Tin

Tcy

Tout

Theater inTheater out

Pout

Power

Heater

outinheaterinheateroutoutheateroutheater

heaterHe PThPTh

Qm

,, ____

),0(),1( inliquidoutvaporHecoil PxhPxhmQ

outCYCYoutoutoutHeyoke PThPThmQ ,,

coil cooling: 2 phasemeasurement points in single phase:

variation of mass flow → X = 0 at coil inlet→ X = 1 at coil outlet

as applied by Dubna for Nuclotron magnet tests

assumption:pressure drop only in the coil.

Page 12: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

Cryogenic losses – calorimetric method Cryogenic losses – calorimetric method (2-phase cooling)(2-phase cooling)

4 6 8 10

4

5

6

7

8

h=35 J/g

h=45 J/g

h=40 J/g

h=30 J/gh=25 J/gh=20 J/gh=15 J/gh=10 J/gx=1.0x=0.8x=0.6x=0.4x=0.2x=0.0

Tem

pera

tur

[K]

Entropie [J/g K]

Pin

Tin

COILYOKE

overheating

TCY

Tout

Heater (4W)

Pout

Theater out

Theater in

Page 13: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

GSI001 with beampipe (V-I data taken at GSI)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5dB/dt [T/s]

Q [J

/cyc

le]

Bmax0.99

Bmax2.17

Bmax2.74

Bmax3.01

Bmax3.54

Bmax4.01

GSI001 (with beam pipe) –cryogenic GSI001 (with beam pipe) –cryogenic losseslosses

0 2 40

10

20

30

40

50

60

70

80

90

100

Bmax=0.99T Bmax=2.17T Bmax=2.74T Bmax=3.01T Bmax=3.54T Bmax=4.01T

Q [J/

cycl

e]

dB/dt [T/s]

GSI001 with beampipe (calorimetric data taken at GSI)

Page 14: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

GSI001 with beampipe, Hysteresis loss (intercept)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5Bmax [T]

Q [

J/c

ycle

]

Theoretical calc. by M. N. Wilson

V-I GSI

V-I BNL

Calorimetric GSI

measured (short samples) parameters used for calculation:

ρet (B) = 1.2410 -10 + 0.910 -10 B with ρet in Ωm and B in Tesla.

Rc = 62.5 m Ω

Ra = 64 µΩ

GSI001 with beampipe, eddy current loss (slope)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

Bmax [T]

Q [

J/T

/s p

er

cy

cle

]

Theoretical calc. by M. N. Wilson

Theory incl. copper shieldV-I GSI

V-I BNL

Calorimetric GSI

Hysteresis part (including iron and transport current contribution)

Eddy current part

GSI001 (with beam pipe) –cryogenic lossesGSI001 (with beam pipe) –cryogenic losses

Page 15: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

Superconductor eddy current loss(scaled for whole coil)

y = 3,2042xRa=71µOhm

y = 4,121xRa=41µOhm

y = 6,4756xRa=56µOhm

y = 8,7936xRa=32µOhm

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

dB/dt [T/s]

Q [

J/c

ycle

]

Bmax=1T upper half coil

Bmax=1T lower half coil

Bmax=2T upper half coil

Bmax=2T lower half coil

GSI001 (with beam pipe) –cryogenic GSI001 (with beam pipe) –cryogenic losseslosses

Top-Down Asymmetry

Page 16: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

GSI 001 Ramp Rate Limitation (RRL)GSI 001 Ramp Rate Limitation (RRL)

6250

6500

6750

7000

7250

7500

7750

8000

8250

0 1 2 3 4 5 6 7

dB/dt [T/s]

Iqu

ench

[A

]

GSI

BNL

Theory LHe

Inom. at Bmax=4 T

Iquench at dB/dt =0T/s

GSI: cooled by supercritical helium

BNL: cooled by helium bath

• type 'A' behavior: quench current reduced by AC- conductor heating

• type 'B' behavior: quench current reduced due to unequal current distribution between strands- unwanted!

Page 17: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

0 20 40 60 80 100 120 140 1600,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 20 40 60 80 100 120 140 1600,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60 80 100 120 140 1600,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60 80 100 120 140 1600,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60 80 100 120 140 1600,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60 80 100 120 140 1600,0

0,2

0,4

0,6

0,8

1,0

no ramping no field

ma

ss flo

w [g

/s]

P [mbar]

Bmax

=1.37 T

Bmin

=0.07 T

3.5T/s 20.2W

ma

ss flo

w [g

/s]

P [mbar]

4T/s 22.9W

ma

ss flo

w [g

/s]

P [mbar]

2.5T/s 13.7Wma

ss flo

w [g

/s]

P [mbar]

MeasurementCalculation

3T/s 16.7W

ma

ss flo

w [g

/s]

P [mbar]

4.5T/s 25.9W

ma

ss flo

w [g

/s]

P [mbar]

4KDP6a – mass flow vs. pressure drop4KDP6a – mass flow vs. pressure drop(2-phase flow)(2-phase flow)

triangular cycle

Page 18: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

4KDP6a RRL4KDP6a RRL

Ramp Rate Limit 4KDP6a

0

2000

4000

6000

8000

10000

0 5 10 15 20

4,4

4,45

4,5

4,55

4,6

4,65

4,7

4,75

4,8

Q Current Tcoilin Tcoilout

K

ramp rate [kA/s]

Que

nch

curr

ent [

A]

stable operation

helium tem

perature [K]

DC quench current (A) 9064

Bmax (T) 2.86

TcB (K) 8.08

Ic(Bmax,4.7K) (A) 10465

Tcs (9064A,Bmax) (K) 5.15

Tcs (9064A,Bmax)-4.7 (K) 0.45

Page 19: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

4KDPa: AC Losses @ 4 K4KDPa: AC Losses @ 4 K

(measured: calorimetric and U-I; calculated: ANSYS) for various Bmax at triangular cycles

Pac(dB/dt, 2T) = 0.457· (dB/dt)

2 + 5.29 · dB/dt

Pac(dB/dt, 1.37T) = 0.201 · (dB/dt)

2 + 4.67 · dB/dt

Pac(dB/dt, 1.8T)= 0.538 · (dB/dt)

2 + 4.33 · dB/dt

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5

dB/dt, T/s

Pac

, W

GSI-cal (1.37T)

GSI-UI (1.37T)

ANSYS (1.5T)

GSI-UI (1.6T)

JINR (1.6T)

GSI-UI (1.8T)

JINR (1.8T)

GSI-cal (2T)

GSI-UI (2T)

JINR (2T)

ANSYS (2T)

fit GSI-cal (2T)

fit GSI-cal (1.37T)

fit GSI-UI (1,8T)

Page 20: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

0

5

10

15

20

25

30

AC

-lo

ss

Qc

, J

/cy

cle

GSI-calorimetric

ANSYS calculated

sc strand measurements

4KDP6a: calorimetric and calculated data 4KDP6a: calorimetric and calculated data

4

Qc = 25,5 J/cycle +/- 12%

reasonable agree-ment between the overall AC loss data measured (calorime-tric and U-I) and calculated (ANSYS) at JINR and GSI for the 4KDP6a dipole model magnet.

significant thermal contact between coil and iron yoke, not measured

the technological details of the magnet design and the real material properties are important

Data comparision for the triangular cycle with Bmax= 2 T, dB/dt= 4 T/s

Qc= qc_e ∙ dB/dt + Qc_h

Page 21: Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,

FAIR – Facility for Antiproton and Ion Research

CN DE ES FI FR GB GR IN IT PL RO RU SE

in 2015

Thank you for your attention