34
Collapse of Massive Stars A. MacFadyen Caltech

Collapse of Massive Stars A.MacFadyen Caltech. Muller (1999) “Delayed” SN Explosion acac Accretion vs. Neutrino heating Burrows (2001)

  • View
    215

  • Download
    2

Embed Size (px)

Citation preview

Collapse of Massive Stars

A MacFadyen

Caltech

Muller (1999)

ldquoDelayedrdquo SN Explosion

ac

Accretion vs Neutrino heating

Burrows (2001)

Pre-Supernova Density Structure

Woosley amp Weaver (1995)

Bigger stars

Higher entropy

Shallower density gradients

Fukuda (1982)

Heger (2000)

Stellar Rotation

no mass lossMass loss

No B fields

IFTwo plausible conditions occur

1 Failure of neutrino powered SN explosion

a completeb partial (fallback)

2 Rotating stellar coresj gt 3 x 1016 cm2s

THEN

Rapidly accreting black hole (M~01 Ms)fed by collapsing star (tdyn ~ 446 s frac12 ~ 10 s)Disk formation

COLLAPSAR

Superbowl Burst

ms variability + non-thermal spectrum Compactness

GRB Light Curve

M = E c2 ~ 10-6

Msun

Gamma-Ray Burstsbull Short -ray flashes E gt 100 keV

bull 001 lt t90 lt 1000s

bull Diverse lightcurvesbull BATSE detected

1day = 1000 yearuniverse

bull Energy ~ 1052 f

-1 ferg

bull Near star forming regions

bull 2 SN Ibc associations

bull Supernova component in lightcurves

135 models (1993)

Note most are Galactic and are ruled out for long bursts

GRB 990123

1 CGRO ~1o

2 BeppoSAX (X-ray)

6-33 hrs

34-54 hrs

~ 1rsquo

4 HST 17 days

3 Palomar lt 1 dayKeck

spectrum

z=160

Eiso =

3x1054 erg

~ Msunc2

9th mag flash

GRB photons are made far away from engine

Canrsquot observe engine directly in light (neutrinos gravitational waves)

Electromagnetic process or neutrino annihilation to tap power of central compact object

Hyper-accreting black hole or high field neutron star (rotating)

SN2003dhGRB030329

Hjorth et al (2003)

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Muller (1999)

ldquoDelayedrdquo SN Explosion

ac

Accretion vs Neutrino heating

Burrows (2001)

Pre-Supernova Density Structure

Woosley amp Weaver (1995)

Bigger stars

Higher entropy

Shallower density gradients

Fukuda (1982)

Heger (2000)

Stellar Rotation

no mass lossMass loss

No B fields

IFTwo plausible conditions occur

1 Failure of neutrino powered SN explosion

a completeb partial (fallback)

2 Rotating stellar coresj gt 3 x 1016 cm2s

THEN

Rapidly accreting black hole (M~01 Ms)fed by collapsing star (tdyn ~ 446 s frac12 ~ 10 s)Disk formation

COLLAPSAR

Superbowl Burst

ms variability + non-thermal spectrum Compactness

GRB Light Curve

M = E c2 ~ 10-6

Msun

Gamma-Ray Burstsbull Short -ray flashes E gt 100 keV

bull 001 lt t90 lt 1000s

bull Diverse lightcurvesbull BATSE detected

1day = 1000 yearuniverse

bull Energy ~ 1052 f

-1 ferg

bull Near star forming regions

bull 2 SN Ibc associations

bull Supernova component in lightcurves

135 models (1993)

Note most are Galactic and are ruled out for long bursts

GRB 990123

1 CGRO ~1o

2 BeppoSAX (X-ray)

6-33 hrs

34-54 hrs

~ 1rsquo

4 HST 17 days

3 Palomar lt 1 dayKeck

spectrum

z=160

Eiso =

3x1054 erg

~ Msunc2

9th mag flash

GRB photons are made far away from engine

Canrsquot observe engine directly in light (neutrinos gravitational waves)

Electromagnetic process or neutrino annihilation to tap power of central compact object

Hyper-accreting black hole or high field neutron star (rotating)

SN2003dhGRB030329

Hjorth et al (2003)

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Pre-Supernova Density Structure

Woosley amp Weaver (1995)

Bigger stars

Higher entropy

Shallower density gradients

Fukuda (1982)

Heger (2000)

Stellar Rotation

no mass lossMass loss

No B fields

IFTwo plausible conditions occur

1 Failure of neutrino powered SN explosion

a completeb partial (fallback)

2 Rotating stellar coresj gt 3 x 1016 cm2s

THEN

Rapidly accreting black hole (M~01 Ms)fed by collapsing star (tdyn ~ 446 s frac12 ~ 10 s)Disk formation

COLLAPSAR

Superbowl Burst

ms variability + non-thermal spectrum Compactness

GRB Light Curve

M = E c2 ~ 10-6

Msun

Gamma-Ray Burstsbull Short -ray flashes E gt 100 keV

bull 001 lt t90 lt 1000s

bull Diverse lightcurvesbull BATSE detected

1day = 1000 yearuniverse

bull Energy ~ 1052 f

-1 ferg

bull Near star forming regions

bull 2 SN Ibc associations

bull Supernova component in lightcurves

135 models (1993)

Note most are Galactic and are ruled out for long bursts

GRB 990123

1 CGRO ~1o

2 BeppoSAX (X-ray)

6-33 hrs

34-54 hrs

~ 1rsquo

4 HST 17 days

3 Palomar lt 1 dayKeck

spectrum

z=160

Eiso =

3x1054 erg

~ Msunc2

9th mag flash

GRB photons are made far away from engine

Canrsquot observe engine directly in light (neutrinos gravitational waves)

Electromagnetic process or neutrino annihilation to tap power of central compact object

Hyper-accreting black hole or high field neutron star (rotating)

SN2003dhGRB030329

Hjorth et al (2003)

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Fukuda (1982)

Heger (2000)

Stellar Rotation

no mass lossMass loss

No B fields

IFTwo plausible conditions occur

1 Failure of neutrino powered SN explosion

a completeb partial (fallback)

2 Rotating stellar coresj gt 3 x 1016 cm2s

THEN

Rapidly accreting black hole (M~01 Ms)fed by collapsing star (tdyn ~ 446 s frac12 ~ 10 s)Disk formation

COLLAPSAR

Superbowl Burst

ms variability + non-thermal spectrum Compactness

GRB Light Curve

M = E c2 ~ 10-6

Msun

Gamma-Ray Burstsbull Short -ray flashes E gt 100 keV

bull 001 lt t90 lt 1000s

bull Diverse lightcurvesbull BATSE detected

1day = 1000 yearuniverse

bull Energy ~ 1052 f

-1 ferg

bull Near star forming regions

bull 2 SN Ibc associations

bull Supernova component in lightcurves

135 models (1993)

Note most are Galactic and are ruled out for long bursts

GRB 990123

1 CGRO ~1o

2 BeppoSAX (X-ray)

6-33 hrs

34-54 hrs

~ 1rsquo

4 HST 17 days

3 Palomar lt 1 dayKeck

spectrum

z=160

Eiso =

3x1054 erg

~ Msunc2

9th mag flash

GRB photons are made far away from engine

Canrsquot observe engine directly in light (neutrinos gravitational waves)

Electromagnetic process or neutrino annihilation to tap power of central compact object

Hyper-accreting black hole or high field neutron star (rotating)

SN2003dhGRB030329

Hjorth et al (2003)

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

IFTwo plausible conditions occur

1 Failure of neutrino powered SN explosion

a completeb partial (fallback)

2 Rotating stellar coresj gt 3 x 1016 cm2s

THEN

Rapidly accreting black hole (M~01 Ms)fed by collapsing star (tdyn ~ 446 s frac12 ~ 10 s)Disk formation

COLLAPSAR

Superbowl Burst

ms variability + non-thermal spectrum Compactness

GRB Light Curve

M = E c2 ~ 10-6

Msun

Gamma-Ray Burstsbull Short -ray flashes E gt 100 keV

bull 001 lt t90 lt 1000s

bull Diverse lightcurvesbull BATSE detected

1day = 1000 yearuniverse

bull Energy ~ 1052 f

-1 ferg

bull Near star forming regions

bull 2 SN Ibc associations

bull Supernova component in lightcurves

135 models (1993)

Note most are Galactic and are ruled out for long bursts

GRB 990123

1 CGRO ~1o

2 BeppoSAX (X-ray)

6-33 hrs

34-54 hrs

~ 1rsquo

4 HST 17 days

3 Palomar lt 1 dayKeck

spectrum

z=160

Eiso =

3x1054 erg

~ Msunc2

9th mag flash

GRB photons are made far away from engine

Canrsquot observe engine directly in light (neutrinos gravitational waves)

Electromagnetic process or neutrino annihilation to tap power of central compact object

Hyper-accreting black hole or high field neutron star (rotating)

SN2003dhGRB030329

Hjorth et al (2003)

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Superbowl Burst

ms variability + non-thermal spectrum Compactness

GRB Light Curve

M = E c2 ~ 10-6

Msun

Gamma-Ray Burstsbull Short -ray flashes E gt 100 keV

bull 001 lt t90 lt 1000s

bull Diverse lightcurvesbull BATSE detected

1day = 1000 yearuniverse

bull Energy ~ 1052 f

-1 ferg

bull Near star forming regions

bull 2 SN Ibc associations

bull Supernova component in lightcurves

135 models (1993)

Note most are Galactic and are ruled out for long bursts

GRB 990123

1 CGRO ~1o

2 BeppoSAX (X-ray)

6-33 hrs

34-54 hrs

~ 1rsquo

4 HST 17 days

3 Palomar lt 1 dayKeck

spectrum

z=160

Eiso =

3x1054 erg

~ Msunc2

9th mag flash

GRB photons are made far away from engine

Canrsquot observe engine directly in light (neutrinos gravitational waves)

Electromagnetic process or neutrino annihilation to tap power of central compact object

Hyper-accreting black hole or high field neutron star (rotating)

SN2003dhGRB030329

Hjorth et al (2003)

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Gamma-Ray Burstsbull Short -ray flashes E gt 100 keV

bull 001 lt t90 lt 1000s

bull Diverse lightcurvesbull BATSE detected

1day = 1000 yearuniverse

bull Energy ~ 1052 f

-1 ferg

bull Near star forming regions

bull 2 SN Ibc associations

bull Supernova component in lightcurves

135 models (1993)

Note most are Galactic and are ruled out for long bursts

GRB 990123

1 CGRO ~1o

2 BeppoSAX (X-ray)

6-33 hrs

34-54 hrs

~ 1rsquo

4 HST 17 days

3 Palomar lt 1 dayKeck

spectrum

z=160

Eiso =

3x1054 erg

~ Msunc2

9th mag flash

GRB photons are made far away from engine

Canrsquot observe engine directly in light (neutrinos gravitational waves)

Electromagnetic process or neutrino annihilation to tap power of central compact object

Hyper-accreting black hole or high field neutron star (rotating)

SN2003dhGRB030329

Hjorth et al (2003)

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

135 models (1993)

Note most are Galactic and are ruled out for long bursts

GRB 990123

1 CGRO ~1o

2 BeppoSAX (X-ray)

6-33 hrs

34-54 hrs

~ 1rsquo

4 HST 17 days

3 Palomar lt 1 dayKeck

spectrum

z=160

Eiso =

3x1054 erg

~ Msunc2

9th mag flash

GRB photons are made far away from engine

Canrsquot observe engine directly in light (neutrinos gravitational waves)

Electromagnetic process or neutrino annihilation to tap power of central compact object

Hyper-accreting black hole or high field neutron star (rotating)

SN2003dhGRB030329

Hjorth et al (2003)

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

GRB 990123

1 CGRO ~1o

2 BeppoSAX (X-ray)

6-33 hrs

34-54 hrs

~ 1rsquo

4 HST 17 days

3 Palomar lt 1 dayKeck

spectrum

z=160

Eiso =

3x1054 erg

~ Msunc2

9th mag flash

GRB photons are made far away from engine

Canrsquot observe engine directly in light (neutrinos gravitational waves)

Electromagnetic process or neutrino annihilation to tap power of central compact object

Hyper-accreting black hole or high field neutron star (rotating)

SN2003dhGRB030329

Hjorth et al (2003)

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

GRB photons are made far away from engine

Canrsquot observe engine directly in light (neutrinos gravitational waves)

Electromagnetic process or neutrino annihilation to tap power of central compact object

Hyper-accreting black hole or high field neutron star (rotating)

SN2003dhGRB030329

Hjorth et al (2003)

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

SN2003dhGRB030329

Hjorth et al (2003)

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Well-localized bursts are all ldquolong-softrdquo

ldquoshort-hardrdquo bursts

Duration (s)

hardness

Kulkarni et al

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

GRB central engine

bull Relativity (SR amp GR)bull Magnetic Fieldsbull Rotationbull Nuclear Physicsbull Neutrinosbull EOSbull Turbulencebull 3Dbull Range of Lengthscales

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

1st Collapsar Simulations

bull pre-SN 15 Msun Helium starbull Newtonian Hydrodynamics (PPM)bull alpha viscositybull rotationbull photodisintegration (NSE alpha n p)bull neutrino cooling thermal + URCA optically thinbull Ideal nucleons radiation relativistic degenerate

electrons positionsbull 2D axisymmetric spherical gridbull self gravity bull Rin = 9 Rs Rout = 9000 Rs

MacFadyen amp Woosley (1999)

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Heger Langer ampWoosley (1999)

Angular momentum at

Last stable orbit

15 x 1016 cm2 s-1 (Kerr)

46 x 1016 cm2 s-1

(Schwarzschild)

Initial Pre-Supernova Model (KEPLER 25 Msun)

He 806 Msun

Fe 19 Msun

j

T

Collapse velocity = 10000 kms

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Disk Formation Movie

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

= 01 ltMgt = 007 Msun s = 13 x 1053 ergs

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

spin

mass

Use 1D neutrino cooled

ldquoslimrdquo disk models

from Popham et al (1999)

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Ejet = f Maccc2

MHD

T = 57 ms

E = 5 x 1050 ergs

Edep = 28 x 1048 erg

Jet BirthThermal energy deposition focused by toroidal funnel structure

fmax ~ 06 - 4

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Relativistic Jet Movie

Zhang Woosley amp MacFadyen (2003 ApJ March 21)

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Jupiter

Red Supergiant

R~1013 cm

Blue Supergiant

R~1012 cm

Wolf-Rayet Star

R~few x1010 cm

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Relativistic Kelvin-Helmholtz

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

t=7598s

t=7540s

Min

~ 12Mout

=gt OutflowsMacFadyen amp Woosley (1999)

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Nickel Wind Movie

ldquoNickel Windrdquo

T gt 5 x 109 K

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

T = 1010 Kn p

RRkep

(j) = j22GM = 25 x 107 ((jj17

22m33) cm

OO 16

CC12

Si28

He44

++ 1019 erggm

Ni ckel Wi nd

- 1019 erggm

Disk is replenished by collapsing star

tt accrete = t collapse or tt fallback

tt accrete tt drain = mm disk mm

afterburner

Ni56

He44

Disk Outflow Diagram

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Supernovae

Ia

WD cosmology

Type II

Hydrogen

Type I

No Hydrogen

Ib Ic

exploding WR

thermonuclear old pop E galaxies

core collapse massive stars

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Exploding star Supernovae

bull Radioactive decay of Ni56bull tail of Type II ALL of Type Ibull Type I compact star WD or W-R

bull Eexp -gt adiabatic expansion not light

bull no Ni56 -gt no Supernova

bull SN 1998bw amp 2003dh need 05 Msun

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Do all collapsars make supernovaeNo

If Nickel is made in wind it depends on angular momentum of

star1 jisco lt j lt j efficient cooling GRB only

2 j lt j lt j semi-efficient cooling GRB + supernova

3 j gt j inefficient cooling supernova only

j lt jisco nothing

note supernova hypernova (Egt1052 erg M(Ni) gt 03M)

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

NTT image (May 1 1998) of SN 1998bw in the barred spiral galaxy ESO 184-G82 [Galama et al AampAS 138 465 (1999)]

WFC error box (8) for GRB 980425 and two NFI x-ray sources The IPN error arc is also shown

1) Were the two events the same thing

2) Was GRB 980425 an ordinary GRB seen off-axis

SN 1998bwGRB 980425

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

2 ldquoBriefrdquo jet tengine tjet

Engine dies before jet breakout

Mildly relativistic shock breakout

MacFadyen (1999)

What made SN1998bw+GRB980425

1 Accretion powered hypernova w Nickel wind

MacFadyen (2002)

E~ 1052 erg M(Ni)~05 M

GRB from ~3 shock breakout (Tan et al 2001 Perna amp Vietri 2002)

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Fallback in weak SN explosionsShock

reaches surface of star but parts of star are

not ejected to infinity

MacFadyen Woosley amp Heger (2001)

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Fallback accretion Same star exploded with

a range of explosion energies

Significant accretion for thousands of seconds to

days

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Principle Resultsbull Sustained accretion 1 Msuns forgt10sbull Jet formation and collimationbull Sufficient energy for cosmo GRBbull Neutrino cooling amp photodissociation

allows accretionbull Massive bi-conical outflows developbull Time-scale set by He core collapsebull Fallback -gt v long GRB in WR star or

asymmetric SN in SG

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions

Conclusions

bull long GRBs from rotating WR stars tengine gt tescape

bull Need SN failure amp angular momentumndash Low metallicity binary can help

bull SN IF nickel is made GRBSN association Type Ibcbull SNGRB ratio may depend on angular momentumbull ldquoNickel windrdquo can explode star -gt hypernova

ndash H env Type II (no GRB) no H Type I + GRBbull Jet instabilities -gt variability intermittancybull Unique nucleosynthesis r-processbull Fallback -gt asymmetric SN very long GRBsbull magnetic models worth attention

  • Collapse of Massive Stars
  • ldquoDelayedrdquo SN Explosion
  • Pre-Supernova Density Structure
  • Stellar Rotation
  • Slide 5
  • Superbowl Burst
  • Gamma-Ray Bursts
  • 135 models (1993)
  • Slide 9
  • Slide 10
  • SN2003dhGRB030329
  • Slide 12
  • GRB central engine
  • 1st Collapsar Simulations
  • Slide 15
  • Disk Formation Movie
  • Slide 17
  • Slide 18
  • Jet Birth
  • Relativistic Jet Movie
  • Slide 21
  • Relativistic Kelvin-Helmholtz
  • Slide 23
  • Nickel Wind Movie
  • Disk Outflow Diagram
  • Slide 26
  • Exploding star Supernovae
  • Do all collapsars make supernovae No If Nickel is made in wind it depends on angular momentum of star
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Principle Results
  • Conclusions