1
Comparison of 3D deforma Ɵons measured by combined speckle metrology methods with results from numerical simula Ɵons M. Deki 1 , B. Kemper 2 , C. Denz 3 , D. Dirksen 1 1 Department of ProstheƟc DenƟstry and Biomaterials, University of Münster, Waldeyerstr. 30, 48149 Münster, Germany, markus.deki@unimuenster.de 2 Biomedical Technology Center of the Medical Faculty, University of Münster 3 InsƟtute of Applied Physics, University of Münster Introduc Ɵ on OpƟcal measurement techniques provide the necessary sensiƟvity to determine microscopic deformaƟons for nondestrucƟve analyses of the mechanical behavior of hard Ɵssue and biomaterials. Such problems are usually invesƟgated numerically by nite element analysis. However, the validaƟon and opƟmizaƟon of these simulaƟons require a comparison of numerical results with measured data. The measurement system proposed for this task combines speckle metrology methods for the acquisiƟon of microscopic and macroscopic 3D deformaƟons as well as of macroscopic shape. Applica Ɵ on: Comparison of the simulated deforma Ɵ on of a mandible model due to mechanical loading of an inserted dental implant with measured data Measurement The mandible model is made of photopolymer (Young's modulus: approx 2.7 GPa) using a 3D printer The dental implant (diameter: 2.5 mm, length: 9 mm, Ɵtanium, Young's modulus: 105 GPa) is provided with a ball abutment. A load of 50 N is applied to the top of the implant with a force gauge mounted to a test stand. To achieve maximum sensiƟvity, the deformaƟon measurement using ESPI and DSP is carried out with homogenous illuminaƟon (aperture of the diaphragm in front of camera C3: A1; subimage size: 64 x 64 px; grid spacing: 64 px). For 3D shape acquisiƟon speckles with a diameter of 8.5 px are projected (apertures of cameras C1 and C2: f/4; subimage size: 53 x 53 px; grid spacing: 26 px). Simula Ɵ on TransformaƟon of the CAD models of the mandible model and the implant into the coordinate system of the measurement. This is achieved by bestt registraƟon on the surface determined by 3D shape acquisiƟon. GeneraƟon of a (second order) tetrahedral mesh using the nite element mesh generator GMSH. Finite element analysis (FEA) using the FEA applicaƟon CalculiX: Displacement boundary condiƟon: no displacements at the boƩom of the model. Load: a load of 50 N is applied to the top of the implant (direcƟon determined photogrammetrically based on the direcƟon of translaƟon of the force gauge). ProjecƟon of the surface nodes into the image plane of the camera used for ESPI (camera C3). ProjecƟon of the deformaƟon vectors calculated by FEA on the direcƟon of the opƟcal axis and the image plane of camera C3. Results and Discussion The method allows for a direct 3D comparison of FE analysis and measurements and reveals the discrepancies. While the shape of the predicted deformaƟon is in good agreement with observaƟon, quanƟtaƟve values dier. A possible shortcoming of the simulaƟon could be that in reality, implant and mandible model do not form a single body as it is assumed in the simulaƟon. Furthermore, the assumed contact point between the Ɵp of the force gauge and the ball abutment may be incorrect. Conclusion The measurement system allows the simultaneous acquisiƟon of microscopic and macroscopic 3D deformaƟons as well as of macroscopic shape. The size of speckles projected for simultaneous macroscopic shape and deformaƟon measurements shows an opposing eect on the performance of ESPI and DSP. Hence, their opƟmum size depends on the magnitude and direcƟon of the expected deformaƟons. The observed dierences between simulated and measured deformaƟons prove the importance of comparaƟve measurements. References [1] M. Deki, P. Berssenbrügge, B. Kemper, C. Denz, D. Dirksen: Threedimensional data acquisiƟon by digital correlaƟon of projected speckle paƩerns. Applied Physics B, 99(3), 449456 (2010) [2] T. FrickeBegemann, J. Burke: Speckle interferometry: threedimensional deformaƟon eld measurement with a single interferogram. Applied OpƟcs, 40, 5011–22 (2001) Experimental Setup CombinaƟon of: Photogrammetric 3D shape acquisiƟon by digital image correlaƟon of a projected laser speckle paƩern [1] Macroscopic shape Macroscopic deformaƟons Electronic speckle paƩern interferometry (ESPI) and digital speckle photography (DSP), reconstrucƟon of the object wave’s phase and intensity distribuƟons by Fouriertransform method [2] Microscopic 3D deformaƟons All 3 methods can be applied simultaneously. OpƟmizaƟon 3D shape acquisiƟon by digital image correlaƟon of a projected speckle paƩern The precision is quanƟed by measuring a spherical surface (radius: 15 mm) and determining the mean distance of the measured data to reference data (bestt of 3D data acquired with a GOM Atos fringe projecƟon system). Subimage size in the correlaƟon process: 33 x 33 pixels (px); subimage centers on a 10 px grid. Fnumbers from 4 to 5.6 and a speckle size of 711 px oer the best compromise between precision and a high number of successfully reconstructed 3D points. ESPI The quality of the ESPI measurements is char acterized by the noise of the wrapped phase dierence distribuƟon obtained from a verƟcally Ɵlted painted metal plate (max. displacement: 6 μm; approx. 23 phase dierence fringes modulo 2). The noise is quanƟed by determining the standard deviaƟon of the original phase dier ence data to smoothed data (sincosaverage lter with a kernel of 9 x 3 px, applied 30 Ɵmes). If speckles are projected, they should be small. A large aperture of the diaphragm is preferable. DSP The precision is quanƟed by the standard deviaƟon of measured inplanedisplacements for a coated metal plate that is translated parallel to the image plane of camera C3. Subimage size in the correlaƟon process: 64 x 64 px; subimage centers on a 64 px grid (391 subimages per image). Larger measurement range for larger projected speckles. The largest aperture invesƟgated and projected speckles larger than 5 px yield the lowest standard deviaƟons. Higher precision and larger measurement range for homogenous illuminaƟon. Mean deviaƟon from reference measurement for dierent fnumbers (cameras C1, C2) and average sizes of projected speckles. ESPI phase noise for dierent average sizes of projected speckles and apertures of the diaphragm in front of camera C3 (for A1 the diameter of the sideband’s circumcircle amounts to n nyquist , for A2 to 0.8 n nyquist , for A3 to 0.6 n nyquist ). Standard deviaƟon of the inplane displacement detected with DSP in dependence on the magnitude of the displacement for dierent apertures (A1, A2, A3: for descripƟon, see above) and sizes of projected speckles d. 0.1 1 10 100 1000 1 10 100 standard deviation / μm displacement / μm A1, d=3 px A2, d=3 px A3, d=3 px A1, d=17 px A2, d=17 px A3, d=17 px 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 5 10 15 20 25 30 phase noise / rad speckle size / px A1 A2 A3 0.00 0.01 0.02 0.03 0.04 0.05 0 2.5 5 7.5 10 12.5 15 mean deviation / mm speckle size / px f/2.8 f/4 f/5.6 f/8 f/11 Tetrahedral mesh used for the nite element analysis. CrosssecƟon through the tetrahedral mesh. Results of nite element analysis. Results of measurement. 3 μm 0 μm 5 μm DGaOProceedings 2015 hƩp://www.dgaoproceedings.de ISSN: 16148436 urn:nbn:de:02872015P0124 eingegangen: 07.07.2015 veröentlicht: 19.08.2015

Comparison of 3D deforma ons measured by combined speckle ... · Comparison of 3D deforma ons measured by combined speckle metrology methods with results from numerical simula ons

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Comparison of 3D deforma ons measured by combined speckle ... · Comparison of 3D deforma ons measured by combined speckle metrology methods with results from numerical simula ons

Comparison of 3D deforma ons measured by combined speckle metrology methods with results from numerical simula ons

M. Dekiff1, B. Kemper2, C. Denz3, D. Dirksen1 

1 Department of Prosthe c Den stry and Biomaterials, University of Münster, Waldeyerstr. 30, 48149 Münster, Germany, markus.dekiff@uni‐muenster.de 2 Biomedical Technology Center of the Medical Faculty, University of Münster 3 Ins tute of Applied Physics, University of Münster 

Introduc on Op cal measurement  techniques provide  the necessary  sensi vity  to determine microscopic deforma ons for non‐destruc ve analyses of the mechanical behavior of hard  ssue and bio‐materials.  

Such problems are usually  inves gated numerically by finite element analysis. However,  the valida on  and  op miza on  of  these  simula ons  require  a  comparison  of  numerical  results with measured data.  

The measurement system proposed for this task combines speckle metrology methods for the acquisi on of microscopic and macroscopic 3D deforma ons as well as of macroscopic shape.  

Applica on:  Comparison  of  the  simulated  deforma on  of  a mandible model  due  to mechanical  loading  of  an  inserted  dental  implant with measured data Measurement 

The mandible model is made of photopolymer (Young's modulus: approx 2.7 GPa) using a 3D printer 

The dental implant (diameter: 2.5 mm, length: 9 mm,  tanium, Young's modulus: 105 GPa) is  pro‐vided with a ball abutment.  

A load of 50 N is applied to the top of the implant with a force gauge mounted to a test stand.  

To achieve maximum sensi vity,  the deforma on measurement using ESPI and DSP  is carried out with homogenous  illumina on  (aperture of  the diaphragm  in  front of  camera C3: A1;  sub‐image size: 64 x 64 px; grid spacing: 64 px).  

For 3D shape acquisi on speckles with a diameter of 8.5 px are projected (apertures of cameras C1 and C2: f/4; sub‐image size: 53 x 53 px; grid spacing: 26 px). 

 

Simula on 

Transforma on of  the CAD models of  the mandible model and the implant into the coordinate system of the measure‐ment. This is achieved by best‐fit registra on on the surface determined by 3D shape acquisi on. 

Genera on of a  (second order) tetrahedral mesh using the finite element mesh generator GMSH. 

Finite element analysis (FEA) using the FEA appli‐ca on CalculiX: 

Displacement  boundary  condi on:  no  dis‐placements at the bo om of the model. 

Load: a  load of 50 N  is applied  to  the  top of  the implant (direc on determined photogram‐metrically  based  on  the  direc on  of  transla‐on of the force gauge). 

Projec on  of  the  surface  nodes  into  the  image plane of the camera used for ESPI (camera C3). 

Projec on of the deforma on vectors calculated by  FEA  on  the  direc on  of  the  op cal  axis  and the image plane of camera C3. 

 

 

Results and Discussion 

The method allows  for a direct 3D comparison of FE analysis and measurements and  reveals  the  discrepancies. 

While the shape of the predicted deforma on is in good agreement with observa on, quan ta ve values differ. 

A possible shortcoming of the simula on could be that  in reality,  implant and mandible model do not form a single body as it is assumed in the simula on. Furthermore, the assumed contact point between the  p of the force gauge and the ball abutment may be incorrect. 

Conclusion

The measurement system allows the simultaneous acquisi on of microscopic and macroscopic 3D deforma ons as well as of macroscopic shape. 

The size of speckles projected for simultaneous macroscopic shape and deforma on measurements shows an opposing effect on the performance of ESPI and DSP. Hence, their op mum size depends on the magnitude and direc on of the expected deforma ons. 

The observed differences between simulated and measured deforma ons prove the importance of compara ve measurements. 

References 

[1] M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, D. Dirksen: Three‐dimensional data acquisi on by digital correla on of projected speckle pa erns. Applied Physics B, 99(3), 449‐456 (2010) 

[2] T. Fricke‐Begemann,  J. Burke: Speckle interferometry: three‐dimensional deforma on field meas‐urement with a single interferogram. Applied Op cs, 40, 5011–22 (2001)

Experimental Setup Combina on of: 

Photogrammetric  3D  shape  acquisi‐on by digital  image  correla on of a 

projected laser speckle pa ern [1] 

Macroscopic shape  

Macroscopic deforma ons 

Electronic speckle pa ern interferom‐etry  (ESPI) and digital  speckle photo‐graphy  (DSP),  reconstruc on  of  the object wave’s phase and intensity dis‐tribu ons by Fourier‐transform meth‐od [2] 

Microscopic 3D deforma ons  

All 3 methods can be applied simultaneously.  

Op miza on 3D shape acquisi on by digital image correla on of a projected speckle pa ern 

The  precision  is  quan fied  by  measuring  a spherical surface (radius: 15 mm) and determin‐ing  the mean distance of  the measured data  to reference data (best‐fit of 3D data acquired with a GOM Atos fringe projec on system).

Sub‐image  size  in  the  correla on  process: 33 x 33 pixels (px); sub‐image centers on a 10 px grid. 

F‐numbers from 4 to 5.6 and a speckle size of 7‐11 px offer the best compromise between pre‐cision and a high number of successfully  recon‐structed 3D points. 

ESPI 

The quality of the ESPI measurements is char‐acterized  by  the  noise  of  the  wrapped  phase difference distribu on obtained from a ver cally lted  painted metal  plate  (max.  displacement: 

6 µm; approx. 23 phase difference fringes modu‐

lo 2).   The  noise  is  quan fied  by  determining  the standard  devia on  of  the  original  phase  differ‐ence data to smoothed data (sin‐cos‐average fil‐ter with a kernel of 9 x 3 px, applied 30  mes). 

If  speckles  are  projected,  they  should  be small. 

A  large aperture of  the diaphragm  is prefera‐ble.   

 

DSP 

The precision is quan fied by the standard de‐via on  of measured  in‐plane‐displacements  for   a coated metal plate that is translated parallel to the image plane of camera C3. 

 Sub‐image  size  in  the  correla on  process: 64  x  64  px;  sub‐image  centers  on  a  64  px  grid (391 sub‐images per image). 

Larger measurement range  for  larger project‐ed speckles. 

The largest aperture inves gated and project‐ed  speckles  larger  than  5  px  yield  the  lowest standard devia ons. 

Higher  precision  and  larger  measurement range for homogenous illumina on. 

Mean devia on from reference measurement for different f‐numbers (cameras C1, C2) and average sizes of projected speckles.

ESPI phase noise for different average sizes of projected speckles and apertures of the diaphragm in front of camera C3 (for A1 the diameter of the sideband’s circumcircle amounts to nnyquist, for A2 to 0.8 nnyquist, for A3 to 0.6 nnyquist).

Standard devia on of the in‐plane displacement detected with DSP in dependence on the magnitude of the displace‐ment for different apertures (A1, A2, A3: for descrip on, see above) and sizes of projected speckles d.

0.1

1

10

100

1000

1 10 100

stan

dar

d d

evi

atio

n /

µm

displacement / µm

A1, d=3 px

A2, d=3 px

A3, d=3 px

A1, d=17 px

A2, d=17 px

A3, d=17 px

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30

ph

ase

no

ise

/ r

ad

speckle size / px

A1

A2

A3

0.00

0.01

0.02

0.03

0.04

0.05

0 2.5 5 7.5 10 12.5 15

me

an d

evi

atio

n /

mm

speckle size / px

f/2.8

f/4

f/5.6

f/8

f/11

Tetrahedral mesh used for the finite element analysis.

Cross‐sec on through the tetrahedral mesh.

Results of finite element analysis. Results of measurement.

3 µm

0 µm

5 µm

DGaO‐Proceedings 2015 ‐ h p://www.dgao‐proceedings.de ‐ ISSN: 1614‐8436 ‐ urn:nbn:de:0287‐2015‐P012‐4  eingegangen: 07.07.2015    veröffentlicht: 19.08.2015