Competent solutions for nuclear power plants – from ... 1...Competent solutions for nuclear power plants – from flexible upgrading of existing plants to ... Nuclear Steam Turbine References

  • Published on
    06-Feb-2018

  • View
    213

  • Download
    0

Embed Size (px)

Transcript

<ul><li><p>Competent solutions for nuclear power plants from flexible upgrading of existing plants to the innovative largest nuclear unit in the worldDr. Andreas Wichtmann, Siemens Power Generation</p></li><li><p>June 2-4, 2006Power Generation 2Dr. Wichtmann</p><p>Overview</p><p>Nuclear Service Engineering</p><p>Summary</p><p>Advanced Disk Design</p><p>Introduction</p><p>Engineering Analysis</p><p>Nuclear New Apparatus</p></li><li><p>June 2-4, 2006Power Generation 3Dr. Wichtmann</p><p>Nuclear Steam Turbine References</p><p>Nuclear Steam Turbines built by Siemens Power Generation as</p><p>ParsonsWestinghouseSiemens KWU</p><p>First operation ~50 years agoMore than 130 UnitsMore than 120 GW total rating</p><p>Nuclear Steam Turbines built by Siemens Power Generation as</p><p>ParsonsWestinghouseSiemens KWU</p><p>First operation ~50 years agoMore than 130 UnitsMore than 120 GW total rating</p></li><li><p>June 2-4, 2006Power Generation 4Dr. Wichtmann</p><p>0</p><p>200</p><p>400</p><p>600</p><p>800</p><p>1000</p><p>1200</p><p>1400</p><p>1600</p><p>1800</p><p>1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010</p><p>Siemens KWUParsonsWestinghouseMods&amp;UpgradesOlkiluoto 3</p><p>Nuclear Steam Turbines References</p><p>Isar 2</p><p>MWel</p><p>Year of commission</p><p>Olkiluoto 3</p></li><li><p>June 2-4, 2006Power Generation 5Dr. Wichtmann</p><p>Overview</p><p>Summary</p><p>Advanced Disk Design</p><p>Introduction</p><p>Engineering Analysis</p><p>Nuclear New Apparatus</p><p>Nuclear Service Engineering</p></li><li><p>June 2-4, 2006Power Generation 6Dr. Wichtmann</p><p>NPP Yonggwang, South Korea</p><p>Yonggwang Nuclear Units 1 &amp; 2</p><p>Westinghouse OEM design</p><p>997 MWe nominal rating</p><p>PWR / Moisture Separator Reheater</p></li><li><p>June 2-4, 2006Power Generation 7Dr. Wichtmann</p><p>Initiate Order</p><p>Assign Engineers and </p><p>Divide-upWork Scope</p><p>Notify Customer of Analysis </p><p>Findings / Impacts as They Occur</p><p>Perform Analyses</p><p>Customer Comments</p><p>andReview</p><p>Final (HBD or Mech.)</p><p>ReportIssuance</p><p>FinalizeParameters</p><p>Engineering Analysis Process</p></li><li><p>June 2-4, 2006Power Generation 8Dr. Wichtmann</p><p>Yonggwang thermal uprate evaluation</p><p>Thermodynamic Modelling at</p><p>Three phase evaluation:</p><p>Feasibility Evaluations of the Existing TG Components</p><p>Further System Evaluations and Recommendations</p><p>current operation parameters (HBD).uprate power level and Valves Wide opencustomer power levels (i.e. 100%, 75%, etc.)</p></li><li><p>June 2-4, 2006Power Generation 9Dr. Wichtmann</p><p> Partial Arc Impulse </p><p>Partial Arc Reaction </p><p>Full Arc Reaction with Blade Rings </p><p>Full Arc Reaction with Inner Cylinder </p><p>1st Stage Type Impulse Reaction Reaction Diagonal Reaction </p><p>Outer Cylinder Pressure </p><p>Base high highest low </p><p>Blade Path Effectiveness 0 + ++ +++ Costs 0 - - - Scope Rotor*, </p><p>Blade Rings (4), Nozzle Block </p><p>Rotor, Blade Rings (4), Reaction Nozzle Block </p><p>Rotor, Blade Rings (4) Flow Guides, </p><p>Rotor, Blade Rings (2) Inner Cylinder, </p><p>HP Upgrade Comparison</p><p>* reuse possible</p></li><li><p>June 2-4, 2006Power Generation 10Dr. Wichtmann</p><p>Monoblock rotor</p><p>3D blading</p><p>Diagonal inlet stage</p><p>10-year inspection</p><p>Inner casing replaces control stage and both #1 blade rings</p><p>Option for stainless steel inner casing and blade carriers</p><p>HP Turbine (Full-Arc) Design Features </p></li><li><p>June 2-4, 2006Power Generation 11Dr. Wichtmann</p><p>Overview</p><p>Summary</p><p>Introduction</p><p>Engineering Analysis</p><p>Nuclear New Apparatus</p><p>Advanced Disk Design</p><p>Nuclear Service Engineering</p></li><li><p>June 2-4, 2006Power Generation 12Dr. Wichtmann</p><p>2 LP Turbine Upgrades, Westinghouse BB381</p><p>Customer ContractUpgrade of 2 LP Turbines with Rotors and stationary blade path, incl. Installation in Spring 2006</p><p>Main Success: Expected performance increase of </p><p>21 MW from technology only, with potential for future reactor uprate</p><p> Cure from generic SCC problems</p><p>Status Notice of Award received 2004-01-09</p><p>NPP Kuosheng, Taiwan</p></li><li><p>June 2-4, 2006Power Generation 13Dr. Wichtmann</p><p>NPP KuoshengLP Turbine, Shrunk-on Disk Design</p><p>13.9 m2 nuclear LP turbine</p></li><li><p>June 2-4, 2006Power Generation 14Dr. Wichtmann</p><p>Avoidance of Stress Corrosion Cracking</p><p>Engineering</p><p>Shot Peening</p><p>ManufacturingHeat TreatmentMaterial Know How</p><p>Quality Assurance</p><p>1400</p><p>Tim</p><p>e to</p><p> Cra</p><p>ck In</p><p>itiat</p><p>ion </p><p>[h]</p><p>Stress Corrosion Cracking due to Hydrogen Embrittlement</p><p>0.2% Yield Strength [MPa]600 800 1000</p><p>104</p><p>103</p><p>105No Crack Initiation</p><p>1200</p><p>0.2%-Yield Strength [MPa]</p><p>Cra</p><p>ck G</p><p>row</p><p>th R</p><p>ate </p><p>[m/s</p><p>]</p><p>10-1210-1110-1010-910-810-7</p><p>600 800 1000 1200</p><p>HydrogenInduced SCC</p><p>1400</p><p>Compressive Stress Area</p><p>Shoot peening</p><p>Rolling of shaft</p><p>US inspection</p></li><li><p>June 2-4, 2006Power Generation 15Dr. Wichtmann</p><p>Shrunk-on Disc Design Success against SCC </p><p>in operation more than 2.750.000 hours total= more than 40 million disk operating hours</p><p>in operation for up to 225.000 hours</p><p>more than 660 examinations on Disks</p><p>No replacement of rotors or disks due to stress corrosion cracks, as performed by most competitors</p></li><li><p>June 2-4, 2006Power Generation 16Dr. Wichtmann</p><p>Original Equipment Data</p><p>Plant OEM Country CapacityMWRetrofit</p><p>DateRetrofit</p><p>ComponentGrafenrheinfeld Siemens KWU Germany 1300 1993 HP, LPKRB II Block B Siemens KWU Germany 1310 1993 HP, LPKRB II Block C Siemens KWU Germany 1310 1994 HP, LPGrohnde Siemens KWU Germany 1393 1995 LPPhilippsburg 1 Siemens KWU Germany 901 1995 LPPhilippsburg 2 Siemens KWU Germany 1343 1995 LPUnterweser Siemens KWU Germany 1300 1995 HP, LPAlmaraz 2 Westinghouse Spain 950 1996 HP, LPAsco 2 Westinghouse Spain 930 1996 HP, LPBrokdorf Siemens KWU Germany 1367 1996 LPIsar 2 Siemens KWU Germany 1369 1996 LPAlmaraz 1 Westinghouse Spain 950 1997 HP, LPAsco 1 Westinghouse Spain 930 1997 HP, LPEmsland Siemens KWU Germany 1314 1998/2001 LPIsar 1 Siemens KWU Germany 905 1998 LPForsmark 3 ABB Sweden 1155 2004 LPNeckarwestheim II/3 DS Siemens KWU Germany 1314 2004 LPKrmmel Siemens KWU Germany 1316 2006 LP</p><p>Retrofit Data</p><p>Nuclear Steam Turbine ReferencesRetrofit/Upgrades for half speed 50 Hz</p><p>Siemens recommends for its turbines with disc type rotors a main inspection only after 100.000 h which is accepted by the German authority (VGB)</p></li><li><p>June 2-4, 2006Power Generation 17Dr. Wichtmann</p><p>Steam Turbine Retrofit/Upgrades ReferencesNon OEM products 50 Hz/60 Hz</p><p>Original Equipment Data Retrofit Data</p><p>Plant OEM Country CapacityMWRetrofit</p><p>DateRetrofit</p><p>ComponentConnecticut Yankee Westinghouse USA 648 1987 LPAlmaraz 2 Westinghouse Spain 950 1996 HP, LPAlmaraz 1 Westinghouse Spain 950 1997 HP, LPLimerick 1 GE USA 1138 1998 HP, LPLimerick 2 GE USA 1138 1999 HP, LPComanche Peak 1 Siemens USA 1215 2002 LPSusquehanna 2 GE USA 1168 2003 HP, LPSalem 2 Westinghouse USA 1170 2003 HPSalem 1 Westinghouse USA 1170 2004 HP, LPForsmark 3 ABB Sweden 1155 2004 LPSusquehanna 1 GE USA 1128 2004 HP, LPComanche Peak 2 Siemens USA 1128 2004 LPCooper Westinghouse USA 801 2005 LPSendai MHI Japan 900 2006/2005 HP, LPKuosheng Westinghouse Taiwan 1000 2006 LPSouth Texas Project Westinghouse USA 1300 2006-2007 LPDC Cook GE USA 1134 2006 LPSouth Texas 1 Westinghouse USA 1350 2006 LPSouth Texas 2 Westinghouse USA 1350 2007 LPGinna Westinghouse USA 528 2006 HP</p><p>Original Equipment Data Retrofit Data</p><p>Plant OEM Country CapacityMWRetrofit</p><p>DateRetrofit</p><p>ComponentConnecticut Yankee Westinghouse USA 648 1987 LPAlmaraz 2 Westinghouse Spain 950 1996 HP, LPAlmaraz 1 Westinghouse Spain 950 1997 HP, LPLimerick 1 GE USA 1138 1998 HP, LPLimerick 2 GE USA 1138 1999 HP, LPComanche Peak 1 Siemens USA 1215 2002 LPSusquehanna 2 GE USA 1168 2003 HP, LPSalem 2 Westinghouse USA 1170 2003 HPSalem 1 Westinghouse USA 1170 2004 HP, LPForsmark 3 ABB Sweden 1155 2004 LPSusquehanna 1 GE USA 1128 2004 HP, LPComanche Peak 2 Siemens USA 1128 2004 LPCooper Westinghouse USA 801 2005 LPSendai MHI Japan 900 2006/2005 HP, LPKuosheng Westinghouse Taiwan 1000 2006 LPSouth Texas Project Westinghouse USA 1300 2006-2007 LPDC Cook GE USA 1134 2006 LPSouth Texas 1 Westinghouse USA 1350 2006 LPSouth Texas 2 Westinghouse USA 1350 2007 LPGinna Westinghouse USA 528 2006 HP</p><p>For US-power plant Limerick Siemens got the permission by the US-Nuclear Regulatory Commission (NRC) to extend the inspection intervals from 6 to 10 years</p></li><li><p>June 2-4, 2006Power Generation 18Dr. Wichtmann</p><p>Overview</p><p>Nuclear Service Engineering</p><p>Summary</p><p>Introduction</p><p>Engineering Analysis</p><p>Nuclear New Apparatus</p><p>Advanced Disk Design</p></li><li><p>June 2-4, 2006Power Generation 19Dr. Wichtmann</p><p>Finnish New Nuclear Power Plant Olkiluoto 3 - Basic Data</p><p>Location Olkiluoto, FinlandReactor Supplier Framatome ANP Reactor Type Pressurized Water</p><p>Reactor, EPR</p><p>Turbine Supplier Siemens AG, Power Generation</p><p>Net Output ~1600MWNet Efficiency &gt;37%Com. Operation 2009</p><p>Location Olkiluoto, FinlandReactor Supplier Framatome ANP Reactor Type Pressurized Water</p><p>Reactor, EPR</p><p>Turbine Supplier Siemens AG, Power Generation</p><p>Net Output ~1600MWNet Efficiency &gt;37%Com. Operation 2009</p></li><li><p>June 2-4, 2006Power Generation 20Dr. Wichtmann</p><p>NPP Productline</p><p>Double bearing (half speed) ; fixed bearing arrangement</p><p>High-performance LP blading for different </p><p>up to 30qm</p><p>Efficient erosionprotection measures</p><p>Fully 3-dimensional high </p><p>performance variable reaction blading (3DVTM)</p><p>Fabricated welded design</p><p>Evolution ofKONVOI turbosetfor 1000MW to 1700M application</p><p>vertical arrangement2-stage heater only 2 inlets top/bottom</p><p>2 outlets in lower part</p></li><li><p>June 2-4, 2006Power Generation 21Dr. Wichtmann</p><p>LP Turbine World largest steel blade </p><p>Hub Diameter Di ~3060 mmTip Diameter Da ~6720 mmBlade Length L ~1830 mmBlade Weight (incl. Root) ~340 kgCentrifugal Force of one LSB 12 MN</p><p>Di</p><p>L Da</p></li><li><p>June 2-4, 2006Power Generation 22Dr. Wichtmann</p><p>PerformanceEfficiency Increase from Isar II to OL3</p><p>LP TurbineUpgrade</p><p>HP TurbineUpgrade</p><p>IncreasedMain Steam</p><p>Pressure</p><p>ImprovedWater Steam</p><p>Cycle</p><p>30 sqm LSBImproved </p><p>Backpressure25 mbar</p><p>Main SteamPressure</p><p>65 to 78 bar</p><p>2 stage MSR7 feed water</p><p>reheater</p><p>~36%</p><p>34%</p><p>35%</p><p>36%</p><p>37%</p><p>38%</p><p>39%</p><p>40%</p><p>Isar II OL 3</p><p>~40 %</p></li><li><p>June 2-4, 2006Power Generation 23Dr. Wichtmann</p><p>Summary</p><p>Design features of conventional fleet are implemented</p><p>Service solution by profound engineering studies</p><p>Advanced disk design to avoid SCC</p><p>Efficiency increase by innovative bladingdesign</p><p>Design is based on proven nucleartechnology (&gt;40 years)</p><p>Innovative nuclear turboset design forgross power output of ~1715MW at 40% gross efficiency</p></li></ul>

Recommended

View more >