87
1 Continental carbonate facies of a Neoproterozoic panglaciation, 1 NE Svalbard 2 IAN J. FAIRCHILD*, EDWARD J. FLEMING*†‡, HUIMING BAO§, DOUGLAS I. BENN†¶, IAN 3 BOOMER*, YURI V. DUBLYANSKY, GALEN P. HALVERSON , MICHAEL J. HAMBREY , CHRIS 4 HENDY, EMILY A. MCMILLAN*, CHRISTOPH SPÖTL, CARL T.E. STEVENSON* AND PETER M. 5 WYNN● 6 7 *School of Geography, Earth and Environmental Sciences, University of Birmingham B15 2TT, 8 UK. (E-mail: [email protected]) 9 †Department of Geology, The University Centre in Svalbard (UNIS), N-9171 Longyearbyen, 10 Norway 11 ‡Present address: CASP, West Building, 181A Huntingdon Road, Cambridge, CB3 0DH, UK 12 §Department of Geology and Geophysics, E235 Howe-Russell Complex, Louisiana State 13 University, Baton Rouge, LA 70803, USA 14 ¶School of Geography and Geosciences, University of St Andrews, St Andrews KY16 8YA, 15 Scotland, UK 16 ◊Department of Earth & Planetary Sciences/Geotop,3450 University St. Montreal, Quebec H3A 17 0E8, Canada 18 Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, 19 Ceredigion SY23 3DB, UK 20 Department of Chemistry, University of Waikato, Private Bag 3105, Hamilton 3240, New 21 Zealand. 22 Institut für Geologie, Leopold-Franzens-Universität Innsbruck, Innrain 52, 23 A-6020 Innsbruck, Austria 24

Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

1

Continental carbonate facies of a Neoproterozoic panglaciation, 1

NE Svalbard 2

IANJ.FAIRCHILD*,EDWARDJ.FLEMING*†‡,HUIMINGBAO§,DOUGLASI.BENN†¶,IAN3

BOOMER*,YURIV.DUBLYANSKY�,GALENP.HALVERSON◊,MICHAELJ.HAMBREY⌂,CHRIS4

HENDY☺,EMILYA.MCMILLAN*,CHRISTOPHSPÖTL�,CARLT.E.STEVENSON*ANDPETERM.5

WYNN●6

7

*SchoolofGeography,EarthandEnvironmentalSciences,UniversityofBirminghamB152TT,8

UK.(E-mail:[email protected])9

†DepartmentofGeology,TheUniversityCentreinSvalbard(UNIS),N-9171Longyearbyen,10

Norway11

‡Presentaddress:CASP,WestBuilding,181AHuntingdonRoad,Cambridge,CB30DH,UK12

§DepartmentofGeologyandGeophysics,E235Howe-RussellComplex,LouisianaState13

University,BatonRouge,LA70803,USA14

¶SchoolofGeographyandGeosciences,UniversityofStAndrews,StAndrewsKY168YA,15

Scotland,UK16

◊DepartmentofEarth&PlanetarySciences/Geotop,3450UniversitySt.Montreal,QuebecH3A17

0E8,Canada18

⌂DepartmentofGeographyandEarthSciences,AberystwythUniversity,Aberystwyth,19

CeredigionSY233DB,UK20

☺DepartmentofChemistry,UniversityofWaikato,PrivateBag3105,Hamilton3240,New21

Zealand.22

�InstitutfürGeologie,Leopold-Franzens-UniversitätInnsbruck,Innrain52,23

A-6020Innsbruck,Austria24

Page 2: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

2

●LancasterEnvironmentCentre,UniversityofLancaster,LancasterLA14YQ,UK25

RevisionsubmittedtoSedimentologyAugust31st2015 26

Page 3: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

3

ABSTRACT27

TheMarinoanpanglaciation(?650-635Ma)isrepresentedinNESvalbardbytheWilsonbreen28

Formationwhichcontainssyn-glacialcarbonatesintheupper100mofthe130-175m-thick29

formation.ThesesedimentsarenowknowntohavebeendepositedunderaCO2-rich30

atmosphere,lateintheglaciation,andglobalclimatemodelsfacilitatetestingofproposed31

analogues.Precipitatedcarbonatesoccurinfourofsevenfaciesassociations:FluvialChannel32

(includingstromatoliticandintraclasticlimestonesinephemeralstreamdeposits);Dolomitic33

Floodplain(dolomite-cementedsandandsiltstonesandmicrobialdolomites);CalcareousLake34

Margin(intraclasticdolomiteandwave-rippledoraeoliansiliciclasticfacies)andCalcareousLake35

(slump-foldedandlocallyre-sedimentedrhythmic/stromatoliticlimestonesanddolomites36

associatedwithice-raftedsediment).Thereisnostrongcyclicityandmodernanaloguessuggest37

thatsuddenchangesinlakelevelmaybecharacteristic.38

Bothcalciteanddolomiteinstromatolitesandrhythmitesdisplayeitherprimaryorearly39

diageneticreplacivegrowth.Oxygenisotopevalues(-12to+15‰VPDB)broadlycovarywithδ13C.40

Highδ13Cvaluesof+3.5to+4.5‰correspondtoequilibrationwithanatmospheredominated41

byvolcanicallydegassedCO2withδ13Cof-6to-7‰.Limestoneshaveconsistentlynegative42

δ18Ovalues,whilst,rhythmicandplayadolomitespreserveintermediatecompositions,and43

dolocretespossessslightlynegativetostronglypositiveδ18Osignatures,reflectingsignificant44

evaporationunderhyperaridconditions.Meltwatercompositionsinferredas-8to-15.5‰45

couldreflectsmallerRayleighfractionationrelatedtomorelimitedcoolingthaninmodernpolar46

regions.Acommonpseudomorphmorphologyisinterpretedasareplacementofikaite47

(CaCO3.H2O),whichmayalsohavebeentheprecursorforwidespreadreplacivecalcitemosaics.48

Localdolomitizationoflacustrinefaciesisinterpretedtoreflectmicroenvironmentswith49

fluctuatingredoxconditions.Althoughdifferingin(palaeo)latitude,tectonicsetting,and50

Page 4: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

4

carbonateabundance,theWilsonbreencarbonatesprovideauniquepre-Cenozoicanaloguefor51

theMcMurdoDryValleysofAntarctica.52

53

Keywords:Cryogenian,oxygenisotopes,carbonisotopes,lacustrine,ikaitepseudomorphs,54

SnowballEarth 55

Page 5: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

5

INTRODUCTION56

57

ThesecondoftwoNeoproterozoicpanglaciations,inwhichicesheetsreachedsealevelinthe58

tropics,terminated635Myagoatthebaseofatransgressivecapcarbonatedefiningthe59

Cryogenian-EdiacaranSystemboundary(Table1).DepositsofCryogenianiceagesarepreserved60

onmostcontinentsandareofteninterpretedasglacimarine(Arnaudetal.,2011).However,in61

NESvalbard,theMarinoan-aged130-175mthickWilsonbreenFormation(Halverson,2011)62

uniquelycontainsnon-marinecarbonatesaswellassubglacialtillites(Fig.1).Theseevince63

hyperaridterrestrialenvironments(Fairchildetal.,1989)andanatmosphererichincarbon64

dioxideduringglaciation(Baoetal.,2009),thelatterconclusionfulfillingapredictionofthe65

SnowballEarthhypothesis(Kirschvink,1992;Hoffmanetal.,1998).BecauseWilsonbreen66

Formationoutcropsarerestrictedtoremoteicefieldnunataks(Fig.2),theyhaverarelybeen67

visited,andhenceourknowledgeofthesedimentaryarchitecturehasbeenincomplete.The68

WilsonbreenFormationcarbonatescontainprobablythehighestcarbonateandsulphateδ18O69

valuesandlowestsulphateΔ17Osignaturessofardiscoveredinthegeologicalrecord,features70

whichevokeoneofthemostextremeclimaticeventsinEarthhistory(Baoetal.,2009,Bennet71

al.,2015).Herewecharacterizearangeofnon-marineenvironmentsinwhichthecarbonates72

wereprecipitatedusingacombinationoffield,petrographicandstableisotopeevidence,and73

scrutinizeaclaim(Fairchildetal.,1989)thatthesedepositsareananalogueoftheextreme74

terrestrialenvironmentsofthemodernMcMurdoDryValleyregionofAntarctica,albeitformed75

atmuchlowerpalaeolatitudes.76

ThestudyareaintheSvalbardmainlandofSpitsbergen(Figs.1,2)andthebasin77

continuationtotheNEhavelongbeenrecognizedasclassicareasforlatePrecambrian78

glaciation(Kulling1934).ThefirstdetaileddescriptionoftheWilsonbreenFormationwasby79

Page 6: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

6

Wilson&Harland(1964),althoughcarbonateswerediscussedonlyintermsofitsbounding80

dolomitesasstratigraphicmarkers.Alatersedimentologicalsynthesis(Hambrey,1982;Fairchild81

&Hambrey,1984)showedthatevidenceofglacialactivitywasconfinedtotwoglacialunitsin82

thePolarisbreenGroup:theWilsonbreenFormation,andanewlydiscovered,thin,olderunitin83

theElbobreenFormation(PetrovbreenMemberalsoknownasE2)(Table1).Severaldistinctive84

formsofcarbonateinassociationwiththeglacialdeposits.Thefirstoftheseisdolomiticglacial85

rockflour,demonstratedinultra-thinsections(Fairchild,1983).Subsequently,stableisotope86

studiesdemonstratedthepresenceofglacimarineprecipitatesinthePetrovbreenMemberand87

glacilacustrinedepositsintheWilsonbreenFormation(Fairchild&Hambrey,1984;Fairchild&88

Spiro,1987;Fairchildetal.,1989).Itwasalsoshownthatthesecarbonatescontrastwitha89

distinctivemarinetransgressive‘capcarbonate’(followingWilliams,1979)overthe90

WilsonbreenFormation.Halversonetal.(2004)providedamuchmoredetailed91

chemostratigraphicframeworkforthePolarisbreenGroupandpostulatedthatbothdiamictite92

unitsbelongedtothesame,Marinoanglaciation.However,newchemostratigraphicdataledto93

areversiontotheprevioustwo-foldglaciationinterpretationofolderliterature(Halverson,94

2006;Halversonetal.,2007).NodirectgeochronologicalconstraintsexistonSvalbard,butthe95

low87Sr/86SrvaluesatthebaseofthePolarisbreenGroupcorrelatewellwiththoseassociated96

withthefirstevidenceofNeoproterozoicglaciationelsewhere(Halversonetal.,2010).Also,the97

majormarinetransgressionsuccessionabovetheWilsonbreenFormationcloselyresemblesthe98

basalEdiacaranfacieselsewheredatedat635Ma(Rooneyetal.,2015).Palaeomagnetic99

constraintssuggestthatNESvalbardlayinthesubtropicsthroughouttheCryogenian(Lietal.,100

2013)aspartoftheequatoriallycentred,fragmentingRodiniasupercontinent.101

ThecloselysimilarstratigraphyincentralEGreenland(nowofficiallyredesignatedas102

NortheastGreenland)(Hambrey&Spencer,1987;Moncrieff&Hambrey,1990)indicatesthatit103

Page 7: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

7

representsasouthwesternbasincontinuation(Hambrey,1983;Knolletal.,1986;Fairchild&104

Hambrey,1995),subsequentlyoffsettothesouthbyleft-lateralstrike-slipfaulting(Harland,105

1997).TheNeoproterozoicsuccessioninwesternSvalbardisquitedifferentandwasprobably106

notdepositedinthesamebasin(Harlandetal.,1993).107

108

Cryogenianeventsandpanglaciation109

110

TheconceptofNeoproterozoiclow-latitudeglaciationwaschampionedbyHarland(1964)who111

arguedfromthewidespreadoccurrenceoftillitesthattheyweregloballydistributedandhence112

shouldbeusedincorrelation.Subsequentlyittookanenormouseffortfromthegeological113

communitytoestablishthatthediamictiteunitsarepredominantlyglacigenicoratleast114

glaciallyinfluenced,thatconvincingevidenceoflow-latitudeglaciationexists,andthatthe115

correlationsaresupportedbyageochronologicalframework(Fairchild&Kennedy,2007).116

Despitethecomplexityofindividualsuccessions,summarizedinArnaudetal.(2011),itisnow117

widelyrecognizedthattwopanglacialeventsoccurredduringtheCryogenianperiod(c.720–635118

Ma),referredtoastheSturtian(orearlyCryogenian)andMarinoan(orlateCryogenian)119

glaciations(Halversonetal.,2007;Macdonaldetal.,2010;Hoffmanetal.,2012;Calveretal.,120

2013;Rooneyetal.2014,2015;Lanetal.,2014).Thetraditionalgeologicalapproachrecognized121

theroleoflowatmosphericCO2levelsintriggeringglaciation,buttherewasalackof122

understandingofwhole-Earthbehaviouruntilinsightsfromclimatemodellingofapossible123

future“nuclearwinter”(e.g.Budyko,1969)ledtotherealizationthatafrozen,highalbedo124

planetrepresentsastableclimaticstate.Kirschvink(1992),incoiningthetermSnowballEarth,125

suggestedthatlowpalaeolatitudesofcontinentsinNeoproterozoictimescouldhavehadarole126

intriggeringpanglaciation,andthattoescapetheSnowballstateabuild-upofvolcanically127

Page 8: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

8

derivedCO2wasneeded(Caldeira&Kasting,1992)toovercomethedominanceofthealbedoof128

Earth’sicysurfaceonitsenergybalanceandtriggerdeglaciation.Hoffmanetal.(1998)and129

Hoffman&Schrag(2002)subsequentlyexpandedupontheSnowballmodel,incorporating130

insightsfromplanetarymodellingtoenlightennewstratigraphic,sedimentologicaland131

geochemicaldata.SnowballEarthisbestregardedasatheory,notmerelyahypothesis,because132

itisbuiltaroundaseriesofpropositionswhichare,toagreaterorlesserextent,interacting133

(Fairchild&Kennedy,2007).Thetheoryhasstimulatedahugeaccelerationindata-gathering134

andmodellingwhichhassignificantlyclarifiedtheextenttowhichagivenphenomenonis135

essentialtoorcharacteristicofaSnowballEarth.Initially(Hoffmanetal.,1998),therewasa136

focusontheassociatednegativecarbonisotopeanomaly,apparentlyencompassingtheglacial137

period,whichwasregardedasacharacteristicofloworganicproductivityinanoceanwhich138

becameisolatedfromtheatmosphereoncetheSnowballstatehadbeenestablished.139

Additionally,thepost-glacialcapcarbonatesandtheassociatedtransientsinthenegative140

carbonisotopeanomalieswereregardedasapositivetestofthehypothesis,reflectingrapid141

meltdownandsea-levelriseunderapost-Snowball,ultra-greenhouseenvironment.However,142

afterfurtherscrutinyallofthesepropositionshaveemergedasflawedorambiguous(Kennedy143

etal.,2001a.b;Hoffman&Schrag,2002;Halversonetal.,2002;Schragetal.,2002;Trindadeet144

al.,2003;Hoffmanetal,2007;LeHiretal.,2008,2009;Kennedy&Christie-Blick,2011;Hoffman145

etal.,2012).146

IntheearlyyearsoftheSnowballhypothesis,missingwasanaccountofhowtheglacial147

formationsthemselvescouldbeusedtoprovidesupportforthetheory.Inthe“hard”Snowball,148

theconceptisofauniversallythickicecoverovertheoceans,composedofanupperzoneof149

glaciericeandlowerzoneoffrozenseawater(Pierrehumbert2005;Pierrehumbertetal.,2011).150

Ifso,sealevelshouldbegreatlyloweredandmarineicemarginsshouldoccuratmuchgreater151

Page 9: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

9

depthsthantheshallow-waterpre-glacialsediments.Evidencetosupportthishypothesiswas152

foundinNamibia.Onplatformtops,glacigenicdepositsarerare,whereasonplatformmargins153

tidewater-glaciergrounding-linephenomenacanbedemonstrated,inferredtobesome154

hundredsofmetrestopographicallylower(Hoffman,2011;Domack&Hoffman,2013).Onthe155

otherhand,mostglacialsedimentologistswerehostiletoSnowballtheory,insistingthatthereis156

evidenceofrepeatedadvancesandretreatsoficeinmarineenvironmentsduringglaciation,157

andalsothatlocallywave-andstorm-generatedstructuresarepresent,indicatingopenwater158

(Xiaoetal.,2004;Etienneetal.,2007;Allen&Etienne,2008;LeHeronetal.,2011,2013).159

Apparentsupportfrommodelsshowingequatorialopenwater(e.g.Hydeetal.,2000)facedthe160

problemthatthesimulatedclimatesolutionswerenotstable.Hence,theresponseofHoffman161

(2011)wasthat“counterarguments[totheSnowballmodel]basedontemperate-typeglacial162

sedimentologyfailtograspthatthepreservedglacialsedimentaryrecordreflectstheendofthe163

SnowballEarth,whenmeltingwasboundtoemergetriumphant”.Afurthertwisthoweverwas164

thatasimulationofalong-livedmarineice-freeequatorialfringewasachievedbyAbbotetal165

(2011),inwhattheytermtheJormangundstate.Hoffmanetal.(2012)notedthatwhereasthe166

Jormangundstatepreservedthepatternofmodernlow-latitudeclimatebelts,withamoister167

equatorialregion,theSnowballclimaticpattern(Pierrehumbertetal.,2011)wouldresultin168

higherprecipitationminusevaporationinthesubtropicsandanextremelyaridequatorialzone.169

Thisdrawsattentiontotheneedforstudyofcontinentalglacialdepositssuchasthe170

WilsonbreenFormationwheremoredirectevidenceofclimaticconditionscanbeobtained.171

ThesurvivingessentialpredictionsofSnowballEarththeorycanbesummarizedas172

follows:1)glaciationsmustoccursynchronouslyglobally,2)theymustbelong-lasting(>1Ma)173

toallow3)thebuildupofatmosphericCO2tohighlevelswhen4)sedimentationoccursina174

briefperiodpriortotermination.Althoughearliergeochronologicalcompilationshadlegitimate175

Page 10: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

10

doubtsabout1)and2)(AllenandEtienne,2008),theyarenowmorefirmlyestablished(Rooney176

etal.,2015),althoughthedurationoftheMarinoan(?5-15My)isimpreciselyknown.The177

WilsonbreenFormationhasnowpermittedpositivetestsof3)and4).178

ComparedwithCenozoicstrata,thereareveryfewapproachestodeterminationof179

atmosphericCO2concentrationsintheNeoproterozoic.Aboldnewapproachwasappliedby180

Baoetal.(2008)basedonprocessesoccurringduringstratosphericozoneformationwhich181

resultsinanenrichmentintheisotope17Oinozoneandcarbondioxideanddepletioninoxygen182

(O2).Thisisanonmass-dependenteffectwhichdoesnotinfluence18Oabundances.The17O183

signalcanbepreservedintheoxygenatomsofsulphateinrocksifatmosphericoxygenisused184

tooxidizesulphidesonthelandsurface.Sulphatehasthepeculiarpropertyofnotexchanging185

oxygenatomswithotherspeciesover1000Mytimescalesatsurfaceconditions,providedthere186

isnomicrobialredoxcyclingofsulphur-bearingions.Baoetal.(2008)testedtheideathatat187

timeperiodswhenatmosphericPCO2wasenhanced,therewouldbe17O-depletedsulphatein188

thegeologicalrecord,andindeedfoundthemostsignificantanomalythathadatthattimebeen189

discovered,recordedinbaritecrystalfansoccurringinthecarbonatesuccessionoverlying190

MarinoanglacialdiamictitesinSouthChina.191

Baoetal.(2009)thenfocusedonlacustrinecarbonatesofthecentralpart(memberW2)192

oftheWilsonbreenFormationandfoundmoreprofound17O-deficienciesincarbonate-193

associatedsulphate(CAS)inlimestones,consistentwithveryhighatmosphericPCO2during194

glaciation.Morerecentstudiesinothergeographicregions,coupledwithprocessmodelling195

approaches,havesupportedthisapproachinMarinoancapcarbonates(Baoetal.,2012;Cao&196

Bao,2013;Killingsworthetal.,2013;Bao,2014),buttheWilsonbreenFormationremainsthe197

onlyunitwherePCO2canbeestimatedduringglaciation.198

Page 11: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

11

Subsequently,Bennetal.(2015)haveusedthesameisotopesystematicsofCASona199

muchlargerdatasetoflimestonesfrommembersW2andW3toarguethatsimilarhighPCO2200

values(estimatedatbetween1and10%atmosphericCO2)occurredthroughoutthedeposition201

oftheWilsonbreenFormation.SinceitwouldhavetakenalongtimetoaccumulateCO2,the202

inferencewasthatthebulkoftheWilsonbreenFormationwasdepositedinarelativelyshort203

periodneartheendoftheglaciation.Inturn,thisimpliesanextendedhiatusearlyinthe204

glaciationwhichwasidentifiedwithapermafrostedhorizonatthebaseoftheWilsonbreen205

Formation.206

CoupledicesheetandatmosphericgeneralcirculationmodelresultsinBennetal.(2015)207

usingSnowballEarthboundaryconditionsdemonstratethatat2%atmosphericPCO2thick208

glaciersexistonthecontinentsalongwithextensiveareasofbaregroundandthathyperaridity209

iswidespread.Precessionalforcinggeneratesmovementsoficemarginsbyatleasthundredsof210

kilometresandwaslinkedtothepresenceofdistincticeadvanceswithintheWilsonbreen211

Formation(Fig.1).AlthoughconclusionsbasedontheMarinoanglaciationshouldnot212

necessarilyapplytothemuchlongerSturtianglaciation,thenewresultsprovideapossible213

routetoreconciletheopposedpositionsstatedinAllen&Etienne(2008),oftemperateglacial214

conditionsduringpanglaciation,andHoffman(2011),ofsedimentdepositionoccurringrapidly215

duringmeltdown.Itisthepurposeofthecurrentpapertoprovideadetailedsedimentological216

analysistounderpinthisnewsynthesisandinparticulartodemonstratetheplausibilitythatthe217

Wilsonbreencarbonatesweredepositedwithinacoherentgeomorphic-climaticsystem.Asa218

firststep,weneedtoexaminethepossiblemodernanalogue.219

220221

TheAntarcticMcMurdoDryValleysasanaloguesfortheWilsonbreenFormationcarbonates222

223

Page 12: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

12

Fairchildetal.(1989)previouslyusedtheDryValleysregionasanexemplarforthecarbonates224

inmemberW2oftheWilsonbreenFormation.Conversely,leadingworkersonthemodern225

environment(Lyonsetal.,2001)commentedthatthisfrigid,drymodernenvironmentmightbe226

avaluableanalogueforProterozoicSnowballEarthenvironments.TheDryValleyshavealso227

beenusedasanaloguesfortheMartiansurface(Marchant&Head,2007;Dicksonetal.,2013).228

Thelocal“alpine”glaciersoftheDryValleysarecold-based,butoutletglacierssuchasthe229

TaylorGlacierarewarm-based.Giventhecriteriaforrecognitionofglacialthermalregime230

presentedbyHambrey&Glasser(2012),warm-basedanaloguesareneededtounderstand231

muchoftheglacigenicfaciesoftheWilsonbreenFormation(Flemingetal.,2016).Nevertheless,232

forthecarbonatefacies,thecontextoftheDryValleyregion,uniquelyforpresent-day233

environments,providesparallelsforthefollowingevidenceprovidedbyFairchildetal.(1989):234

(1)arecordofextremeevaporationwithpotentiallyupto20‰differenceinδ18Obetween235

inputwatersandthoseresponsiblefortheprecipitationofthecarbonateswithheaviestδ18O236

signaturesand(b)alternatingdepositionofglacialsedimentandcontinentaldepositsindicating237

iceadvanceandretreat,specificallyincludingrhythmicandmicrobial,presumedlacustrine238

carbonatesandevidenceofformerevaporites.239

Fig.3illustratesthecontextofthemodernsettingwhichhasbeenextensivelystudied240

overseveraldecadesbyAntarcticgroupsledfromNewZealand,JapanandtheUSA,withTaylor241

valleybeingthefocussince1993oftheMcMurdoDryValleysLong-termEcosystemResearch242

(LTER)ProgramoftheNationalScienceFoundation.TheDryValleysisa4800km2region243

occupyingpartoftheTransantarcticMountainsbetweentheEastAntarcticIceSheet(EAIS)and244

theRossSea.TheindividualvalleysthemselvesmostlytrendE-Wandareupto80kmlongand245

upto15kmwideandareinternallydrained,oftenwithseveraldiscretelakebasinsineach246

valley.TwooutletglaciersfromtheEAIS(WrightUpperandTaylorglaciers)onlyjustcrossthe247

Page 13: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

13

regionalbedrockaltitudedivideintotheeastward-drainingcatchments,whilsttheFerrarglacier248

flowsallthewaytothecoast(Fig.3).Localvalleyglaciersextendfromthemountainsintodry249

valleys,e.g.CanadaGlacierinTaylorValley(insetinFig.3)andephemeralstreamsdevelopfor250

shortperiodsinsummer.Avarietyoflakesoccur,includingthoseoccupiedbyicefrozentothe251

bedintherelativelyhigh-altitudeVictoriaValley,highlysalinelakeswithnoicecover(e.g.Don252

JuanPond,UpperWrightValley)andfinallylakeswitha3-5micecover(e.g.Lakes253

BrownsworthandVandainWrightValleyandLakesBonney,HoareandFryxellinTaylorValley),254

whichmeltonlyinamarginalmoatinsummer(Green&Lyons,2009;Dicksonetal.,2013).255

Microbe-dominatedbiotasflourishwhereverandwheneverthereisliquidwaterintheregion,256

includingmatsonstreamandlakebeds,andphotosynthesizingalgaeareimportantinlakes257

duringthespringseason(Fountainetal.,1999).Thesematstakeupnutrientsrapidlyfrom258

streamwaterandthebiogeochemicalpatternsarestronglyinfluencedbyexchangeof259

hyporheicwaterswithstreamwater(McKnightetal.,1999).260

Thereisaspatialmicroclimaticzonationcomprisingacoastalzonewithjust-thawedsoils261

insummerandastablecolduplandzonewithparticularlylowrelativehumidity(Marchantand262

Head,2007;Marchantetal.,2013).Theinterveningvalleyshaveameanannualtemperatureof263

-16to-21°Candthemaximumdailytemperatureisbelowzeroonaveragethroughouttheyear264

(Fountainetal.,1999).Thevalleysreceivelessthan10mmwater-equivalentofprecipitation265

peryear,almostalwaysassnow.Becauseoftheprevailinglowrelativehumidities(e.g.between266

50and60%inTaylorValley,Fountainetal.,1999),ablation(mostlyassublimation)greatly267

exceedsprecipitation.Wilson(1981)describedtheconsequencesofthisgeographic268

configurationandclimatologyusingphysicalandchemicalprinciples.Precipitationriseswith269

altitude,butfallsinlandfurtherfromtheRossSea.Thesnowlinemarkstheboundarywhere270

ablationexceedsprecipitationanditrisesinlandasprecipitationdeclines.Wilson(1981)271

Page 14: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

14

attemptedtoexplainthedistributionofsaltsbasedonanunderstandingofdownslope-272

increasingaridity,butitseemsthatvariablemeteorologyconfoundsthepredictionsindetail.273

Nevertheless,itisthecasethatdeliquescentsaltsflowdownhillinthesub-soilabovea274

permanentlyfrozenlayer.Lakeswithalidoficedisplayabalancebetweenablationatthe275

surfaceandfreeze-onoflakewaterbeneaththelid,replenishedseasonallybystreaminflow.276

Oncesnowhasbeenremovedbyablation,sunlightcanpenetratethroughverticalicecrystals277

andsignificantsolarheatingoflakescanoccur.Thepresentconfigurationofsaltsallows278

deductionsofbothlong-andshort-termhistory.Specifically,spatialvariabilityinsaltsrequiresa279

long-term(>105-106years)stabilityoftheice-freesubaerialvalleysides.Ontheotherhand,280

somelakeshaveabasalbrinelayerwhichdiffusionmodellingshowsoriginatedfromaperiod281

around1200yearsagowhensomelakeswereice-freeshallowbrines,beforebeingre-filledby282

freshmeltwater.283

OneaspectnottreatedbyWilson(1981)istheeffectofwind.Animportant284

reinforcementmechanismforaridityisprovidedbytheregionaldevelopmentofkatabatic285

windsflowingofftheEastAntarcticIceSheet.Asthisairwarmsadiabatically,humidity286

decreases,particularlyinwinter(Nylenetal.,2004).Itisnowclearthattheepisodicallystrong287

summerwindsareactuallywarmfoehnwinds,whicharisefromstrongpressuregradients288

duringtheoccurrenceofcyclonesovertheRossSea,theincidenceofwhichdependson289

hemisphericclimaticanomalies.Thesetopographicallyenhancedandchannelledwindsflowat290

typically>5ms-1westerlyalongtheDryValleysandcauseverylargeintra-annualandinter-291

annualincreasesinmeltwaterproductionandstreamflow(Doranetal.,2008;Speirsetal.,292

2013).Thehighincidenceofthesewindsinsummer2001/2,whenpositivedegreedays293

increasedbyanorderofmagnitude,ledtorisesinlakelevelof0.5-1m,effectivelywipingout294

theprevious14yearsofloweringoflakelevelinaperiodofthreemonths(Doranetal.,2008).295

Page 15: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

15

Thesedetailseffectivelydemonstratethesensitivityoftheenvironmenttoclimaticchangesthat296

willstronglyinfluencethefaciesdeposited.297

Barrett(2013)recentlyreviewedthecontroversiallong-termhistoryoftheMcMurdo298

region.EvidenceforlandscapeevolutionbasedonthepositionofMiocenevolcanicashdeposits299

clearlydemonstratesthataftertheestablishmentofthecurrentlargeEastAntarcticIceSheetin300

theMiocene,onlysurficiallandscapemodificationhasoccurred(Sugdenetal.,1995;Lewiset301

al.,2007).Importantly,thecold,dryclimatesoftheDryValleysremainedstable,evenduring302

significantwarmingeventsrecordedintheRossSeaduringthePliocene.Thislong-termclimatic303

stasiscanbecomparedwiththepredictedlong-termhydrologicalinactivityanticipatedona304

SnowballEarthascarbondioxidelevelsslowlyrose.305

LargelakesformedduringtheLastGlacialMaximuminallthemajorDryValleys.This306

requiredtwoconditions:(1)expansionoftheRossSeaIcesheettoblockthemarinemarginsof307

theDryValleys(Hendy,1980;Halletal.,2013)and(2)increasedmeltwaterproductioninthe308

valley(bywind-inducedmelting,Doranetal.,2008),despitesignificantlycolderconditions.309

Conversely,datingofaragoniticlacustrinedepositsshowsthat,ininterglacialperiods,therewas310

anexpansionofTaylorGlacier,notedforcharacteristicallylightoxygenisotopevalues,in311

additiontoexpansionoflocalvalley-sideglaciers,withheavierisotopevalues(Hendy1979,312

1980).ThesephenomenapresumablyreflecthighersnowaccumulationontheEAIS,enhanced313

meltwaterproduction,andpartialblockageofthevalleybyice.Importantly,theseinferences314

drawattentiontothepotentialanti-phasingofglobaltemperatureandlocalglacieradvanceand315

thegreaterimportanceofregionalhumiditycontrolsonMilankovitchtimescales.316

Inthecurrentpaper,awealthofnewdataontheWilsonbreenFormationcarbonates317

arepresentedwhichallowstheanalogiespreviouslymadetobetestedandevaluatedinmuch318

moredepth.Theinterpretationofthesedataisassistedbymodernanaloguesandnew319

Page 16: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

16

computersimulationstudiesofNeoproterozoicclimates(Pierrehumbertetal.,2011,Bennetal.,320

2015).321

322

METHODS323

324

Fieldwork(2010-11)wassupportedbyhelicopterandbyskidoo.Sections,includingsixentirely325

newlocations,weremeasuredby30mtape,orientatedbycompassandAbneylevel,andlinked326

tobeddingdips,withtotalthicknesscheckedbyGPSwithuncertaintyofaround5%.Thebest327

availablesectionsineachregionwerelogged(Figs.1,2),althoughtheyvaryinqualityfrom328

almostperfect,tointermittentgoodoutcropseparatedbyground-levelfrost-shatteredregolith.329

Thecarbonaterocksarechemicallyfresh,butlaboratorystudyofcutorsectionedsampleswas330

necessarytoidentifyfaciesinmanycases.Over350samplesweresawn,210ofwhichwere331

thin-sectionedofwhich60werestainedwithAlizarinRed-Sandpotassiumferricyanideand332

over30polishedsectionsstudiedbycold-cathodecathodoluminescence(CL)at15kV.333

Carbonandoxygenstableisotopedataarepresentedhereasδ13Candδ18Oinpartsper334

thousandwithrespecttotheVPDBstandard.Differencesbetweenlaboratoriesareinsignificant335

inrelationtothewiderangeofisotopevalues(29‰inδ18Oand8‰inδ13C)inthisstudy.336

SupplementarydatainBaoetal.(2009)includedmethodsandalldatacollectedtothatdate.337

NewdatawasobtainedattheUniversityofBirminghamusingacontinuous-flowIsoprimeIRMS,338

withamultiflowpreparationsystem.Samplesofbetween80-250µgpowderedcarbonatewere339

reactedwithphosphoricacidat90°Cfor90minutes.ResultswerecalibratedusingIAEA340

standardsNBS-18andNBS-19.Afluidinclusionstudyisreportedinthesupplementary341

information.SulphateoxygenandsulphurisotopesarepresentedinBennetal.(2015).Wedraw342

onpreviouslypresentedtraceelementdatafromthecarbonatefractionsolubleindilutenitric343

Page 17: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

17

acid(Fairchild&Spiro,1987;Fairchildetal.,1989;Baoetal.,2009),whilstnewtraceelement344

andotherisotopeanalyseswillbepresentedelsewhere.345

Infigurecaptions,thelocationandstratigraphicpositionaregiveninastandardformat.346

ForexampleW2,Dracoisen,70m,referstoasamplefrommemberW2fromtheDracoisen347

section,70mabovethebaseoftheformation(orthebaseofthesectionwherethebaseisnot348

seen).Thecontextandoxygenisotopecompositionofthecarbonatefromthathorizoncanbe349

foundinthestratigraphicsectiondiagrams:Fig.4forDracoisenandsupportingFigs.1-6forthe350

othersections.CarbonatesinmembersW1andW3aresummarizedonlyinTable2,butfull351

samplelogsaregiveninBennetal.(2015).352

353

WILSONBREENFORMATIONARCHITECTURE,COMPOSITIONANDPOST-DEPOSITIONAL354

HISTORY355

356

TheWilsonbreenFormation,dominatedlithologicallybysandydiamictites,containsawealthof357

evidenceindicatingthatitislargelyglacigenic,anddepositedinbothaqueousandsubglacial358

settings(Hambrey1982;Fairchild&Hambrey,1984;Dowdeswelletal.,1985;Harlandetal.,359

1993).Newwork(Bennetal.,2015;Flemingetal.,2016),includingfivepreviouslyundescribed360

sections,hasresultedinacoherentstratigraphic-faciesreconstruction(Fig.1).Thispaper361

focusesonbeds(sandstones,rhythmites,mudrocks)containingprecipitatedcarbonate;the362

presenceofsuchstratawasoriginallyusedtodefinememberW2(Hambrey,1982).Inthe363

northernmostsection(Dracoisen),W2isreadilydistinguishedbythreesuchcarbonate-bearing364

bedsseparatedbydiamictites(Fig.2A),andoverallasimilarpatternappliesinothersections365

(Fig.1).HoweverthinrhythmiteunitsalsooccurinmemberW1,onecontainingprecipitated366

carbonate,andmostofthethinnon-diamictite(sandstoneandrhythmites)bedsinmemberW3367

Page 18: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

18

containsuchcarbonatefacies(Table2). AlthoughglacigenicrockscontinueNNEtothecoast368

andtoNordaustlandet,thesewerenotincludedinourstudysincediamictitesarethinnerand369

lesswellexposed,andprecipitatedcarbonatesareabsent(Halversonetal.,2004;Hoffmanet370

al.,2012).NeitherdosuchcarbonatesoccurintheequivalentStoreelvFormationofNE371

Greenland,representingtheSWcontinuationofthebasin(Hambrey&Spencer,1987;Moncrieff372

&Hambrey,1990;Hoffmanetal.2012,Fleming,2014).373

374

Terrigenousdetritus375

376

Harlandetal.(1993)summarizedinformationfromfivesites,determiningthatcarbonateclasts377

makeup40-85%,igneousandmetamorphicclasts5-33%andsandstonesandquartzites10-20%378

ofstones(i.e.gravel-sizeddebris);thebasementlithologiesareprimarilygranitoidsand379

gneisses,withsomebasaltinwhichferromagnesianmineralsarecommonlychloritized.Inthe380

widercontextofterranesaffectedbytheCaledonianorogen,detritalzirconstudiesindicate381

provenancefromArchaeanandPalaeoproterozoicrocksofthecratonicinteriorand382

MesoproterozoicdetritusderivedfromtheerodedremnantsoftheGrenville-Sveconorwegian383

orogen(Cawoodetal.,2007).Asystematicstudyofcarbonateclastcompositionswillbe384

presentedelsewhere,butinsummary80%ofpebblesaredolomiterockand20%arelimestone;385

manyofthesecarbonatesresembleunitsfromtheunderlyingsuccession(Table1)inlithology386

andisotopecomposition;nostratigraphictrendsinclasttypeorisotopecompositionwere387

found.Thesandfractionisdominatedbyquartzandfeldsparwithsubordinatedolomiteand388

limestoneandthemudfractionlikewisebyquartzo-feldspathicdebrisanddolomite(Fig.5).The389

dominanceofsiltinthemudfractionisshowningradedrhythmites(Fig.5B,C);notablydetrital390

calciteoccursinthemudfractiononlylocallyandtheproportionofclaymineralsislikewisevery391

Page 19: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

19

low.ThedolomitematrixofPolarisbreenGroupdiamictitesispredominantlytheresultofglacial392

transportandcomminutionasshownbythepresenceofsub-micronrelicrockflour(Fairchild,393

1983)inwhichclaymineralsarevirtuallyabsent(Fig.5D).Thisdetritalmatrixcontainsa394

complexmixtureofbothbrightanddullyluminescentreddolomitewhenviewedinCL(Fig.5C).395

Themeancarbonandoxygenisotopecompositionsofdolomiticmatrixindiamictitesand396

wackes(n=43)are+2.4±1.3and-3.5±1.8‰respectively,slightlylowervaluesthanfor397

dolomitepebbles.Thismatrixcompositionformsausefulreferencepointforcomparisonwith398

precipitatedcarbonatesintheWilsonbreenFormation.399

400

Burialdiageneticmodification401

402

TheWilsonbreenFormationisoverlainbyamarinetransgressivesuccession,butmost403

Ediacaranstrata(Table1)arenon-marineplayalakefacies,inturnoverlainby950mofCambro-404

Ordovicianplatformcarbonates(Harland,1997)indicatingaminimumburialof1.5km.Late405

SilurianCaledonianfoldingandlocalthrustingfollowed(Fig.2),butsmall-scalefoldingis406

generallyabsent,asispenetrativedeformation.TheWilsonbreenFormationliesoutsidethe407

thermalaureolesofDevoniangraniteplutonsinthefoldbelt(Harland,1997).Poresinthecap408

carbonatearefilledwithbitumen,indicatingthatthesedimentspassedthroughtheoilwindow,409

butgoodpreservationisindicatedbytheabilitytoremoveindividualstriatedclastsfrom410

diamictitematrix(Hambrey,1982)andsomeunusuallyhighoxygenisotopecompositionsof411

dolomites(Fairchildetal.,1989;Baoetal.,2009).Afluidinclusionstudy(seesupporting412

information)indicatesthatinitialporefluidswereadvectivelyreplacedbyatypicalmeteoric413

fluidwithδ2Hintherange-60to-100‰andthat18Oisslightlyenrichedbyexchangewiththe414

solidphase,butfluidinclusionvolumesareordersofmagnitudetoosmalltohaveaffectedthe415

Page 20: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

20

bulksolidcomposition.Physicalcompactioneffectsarenotnoticeablebecauseofthelowclay416

contentofthesedimentsandearlycementationofthecarbonates,butverylocallylamina417

boundariesarestyolitic.Uncementedsandstonesexhibitstraighttoconcavo-convexboundaries418

betweenquartzgrains.419

ManyWilsonbreenFormationoutcropsarereddened,andeveninunreddenedfacies,420

organiccarboncontentsarelow(belowdetectionlevelsof0.2%onthreeW2carbonates).421

Fairchild&Hambrey(1984)regardedthehaematitepigmentaspost-depositionalbasedonthe422

occurrenceofLiesegangbandstructuresandongoingpalaeomagneticstudiesmaythrow423

furtherlightonitstiming.Reddeningislesspervasiveincleansandstones,implyingthatit424

requiresasourceofironinthefinefractionorincarbonates.Thelowpreservationoforganic425

carbonmayreflectlowabundanceofclay(Kennedyetal.,2006)aswellasalow-productivity426

continentalsetting,contrastingwiththedark-colouredglacimarinedepositsoftheearly427

Cryogenianglacialdepositsinthestudyarea(MemberE2,Table1).428

Limitedquartzovergrowthsarecommoninsandstonesandonsandgrainsfloatingin429

dolomites,whilstsomesandstonesdisplaypartialpoikilotopiccalcitecement.Ferroansaddle430

dolomiteandferroancalciteoccludelargerprimarypores,indolomitesandlimestones431

respectively.Thesecarbonatephasesalsooccur,locallytogetherwithquartzandwhitemicain432

crystalpseudomorphs.Saddledolomiteaverages-12.2±1.5‰inδ18Oand-1.8±1.5‰inδ13C433

andcalcitesparlikewise-10.5±1.6‰and+2.0±1.5‰(Baoetal.,2009).434

435

FACIESANALYSIS436

437

FaciesAssociations438

439

Page 21: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

21

FollowingBennetal.(2015)sevenfaciesassociations(FAs)arerecognized;Table3presents440

summarydescriptionsandinterpretations,whilstFig.7Aillustratesinferredenvironments441

diagrammatically.Theglacialandperiglacialfaciesassociations(FA1,6,7)arediscussedin442

Hambrey(1982),Fairchild&Hambrey(1984),Bennetal.(2015)andFlemingetal.(2016),and443

onlyafewsalientpointsarementionedhere.Twodistinctglacieradvancesfromthesouthare444

recognized,justbelowandabovememberW2,byoccurrencesofFA1:sheareddiamictite,445

sandstonesandgravels,locallyrestingonhighlydeformedrhythmites(glacitectonites)or446

striatedclastpavements(Fig.1,labelledFA1subglacial).ThebulkoftheWilsonbreenFormation447

ishowevercomposedofweaklystratifieddiamictites(FA6)withdecimetretometre-scale448

lensesofrhythmites,commonlywithprecipitatedcarbonateinmembersW2andW3in449

particular.Localpresenceofdropstonesorisolatedgravelclasts(lonestones),tillpellets,450

stratification,andabsenceofsubglacialshearingphenomena,pointtoasubaqueousice-rafted451

origin.Locallensingconglomeratesareinterpretedassediment-gravityflowswhich,at452

Dracoisen,compriseaconspicuouslow-anglecross-stratifiedunit(Fig.1,labelledFA6,453

proximal),interpretedasagrounding-linefan(Bennetal.,2015;Flemingetal.,2016). 454

GravelwithventifactsoverlyingshattereddolomiterepresentsthePeriglacialFacies455

Association(FA7)atthebaseoftheWilsonbreenFormationandBennetal.(2015)interpretthis456

asamulti-millionyearcontinentalhiatus.FA7alsooccursatthebaseofW2whereaperiglacial457

exposurehorizonwithsandstonewedgespenetratingsubglacialtillisfound(Fig.1)atSouth458

Ormen(ORM),SouthKlofjellet(KLO)andDitlovtoppen(DIT)andalsoattheGolitsynfjellet(GOL)459

section(Fairchildetal.,1989),whichisbetweenMcDonaldryggen(McD)andthe460

Backlundtoppen-KvitfjellaRidge(BAC).Theperiglacialhorizonisoverlainbysandstones461

correlatedwiththoseatthebaseofW2atDracoisen(Dracoisen).462

Page 22: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

22

TheotherfourFaciesAssociationscontainprecipitatedcarbonateandaredescribedin463

detailbelow,complementingthetabularanddiagrammaticsummaries(Table3;Fig.6).Eachof464

theFaciesAssociationsoccursasunits0.1to4minthicknessaspresentedinthestratigraphic465

logs(Fig.4,supportinginformationFigs.S1-S6).466

467

FA2(Facies2Sand2T)468

469

Description470

Thisfaciesassociationisrepresentedbyerosionally-based,fining-upwardstabularsandstone471

beds,0.5-4minthickness.Facies2Ttypicallycomprisesmoderatelysortedveryfinetomedium-472

grainedsandstonewithabasalerosionalsurfacecappedbyagravellag.Internalcross-473

stratificationistabular,typicallywithlow-angleaccretionsurfacesandsetthicknessof0.5-1m.474

SuchfaciesareseenatthebaseoftheW2sectionatDitlovtoppen(Supp.Fig.1),SouthOrmen475

(Supp.Fig.2),EastAndromedafjellet(Supp.Fig.3),andReinsryggen(Supp.Fig.4),andarealso476

prominentnearthetopofthememberatDracoisen(Fig.8H)andatDitlovtoppen,wherethin477

siltstonebedsdefinelow-angleaccretionsurfaces(Fig.8G).478

Facies2SisdistinguishedfromFacies2Tbythepresenceoflimestonelaminaeand479

intraclasts,andreducedsiltcontent.Thebest-exposedexampleisa4m-thickunitthatforms480

thebasalpartofmemberW2atDracoisen(Figs.2A,4),restingonmassivediamictitewith481

decimetre-scaleerosionalrelief.Athinbasalpebbleconglomeratepassesupinto0.7mof482

pebblysandstone,whilstthemain,centralpartofthebedisveryfine-tomedium-grained483

sandstonewithlocaltabularcross-stratification,withsetthicknessupto15cmandcurrent484

ripples(Fig.8D).Atbothlevels,thereareabundant(ca.25-50%)layersoflimestone,with485

individuallaminaetypically1-3mmthick(Fig.8A).Universalfeaturesareadomedgrowth486

Page 23: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

23

morphology(Fig.8A)anddifferentiatedmicrostructures(Fig.8B)withwelldevelopedslightly487

irregularlaminaeofmicrite,microspar,anddetritus-richcarbonatewithregularmm-scale488

fenestrae(Fairchild,1991;Riding,2000).Verylocallyathrough-goingverticalstructure489

reminiscentofcyanobacterialoralgalfilamentmoulds(Fairchildetal.,1991)isobserved(Fig.490

9B).Alltheselimestonesarelaterallydiscontinuous,breakingdowntotrainsofintraclaststhat491

arelocallystackedathighangles.Inplaces,extensivecrusts,upto0.5-6mmthick,ofradiaxial492

calcitecementdevelop,alsobrokentoformintraclasts(Fig.8C).493

UnderCL,thecalcitefabricsthatarebrokenintointraclastsfluoresceuniformly494

brightly,whereaslaterveincementsshowmorevariableCL(Fig.9A).Chemically,thisis495

reflectedinhighMncontentsofseveralthousandppmandexceptionallyhighMn/Feof1(Bao496

etal.,2009).Strontiumcontentsare150-300ppm,whilstMgis4000-6000ppm(Baoetal.,497

2009),equivalenttoaround2mole%MgCO3.Theradiaxialfabricsappearpristineand498

microdolomiteinclusionsareabsent.Sulphatecontentishigh(2000-5000ppm,Baoetal.,499

2009),whilstthepreservationofanegativeΔ17Oanomalydemonstratesthatthesulphatehas500

notundergonereduction(Baoetal.,2009;Bennetal.,2015).Thestableisotopecompositionof501

stromatoliticlimestonesdefinesacoherentfield(Fig.7A)withδ18Orangingfrom-10.5to-3.4502

‰andδ13Cfrom+0.9to+4.6‰,weightedtowardshighervalues,withoverallisotopic503

covariation(Fig.7B).Amicromilltraversethroughsyndepositionalcalciterevealslaminato504

laminavariationsinδ18Oof2‰andinδ13Cof0.5‰withoutstrongcovariation(Fig.8E,F).The505

clearpetrographicdistinctionbetweensyn-depositionalandlatercalcitesparcementis506

reflectedalsointhelowδ18Osignatureofthesparof-10to-12‰(Fig.8F).507

508

Interpretation509

Page 24: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

24

FA2isnotableforadominanceoftractionalsedimenttransport.Theconsistentpresenceof510

laterallyextensivebasalerosionsurfacesimplyachannelcontextforthisfaciesassociation,511

whilstforFacies2Tthelow-angleaccretionsurfaceswiththinsiltbedsisreminiscentofpoint-512

bardepositswhich,althoughnotunexpectedinPrecambriansediments,wouldrequiremore513

extensiveexposurestoconfirm(Davies&Gibling,2010).Thepresenceofhigh-anglecross-514

stratification,goodsorting,anddisruptedintraclastsinFacies2Sarecharacteristicsfoundin515

eithertidalsandflatsorinlowsinuosityfluvialchannels.Thelimestonescontaintwofeatures516

typicalofNeoproterozoicmicrobialdeposits:macroscopicallydomedlaminaeanddifferentiated517

microstructuresformedbyperiodicvariationsinphenomenasuchasedimenttrapping,gas518

generationandcarbonateprecipitation(Fairchild,1991;Riding,2000)andsocanbereferredto519

asstromatolitic.Limestoneswerelithifiedbeforeerosionsincecementcrustsarebrokenand520

derivedintraclastsaredispersedandstacked,forexamplealongforesets,asexpectedfor521

significanttractionalflowsinshallowwater.Thefactthatallofthethinlimestonesdisappear522

laterallytobereplacedbytrainsofintraclasts,orelsearecompletelyerodedindicateshighly523

variableflowconditions.Further,thelocallyhighlyregularmicrobiallamination,includingclastic524

layers,pointstoaperiodiccontrolonflowrates.525

Whentakeninisolation,amarineoriginforfacies2Scouldbepostulatedonageneral526

similaritywithtidalsandflatdepositsandtheoccurrenceofwell-preservedradiaxialcements527

withrelativelyhighδ18Ocompositions(Fairchild&Spiro,1987).However,tidalsandflatdeposits528

inNeoproterozoicsuccessionstypicallyshowwell-developedherringbonecross-stratification529

(Fairchild,1980;FairchildandHerrington,1989).Thereisaclearcontrastwiththemoreregular530

macrostructuresofmarinestromatoliteselsewhereinthebasin(Fairchild&Herrington,1989;531

Knoll&Swett,1990;Halversonetal.,2004)andNeoproterozoicdepositsmoregenerally532

(Grotzinger&Knoll,1999).Thismaybeattributabletoamorehostileenvironment,withhighly533

Page 25: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

25

variableratesofsedimentation.ThemostsignificantpointmaybethatNeoproterozoicmarine534

peritidaldepositsareinvariablydolomitized(KnollandSwett,1990),probablyafeatureofhigh535

Mg/Cainseawater(HoodandWallace,2012).536

Thealternativeisafreshwater,fluvialcontext.Wenowknowthatradiaxialfabricsare537

notdiagnosticofmarinewaters,butalsooccurinspeleothems(Neuser&Richter,2007)and538

alsothatsuchfabricsareprimaryandconsistentwiththerelativelowSrcontentofthecalcite539

(Fairchild&Baker,2012).Hence,weinterprettheradiaxialcalciteasthepristineoriginallow-540

Mgcalcitephase.Micriteandmicrosparfabricshavesimilarchemistriesandarealsoconsidered541

toreflectdepositionalconditions.TheimplicationisthattheMncontentofFA2calcitesisalso542

primaryandreflectiveoflowcontemporaryatmosphericPO2(cf.Hood&Wallace,2014),but543

notanoxicconditionselsesulphatereductionwouldhaveoccurredandthedistinctnegative544

Δ17Oanomalywouldhavebeenerased(Baoetal.,2009).Reassuringly,theMgcompositionof545

facies2SlimestoneissimilartomodernspeleothemdepositsinacoolScottishcavedepositing546

fromwaterswithMg/Cacontrolledbydolomitedissolution(Fairchildetal.,2001).Thelamina547

thicknessofthestromatolitesisverysimilartothoseofmodernfluvialmicrobialtufaswhichare548

complexdepositscontainingbothbiologicallymediatedandinorganicprecipitatesjustlike549

Facies2S(AndrewsandBrasier,2005;Andrews,2006).Interestinglythelaminationisannual550

andreflectsastrongannualvariationindischargeandFacies2Spossessesphysical551

sedimentologicalcharacteristicsconsistentwiththoseofephemeralstreams.Inthis552

interpretation,thestableisotopecompositions,whicharesimilarforradiaxialandmicrosparry553

calcites,canalsobeinterpretedasprimary,inwhichcasetheisotopiccovariation(Fig.7B)554

wouldhavetobeinterpretedasanevolutionarytrendtowardsmoreevaporatedequilibrated555

solutions(Talbot,1990),ratherthanthelightervaluesreflectinghigher-temperature556

recrystallization.ModernAntarcticstreamslackthecalcitemineralization,butmicrobialmats557

Page 26: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

26

arewell-developedandareadaptedtoephemeralflowconditions,readilyreactivatingeven558

afterbeingdryformanyyears(McKnightetal.,2007).Thefluvialinterpretationwillbe559

developedlaterinthelightoftherelationshipofFA2tootherfaciesassociations.560

561

FaciesAssocation3(Facies3Dand3S)562

563

Description564

Facies3Dismarkedbydiscretezonesofpronounceddolomitecementationwithinasandstone565

orsiltstone;insomecasesthesedimentispervasivelycemented.Wheredolomiteismost566

abundant,detritusfloatsinadisplacivemassofdolomitecrystals(Fig.10B,D,E,F),butother567

dolomite-cementedsiltysandsarestillclast-supported(Fig.10C).Locally,highlydistinct568

dolomite-cementednodulesarevisible(Fig.10A)orastructurelessdolomitebedcanbe569

encounteredwithalowcontentoffloatingsiltandsand.Themostcharacteristicstructuresare570

mm-scalenodulardolomicritestructureswithinmassivedolomite-cementedlayersand571

associatedwithcalcite-filledfractures.Thesephenomenaarefoundatonehorizoninmember572

W3(Fig.10D),aswellasinseverallocationsinW2(e.g.Fig.10F).Ararerphenomenonisthe573

presenceofequantcentimetre-scalecauliflower-likepseudomorphs,filledbyferroansaddle574

dolomitecement(Fig.11A)occurringatthetopofaconglomerate-basedfining-upwardscycle575

(Fig.8G).Sincesaddledolomiteisaburialphase(RadkeandMathis,1980),theimplicationis576

thatthepseudomorphswereoccupiedwithsolublecrystalsthatdissolvedduringburialpriorto577

cementation.578

Facies3Sreferstodolomiticlaminites,withbroadcm-scaledomedmacrostructure,with579

anaspectratiooftypically10:1.Theyarefounduniquelyinacomplexbed,inassociationwith580

Facies3D,andoverlyingfacies2S(at70m,Dracoisen,Fig.4).Ithasbeenstudiedonthe581

Page 27: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

27

“Multikolorfjellet”cliffsandthe“Tophatten”nunatak1kmtothenorth.Thebedisarounda582

metreinthickness,butwithvariabilityinitsinternalstructure.Mostcommonlythereisminor583

erosionofunderlyingdiamictiteatthebaseofthebed,overlainbycrudelylaminatedveryfine-584

tomedium-grainedgreensandstone,locallywithmm-scalelimestonelayersthatarepartly585

disruptedintointraclasts(Facies2S).Inplacesthiscanbeseentopassupwardsintointensively586

dolomite-cementedsandinwhichtherockfabricappearstohaveexpanded,associatedwith587

corrosionofquartzdetritusbydolomiteandtheformationofcavities,linedwithdolomicrospar,588

andoccludedbycalcite.Atthe“Tophatten”locality,achaoticbrecciaunitafewdmthickis589

locallyfoundatthebaseofthebedinsteadofsandstone.Everywhere,thetopofthebedis590

markedby10-20cmofdololaminiteswithacomplexmicrostructure,whichalternateonacm-591

scalewithdisplacivelycementedsands(Fig.10E).Thelaminaecanbecomposedofdolomicrite592

ordolomicrosparandcontaincommonfenestrae(Fig.9E,H),whilstsurfaceexposurereveala593

finelytexturedmicrotopography(Fig.10G).Locally,slightlylowerinthebed,limestone594

laminites(FA5)forma10cmhorizonoverlyinga20-30cmchaoticcarbonatebreccia(Fig.10I)595

andgraduallybecomedisrupteddownwards.596

DolomitefromFA3ischaracteristicallybrightunderCL(Fig.11B-D).Infacies3S,597

dolomicriteclotsareuniformlybright,whilstadjacentdolomicrospardisplaysdullergrowth598

fillingsmallfenestraewhilstlargerfenestraearefilledbydolosparwithmorevariableproperties599

(Fig.11B).Manganese(3000-4000ppm),Fe(10000-15000),Na(2000)andSr(250-350)ppm600

valuesareallunusuallyhigh(Baoetal.,1989)andourunpublishedelectronmicrosopeimages601

andmicroanalysesshowenrichmentsalsoinmanytransitionmetalsandrareearthsanda602

consistentchemicalzonationwithincrystalsofdolomicritemosaics.Infacies3D,adifferencein603

meanCLbrightness,andhencetimingofgrowth,cansometimesbeobservedbetweennodules604

andsurroundingmatrix(Fig.11D),whilstlocallyzonationwithinindividualcrystalsgrowing605

Page 28: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

28

betweensiliciclasticsandgrainscanbeobserved(Fig.11C).Sulphateconcentrationsarehigh606

(4000ppm);thereisnoΔ17Oanomalybuthighδ18Oinsulphate(Baoetal.,2009;Bennetal.,607

2015).608

Carbonandoxygenisotopevaluesarecorrelated(Fig.7),butFig.12illustratesthatthe609

twoanalysesfrommemberW3lieabout1‰higherinδ13Cthanexpectedfromthistrend.610

Facies3Dhasarangeofδ18Ofrom-1.9to+11.4‰,butthemeanvalueisbiasedupwardsby611

multipleanalysesfromasamplewhichpassesupintofacies3Swhichtendstohavehigher612

values(Fig.12).Thelatterfaciesisnotableforpossessingpossiblytheheaviestoxygenisotope613

valuesofcarbonaterockssofarrecordedinthegeologicalrecord(Baoetal.,2009),withvalues614

upto+14.7‰(VPDB)beingfound(Fig.12).Amicromilltraverse(Fig.10H,J)demonstratesthat615

theseextremehighvaluesaremaintainedonthemm-scale,butthatoverpetrographic616

boundaries,δ18Ovaluescanvarybyasmuchas6‰.617

618

Interpretation619

ForFacies3D,thedolomicritic,syndepositional,passivetodisplacivegrowthwithnodular620

structureandcracksischaracteristicofcalcretesinwhichprecipitationoccursasaresponseto621

evaporativelossesatoraboveawatertable.Althoughrare,thespar-filledpseudomorphs(Fig.622

11A),interpretedasafteranhydrite(Fairchildetal.,1989),providefurtherevidenceof623

evaporativeconditions.Specificallytheevidencefordisplacivegrowth,nodulesandcracks624

servedtoidentifyalphacalcretes(Wright,1990)whichinPhanerozoicexamplestendtooccur625

onnon-carbonatesubstratesandinmorearidconditionsthanthemorecommonbetacalcretes626

containingstructuresresultingfromhigherplants(Wright&Tucker,2009).Thehighδ18Ovalues627

andcovariationwithcarbonisotopesrequireevaporation(Fairchildetal.,1989)whichatthe628

highendofthespectrumreachesextremeproportionsandhencerequiresanextremelyarid629

Page 29: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

29

environment.Dolocretesareratherlesscommonthancalcareouscalcretesandtendtobe630

betterdevelopedwhenoriginatingfromgroundwaterthanwhenpedogenic,asinTriassicstrata631

oftheParisBasin(Spötl&Wright,1992).Inthisexample,pedogenicandgroundwater632

dolocreteshadasimilarrangeofstableisotopecompositionstoeachother,buttheir633

covarianceslope(1:1)wassteeperthaninFA3.Overalltheabsenceofanysignaloflightcarbon634

fromoxidationoforganicmatterinFA3isnotable,butconsistentwiththeundetectablylow635

organiccarboncontentsoftherocks.InPhanerozoicrocks,thepresenceofsomebiological636

features(e.g.rootstructures)canservetoidentifypedogeniccalcrete,butthisisnotpossiblein637

theProterozoic.638

TheWilsonbreenFormationdolocretesareinterpretedaspedogenicprimarilybecause639

theextremelyhighδ18Ovalueswouldrequiregroundsurfaceconditionsforsuchextremely640

effectiveevaporationtooccur.Aswillbediscussedlater,thisinterpretationisalsoconsistent641

withtheverticalfaciesrelationships.642

RegardingFacies3S,thedifferentiatedmicrostructuresareagaintypicalofmicrobial643

deposits.Suchlaminitesarefoundinassociationwithsoilsandintermittentlyfloodedsubaerial644

surfaces(Alonso-Zarza,2003),althoughyoungerexamplesincluderootmatsfromhigherplants645

thatareclearlyinapplicablehere.Klappa(1979)ascribedcm-scalelaminateddeposits“hard646

pan”oncalcretizedlimestonesubstratesasoriginatingfromtheactivitiesoflichenwhich647

colonize,boreintoandformaccretionarydepositsonsurfaces.Thelichen-formeddepositsdo648

exhibitfeaturessuchasfenestrae,sedimentincorporationandvariablecrystalsizewhichare649

consistentwiththeWilsonbreenFormationexample.However,noevidenceofalterationof650

underlyingcementedmaterialhasbeenfoundandtheWilsonbreenFormationmicrobial651

laminaearemuchmoredistinctandarenoticeablydomed,contrastingwithlaminarcalcretes.652

Infact,themicrobiallyinfluencedlayeringisindicativeofactiveupwardaccretion,ratherthan653

Page 30: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

30

slowpedogeneticalteration.Theaccretiontooktheformbothofgrowthofcarbonate-654

mineralizedmicrobialmats,butalsosandlaminae.Ashallowdepressiononafloodplain/playa655

marginseemsapposite.Acombinationofahighwatertablefromwhichevaporationcould656

occur,orveryshallowwaterinundationfollowedbydryingoutandsedimentaddition,perhaps657

byaeolianactionisindicated.AtDracoisen(Fig.9I),thegradationalrelationshipbetween658

laminatedcarbonateandunderlyingchaoticbrecciaisaclassiccharacteristicofevaporite659

dissolutionbreccias.Thecalcite-cementednatureofthebrecciaisconsistentwithremovalof660

oneormorehorizonsofcalciumsulphateevaporiteseitherduringdepositionofthebed,or661

soonafterwardsfollowingresumptionofglacialconditions.ApossiblysimilarMesoproterozoic662

exampleisprovidedbyBrasier(2011)fromOntarioinwhichstromatolitesareassociatedwith663

collapsebrecciasandcalcretes,andinferredtoformataplayalakemargin.Likewise,the664

modernMcMurdoDryValleyscontainarecordofmanyshallowsalinelakesandsaltpans665

(Wilson,1981).666

Dolomiteisknowntobecapableofprecipitatingasaprimaryphaseorbyreplacement667

ofaCaCO3precursorinarangeofsurfaceenvironments(Warren,2000),althoughtheinitial668

crystals(protodolomite)maylackwell-developedorderingreflectionsandthesecanincrease669

overtime(Greggetal.,1992).ThepetrographiccharacteristicsofFA3dolomicriteareconsistent670

withveryearlydiageneticreplacementofaprecursorcarbonateorofprimarygrowthof671

(proto)dolomiteandthelatterisclearlythecaseforzoneddolomicrosparcavity-linings(cf.672

HoodandWallace,2012).Thepresenceofeuhedralcrystalswithindisplacivefabrics(Fig.11C)is673

distinctive.AlthoughTandon&Friend(1979)interpretedeuhedralgrowthzonesindisplacive674

calciteincalcretesasevidenceofrecrystallizationitismorelogicaltoseeitasaprimarygrowth675

fabric,asarguedfordolocretesbySpötl&Wright(1992).676

Page 31: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

31

Theextremelyhighδ18Ovaluesruleoutpost-depositionalmodificationandan677

interpretationofthevaluesasreflectiveofthedepositionalenvironmentisalsoconsistentwith678

thetraceelementchemistryandpreservedcrystalgrowthzones.ThehighMncontentand679

absenceofpyriteimplieslowpO2,butnotanoxia,althoughthesulphateoxygen-isotope680

systematicsareindicativeofmoreredoxvariabilitythaninFacies2S.Specificallybacterially681

mediatedelectronshuttlingbyMn-speciescancatalyzerepeatedtransitionsbetweensulphate682

andsulphitecanpermittheerasureofaΔ17Osignatureandcreationofahighδ18Oinsulphate683

(Baoetal.,2009).Suchprocessescouldcatalyzedolomitenucleationgiventheevidencefrom684

otherfieldandexperimentalstudiesonthecatalyticroleofsulphatereduction(Vasconceloset685

al.,2005;Zhangetal.,2012).Theinferredredoxvariationsmayberelatedtoasupplyofbrine686

primarilyfromwithinthesediment,contrastingwiththesurfacewatersfromwhichFacies2S687

precipitated.Theoccurrenceofthehighestδ18OvaluesinlaminateddolomitesofFacies3Sis688

consistentwiththeirformationbyverynear-surfaceevaporation,whilstabruptvariationsin689

δ18O(Fig.10J)aresuggestiveofoccasionalinundationsbylessevolvedwaters.Insummary,FA3690

providesexamplesoffaciesthatstretchtheboundariesofearthsurfacephenomenaand691

indicatedepositioninunusuallyaridterrestrialenvironments.692

693

FaciesAssociationFA4(Facies4I,4Rand4S)694

695

Description696

Facies4Risthemostcommonfaciesinthisassociationandconsistsofrhythmicalternationsof697

carbonateandsortedterrigenoussediment,whichoccurinassociationwithstructuressuchas698

waveripplelaminationordesiccationstructures.Thefinecarbonatelayersareusually699

dolomitic,ormixeddolomitic-calcitic,butincludesomelimestone(Figs.7A,12).Universally,the700

Page 32: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

32

coarsersedimentlayers,composedofsedimentinthesizerangecoarsesilttofinesand,show701

signsoftractionalsorting,whichisakeydiscriminantfromFA5.Whereverlaminaeare702

sufficientlythick,undulatorycross-laminationisdisplayed(Fig.13B)whichcanbeconfidently703

identifiedaswave-generated.Locally,symmetricalripplesarepreservedincross-section(Fig.704

13A)oronbeddingplanes(Fig.13C).Dryingoutiscommonlyindicatedbydesiccationstructures705

withassociatedsmallintraclasts(Fig.13B,H)orsaltpseudomorphs(Fig.13D),althoughsuch706

structuresarenotpresentinthemajorityofsamples.Fourexamplesofapparentlynon-707

evaporiticcrystalpseudomorphshavebeenfound,butthesearemuchbetterdevelopedinFA5708

andaredescribedinthatsection.Carbonatelaminaearemicriticintextureandtypically709

uniform,althoughdifferentiatedclottedmicrostructuresalsooccur,similartothosedescribed710

belowinFA5,consistentwithprecipitationbeneathbenthicmicrobialmats(Riding,2000).This711

facieswaslocallyhighlyaffectedbysubsequentglacitectonicdeformationatthetopofW2at712

Ditlovtoppen,asdescribedbyFlemingetal.(2016).713

TheisotopetraverseofFig.13Jrevealsashiftinisotopesfromthesandylayersinto714

dolomicriteconsistentwithanauthigenicoriginforfinedolomite,whichisconfirmedbyCL715

observations(Fig.14A,B).Thelimestonelaminaeinthisfaciesassociationdisplayarangeof716

δ18Ovaluesfrom-11.9to-3.2withameanof-8.1‰,whereasthedolomiterangesfrom-5.3to717

+1.4withameanof-1.9‰(Fig.7B).Thedifferenceof6‰inmeanvalue,comparedwith718

inferredandobserveddifferencesof2.6-3‰forcalciteand(proto)dolomiteprecipitatingfrom719

equivalentfluids(Land,1980;Vasconcelosetal.,2005)impliesthatthedolomitesprecipitated720

onaveragefromwaterswithhigheroxygenisotopevaluesandthedolomitesdisplayisotope721

covariance(Fig.7B).Traceelementdatawillbepresentedelsewhere,butFA4andFA5722

dolorhythmitesalsoshowacovariationofSr(from100to200ppm)withδ18Oandsomewhat723

Page 33: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

33

higherSrvaluesincalcites,andlikeotherWilsonbreenprecipitatedcarbonates,theyareMn-724

rich(>1000ppm).725

Facies4Ioccurstypicallyasdiscretebeds,normally10-20cmthick,ofsharp-to726

erosionallybasedintraclasticsandstonewithwave-generatedlamination.Thesandmatrixis727

moderatelysortedcoarsesilttomedium-grainedsandandintraclastsaresometimesconfined728

tothelowerhalfofthebed.SeveralsuccessivebedsareshowninFig.13Hinasection729

transitionalupwardsfromFaciesAssociation5,andanexampleofthisfaciesinthinsectionis730

illustratedinFig.13G.Twooccurrencesofooids(Fig.13E)havebeenfound.AtNorthKlofjellet,731

highinagenerallypoorlyexposedW2section,isa1mbedofindistinctlycross-laminatedsands732

alternatingwithcm-scaledesiccatedlimestonebedscontainingscatteredsandgrains.Thisisthe733

lateralequivalentoffluvialfacies(FA2)1kmawayatSouthKlofjellet.Ooidsarefoundnearthe734

topoftheunit,butmakeuplessthan5%ofthesandfraction.Arangeofcorticesfrom735

superficialcoatingsthroughtofullydevelopedooidswithnovisiblecorearedeveloped.Fabrics736

aremicriticandmicrospariticwithacrudeconcentricstructure.Themeanoxygenisotopevalue737

ofthelimestone(>90wt.%CaCO3)is-7.6‰.Thesecondexampleistheoccurrenceofasmall738

proportionofooidswithinthin(0.1m)cross-laminatedgreensandstoneunderlyingFA5739

sedimentsinmemberW3atOrmen(Table3).740

Facies4SisrepresentedbydistinctsandstonebedsintheDitlovtoppenandDracoisen741

sections.Thesesandstonesarehighlyuniform,consistingofwell-sortedfine-tomedium-742

grainedsandstone,withverywell-roundedgrains.Beddingstructuresareconfinedtoan743

indistinct,discontinuousparallelstratification.TheDitlovtoppenexamplepresentsasatabular3744

m-thickbedoverthe200mwidthoftheoutcrop.Itslowerfewdecimetresarelocallythinly745

laminatedsandanddolomite,changinglaterallytouniformsandstone.Twothinbedsof746

dolomitewithfloatinggrainsarealsofoundatthetopoftheunit.Grainsareverywell-rounded747

Page 34: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

34

andrangefromveryfinetocoarse-grained,butmostoftherockvolumeiscomposedof748

mediumtocoarsesandgrains(Fig.13F).Theonlysedimentarystructuredisplayedisan749

indistinctcm-scalehorizontallaminationwithslightvariationsingrainsize,orlocallywithmm-750

scalelaminaewithsiltydolomiticmatrix.Locallythelaminationdisplayssedimentary751

deformation,suggestiveofupwardfluidescape.Oxygenisotopesinseveralsamplesareslightly752

heavierthanexpectedfordetritalmatrix,consistentwithadditionofprecipitateddolomite.753

Thereisatransitiondownwards(Fig.10H)toFacies4Rinwhichmm-cmscalesandlaminae754

betweenrhythmiccarbonatesdevelopcross-laminationandwave-ripplemorphology,and755

within20-30cmoftheboundaryoccursathinrepresentativeofFacies4I(intraclasticflake756

breccias)anddesiccationstructuresindicativeofemergence.757

758

Interpretation759

Facies4Rand4Idisplayevidenceofsortingandreworkingofthesedimentsbywaveaction.This760

indicatesdepositioninawaterbodythatwasunfrozenatthetimeofdepositionofthecoarser761

layerswhichrepresentdistincttimeperiodswithmorepronouncedwaveaction.Thesharp-762

basedintraclasticbeds(Facies4I)appeartorepresentdistinctstormeventsinwhich763

considerabledisruptionandtransportationofcementedcarbonatelayersoccurred,althoughat764

leastinsomecasestheselayerswerealreadydisruptedbydesiccation.765

Thegrainsandstructuresinfacies4Rand4Iareconsistentwitheitheramarineora766

lacustrineorigin,althoughitisnotedthatthereisanabsenceofdemonstrabletide-related767

phenomenon(cf.Fairchild&Herrington,1989)andalthoughthereisinsufficientinformation768

availabletoprovideaquantitativedescriptionofwaveclimate(Allen,1984),nowave769

phenomenawereseenrequiringoceanicconditions.Althoughooidsarebest-knownfrom770

marineenvironmentsandthickooliticunitswereusedasacriterionforwarmclimatesinthe771

Page 35: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

35

NeoproterozoiccontextbyFairchild(1993),ooidshavebeendescribedfromQuaternary772

sedimentsreworkedintoAntarcticmoraines(Raoetal.,1998)andinvariousmodernalkalineor773

hypersalinelakes.Lacustrineooidsforminwaterdepthsof1-5m,withthebestdevelopmentin774

shallowestwater.TheWilsonbreenFormationexamplesdonotresemblehypersalinearagonite775

ooidswithradialstructure(e.g.Halley,1977),consistentwiththeoxygenisotopecomposition776

whichdoesnotindicateanyevidenceforhypersalinity.Ooidsinsmallermodernlakestendto777

besuperficialwithrelativelyirregularoutlines,whereasfullydevelopedooidsarefoundonthe778

largeLakeTanganyikainBurundi(Cohen&Thouin1987)correlatingwithstrongerwaveaction.779

Chemicalargumentsfavouralacustrineoriginforthecarbonates.Theyprobablyarose780

assomecombinationofwatercolumnprecipitatesorwithinthesediment,e.g.asmicrobially781

influencedprecipitates.Dolomitecouldbeprimaryor,giventheCLevidence,beaveryearly782

diageneticreplacementofCaCO3,althoughnotonewithhighSrcontent.Giventheconsistent783

chemicalcharacteristicofMn-enrichment,itseemshighlyimprobablethatburialdiagenetic784

recrystallizationtookplaceandsoitismoststraightforwardtointerpretthestableisotope785

valuesasprimary,inwhichcasethewiderangeofδ18Ocompositionsisnotablebecauseitis786

muchgreaterthanexpectedfrommarinewaters.Inthecaseofthedolomites,thisismuch787

greaterthantherelativesmallchanges(1-2‰)thatmightbeexpectedtoaccompanyincreased788

orderingfromaninitialprotodolomitetoanordereddolomite(Greggetal.,1992;Kaczmarek&789

Sibley,2014).Theformationofdolomitefrommore18O-rich,evaporatedwaters,isconsistent790

withthestandardparageneticmodelinplayalakes(Dutkiewiczetal.,2000),althoughchanges791

insourcewatercompositionaswellasevaporationarelikelytohaveoccurred.792

Thewell-roundedsandgrainsfoundinFacies4Sareconsistentwithaeoliantransportasinthe793

McMurdoDryValleysofAntarctica(Fig.3C;Calkin&Rutford,1974;Hambrey&Fitzsimons,794

2010).Howevergrainswithsuchatransporthistorycanfinallybedepositedinaeolian,fluvialor795

Page 36: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

36

lacustrinesettings.Theconsistentgrain-sizecharacteristicsofindividuallaminaeandgood796

sortingofthecoarselaminaeinsteadpointtotractionalflows,butlackofcross-stratification797

rulesoutaeolianorsubaqueousdunes.Hendyetal.(2000)developedtheice-conveyormodel798

toaccountforsandydepositsonthefloorsofcertainice-coveredAntarcticlakeswithfloating799

glacier-icemargins.Wind-blownsandmeltsitswaythroughtheiceincontrasttogravelwhich800

remainsonthesurfacewhereitistransportedbyiceflowtothedistallakemargins.Suchan801

environmentcandeveloptheindistinctparallelstratificationobservedinthisfacies,buttwo802

featuresofthemodernsystemsnotobservedaremoundedbeddingandupwardgradationinto803

coarsegravel(Halletal.,2006).TheDitlovtoppenbedistabular,whereasinthemodernlakes804

sandtransmissiontotheiceisfocused,leadingtomoundsandridgesonthelakefloor.805

AplausiblealternativeforFacies4Iisaninter-duneenvironment,asettingwherewind806

ripplemigrationwouldbeexpected(Lancaster&Teller,1988).Suchphenomenacouldgiverise807

totranslatentsub-horizontallaminae,representingthesetboundaries,withoutinternalripple808

cross-laminationbeingpreserved(Mountney&Thompson,2002).Awatertablethatwasat809

leastseasonallyhighisrequiredtoaccountfordewateringstructuresandtheprecipitationof810

dolomite(incipientdolocrete).Insuchmodernenvironmentsseasonalfloodingbysurfacewater811

oremergentgroundwatermightoccur,accountingforoccasionaldolomicritelaminae.Thestyle812

ofstratificationisinconsistentwithdunedeposition,butisthatexpectedonasandflatorplaya813

withahighwatertableandfitswiththetransitiontoFacies4Rand4IobservedinFig.10H.814

OverallFA4representsshallow-waterandexposedsedimentsassociatedwithawave-815

dominatedshorelineandsusceptibletowindreworking.Althoughdistinctionofmarinefrom816

lacustrinecoastalsettingsisnevereasy,thewiderangeofoxygenisotopecompositionsof817

micriticMn-richcarbonatesfavoursalacustrineorigin.818

819

Page 37: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

37

FaciesAssociation5(Facies5Dand5R)820

821

Description822

Thisfaciesassociationisdominatedbyrhythmicalternationsofcarbonatesandpoorlysorted823

clasticsediment(Facies5R).Locally,gradationsareseentobrecciatedrhythmiteswhichare824

distinguishedasFacies5D.FaciesAssociation5isonlyaminorconstituentofmostoftheW2825

sections,beingmoreprominentintheSKlofjelletandBacklundtoppen-KvitfjellaRidge(BAC)826

sections(Figs.S5andS6),butitisthedominantcarbonate-bearingfaciesassociationinmember827

W3whereitalternateswithice-rafteddiamictitesofFA6.828

Fig.11illustratesvariantsofFacies5RfoundinmemberW2.Fig.11Aexhibitshighly829

regularmillimetre-scalealternationsoflimestoneandwacke.Theclasticsedimentincludes830

manymicroscopicdiamictitepellets(arrowed)whichareanormalfeaturefoundinthisfacies,831

whereasthesmallpseudomorphscrossinglaminaboundariesarefoundmorelocally.Pebble-832

sizedfragmentsinclasticlayersareseeninFig.11Cand11D,thelatterdisplayingadropstone833

textureassociatedwithdisruptionoflimestonelaminae.Anindicatorofinstabilityisshownby834

theminorfaultinFig.11Cacrosswhichthenumberoflimestonelaminaechanges,indicating835

erosionontheupthrownsideandhencethatthisisasedimentarygrowthfault.Larger-scale836

disturbanceisshownbythefoldsinFig.11Finwhichcarbonatelaminaedisplaysomeplasticity,837

butarealsofractured,indicatingpartialcementationandasedimentaryoriginforthefolds.838

Abovethis,thesedimentsarevisiblydisruptedandtransitionaltoFacies5D.Thethickest839

exampleofafacies5Dobservedwasa0.4mbedatDitlovtoppen,containingbothintraclastic840

andterrigenoussediment,andwhichdisappearedlaterallywithin100m.Itclearlywasderived841

bylocalizedresedimentationofFacies5R.842

Page 38: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

38

InmemberW3,Facies5Rispresentasisolatedbedsupto1mthickexhibitingsimilar843

alternationsofcarbonatelaminaeandwacke/diamictiteasinmemberW2(Fig.16).Fig.16A844

illustratesthebaseofonesuchbedwithclearalternationsofthickdiamictitelaminaeand845

carbonatepassingupwardsintomorecarbonate-dominatedfacieswithonlythinclastic846

laminae.ThedominanceofprecipitatedcarbonateinthisfaciesisshowninFigs.16C,D,E,the847

latterbeingthesoleexampleofprecipitatedcarbonateinmemberW1.Disturbancebysoft-848

sedimentfoldingisnearlyuniversalandthesamecombinationofductileandbrittlebehaviour849

ofcarbonatelayersisshown(Fig.16D,E)asinmemberW2.Fig.16Billustratesthedevelopment850

ofaresedimentedbed(Facies5D)dominatedbyintraclasts,butwithsomepoorlysorted851

sedimentmaterial,overahorizonwithsoft-sedimentfolds.852

ItiscommonforcarbonatelayersinFacies5Rtoshowirregularlaminationordomal853

structures.Therecanbeupwarddomingoflayertops(Figs.15C,16C)uptocentimetre-scale854

(Fig.15F).Topographycanbeinheritedfromunderlyinglayers(Figs.15F,16C),whereas855

sometimesthebaseaswellasthetopofthelayerisdomedupwards(Fig.15C).Fig.15Bdisplays856

boththesefeaturesinlayersunderlainbycomplexcementcrustswithsomeremainingporosity.857

Thecrustsshowneitherabotryoidalnoreuhedralmorphologyandarecomposedof858

polycrystallinecalcitemosaicsinwhicheachcalciteshowsthesamezonationinCL.Thereare859

transitionsthroughbedswithonlyminorclasticdebris(Fig.15F)tomoremassivelimestones860

withcomplexmicrostructures.861

Petrographically,carbonatelaminaecanberegularly(rhythmically)developed,millimetre-scale862

inthickness.Laminaeareoftenheterogeneous,andmaybeeitherdolomitic,calcitic(Fig.17A,B,863

D,F)ormixedmineralogyincomposition(Fig.17C).Whereheterogeneous,laminaemayshow864

anincreaseincrystalsizeupwards(Fig.17A)ordisplaymoreorlessevidentclottedtexturesof865

micritewithinmicrospar.UnderCL,bothcalciteanddolomitepresentcoherentreplacivefabrics866

Page 39: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

39

(e.g.Fig.17F),inwhichcrystalswithidenticalzonesgrowthroughoutthefabricandenlargeinto867

fenestrae.Rareexamplesofmicriticrodsaround10-20µmindiameter,withminorassociated868

pyrite,arereminiscentofcalcifiedsheathssuchasfoundinthepre-CryogenianDraken869

Formationinthestudyarea(cf.Knolletal.,1993),butarenotasdistinct.Millimetre-scale870

convexitiesontheupperbedsurfaceappearasthromboliticintexture(Riding,2000)with871

irregularfenestrae(Fig.17B).Clasticlaminaetendtolevelthemicrotopography(Fig.17A),872

whilstindividualsandgrains,dropstonesordiamictitepelletscanoccuranywherewithinthe873

carbonatefabrics(Fig.17D).874

TraceelementcompositionsofcarbonatearesimilartoFA4.Thelimestonelaminaein875

thisfaciesassociationdisplayarangeofδ18Ovaluesfrom-5.6to-12.8‰withameanof-9.2‰876

andtheδ13Cvaluesalsodisplayalargerangefrom-2.1to+3.5‰.Althoughthefullrangein877

δ13CisshownbymemberW2,valuesinmemberW3tendtobelower(Fig.12).FA5dolomite878

rangesfrom-10.3to+3.7‰,withameanof-3.2‰(Fig.7B)andasforFA4,thedolomites879

displayisotopiccovariance.880

CommonexamplesofcrystalpseudomorphsoccurinFA5,usuallyassubhedralto881

euhedralcrystals,variablyjoinedintoconfluentmassesembeddedwithinorapparentlycutting882

acrosslamination(Fig.18E,F,G).Insomecases,trainsofcrystalsarealignedalongor883

concentratedwithinparticularlaminae.Sizeofindividualcrystalsissimilarwithinsamplesand884

rangesfrom0.1-0.2mm(Fig.18F)to1-3mm(Fig.18B,19A),themostcommonsizebeing0.5-1885

mm(Fig.186E,G).Therangeofcross-sectionsisdominatedbyfour-sidedorsix-sidedfiguresof886

crystalswithequanttocolumnarhabit.Pseudomorphsareequallylikelytobedevelopedin887

rhythmiteswithcomplexmicrostructuresasinrhythmiteswithuniformmicrite.Limestone888

hostsforpseudomorphs(n=15)hadameanδ18Ocompositionof-8.8(range-6.2to-12.7)‰889

Page 40: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

40

anddolomiteslikewise(n=4)mean=-1.92,(range-6.4to+1.7)‰,thatissimilartoFA5asa890

whole.891

Whilstthewithin-sedimentmodeofoccurrenceisfoundinbothmembersW2andW3,892

themostspectacular,upward-growingcrystalshaveonlybeenseenattwolevelsintheS.893

KlofjelletsectionofW3.Apolishedhandspecimen(Fig.19A)displaysthreedistinctcrystal894

horizonsofwhichtheuppertwoareshowninthephotomicrographofFig.18B.Thecrystals895

evidentlygrewfreelyupwardsandcrystalterminationsarestronglydrapedbyoverlying896

sedimentlayersindicatingthatthecrystalsformedatthesediment-waterinterface.Indifferent897

cases,theyaredrapedeitherbycarbonate(e.g.formingroundedmassesonthelowerhorizon898

ofFig.18B),orpoorlysortedsediment(wackeordiamictite).Inthelattercase,crystalfacesare899

variablycorrodedatthecontact(Fig.18B,D).Measurementoftheinternalcrystalangles(=180°900

minustheapparentinterfacialangle)incutsectionsofthissampleyielded75measurements901

assignedto10°bins.Theresultsdisplaytwomodescentredaround40-50°and90-110°(Fig.902

18C).Inspectionofthecrystalpseudomorphswhichgrewwithinsediment(Fig.18E,G)is903

consistentwiththeseresults.904

Thepreservationofthepseudomorphsistypicallyinthesamemineralasthehost905

carbonate,dolomiteorcalciteasappropriate.Insomecases,theinfillingphaseiswholly906

cementing(Fig.18E),whilstinothersthevariableinternalfabricspointtoadominantly907

replaciveorigin(Fig.18G).Suchanoriginisveryclearfortheupward-growingcrystalswhere908

eachispseudomorphedinamosaicof20-100µmcalcitecrystals,whichinstainedthinsection909

showanon-ferroancoreandaferroanperiphery(Figs.18D,20A).910

911

Interpretation912

Page 41: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

41

Thelackofsize-sortinginFA5sedimentsindicatestheywerelaiddowninawaterbody913

lackingsignificantcurrentactivity,butonunstableslopesassuggestedbythesoft-sediment914

folds,interpretedasslumpstructures.Alltransitionsoccurfromdisturbedandslump-folded915

Facies5Rtoresedimenteddiamictites(Facies5D,interpretedasdebrisflows)composedlargely916

ofFacies5Fblockswithsomeexoticclasts,areseen.TheclasticsedimentinFacies5Risclearly917

glaciallyderivedbecauseitisinvariablyverypoorlysorted,containsdiamictitepelletslikelyto918

bederivedbyicerafting(tillpellets)andlocalice-raftedclasts(dropstones),andgravelis919

presentinthickerlaminae.AlsoFA5transitionsupwardsanddownwardsintostratified920

diamictitesinterpretedbyFlemingetal.(2016)asrepresentingmorecontinousdepositionfrom921

floatingice.Incontrast,nodistinctfine-grainedsediment-gravityflowswereobserved,implying922

lackofproximitytofluvialinputtothewaterbody.Thecarbonatelaminaecommonlydisplay923

evidence(thromboliticdomalgrowthmorphologyandcomplexmicrostructures)ofamicrobial924

origin(Fairchild,1991;Riding,2000),includingmuchevidenceforin-situcarbonate925

precipitation,coupledwithsomesiliciclasticsedimentincorporation.Acombinationof926

photosynthesisandfavourablenucleationofcarabonatewithinextracellularpolymeric927

substanceanddeadcellularmaterialpresentinmicrobialmatscanbeenvisagedaspromoting928

carbonateprecipitation(Riding,2000;Bosak&Newman,2003).However,insomecases,there929

isnoclearmicrobialstructurewithincarbonatelayersandwecannotruleoutsettlingofwater-930

columnprecipitatesinthesecases.931

Thehighlyregularnatureofthemm-scalecarbonate-siliciclasticcouplets,particularlyin932

thethicknessofthecarbonatelayers,isstriking(Figs.15,16)andtherearemanymodernand933

lateQuaternarylacustrineanaloguesinwhichsuchcoupletsareannual,i.e.varves.Although934

thereisnobarriertosuchsedimentsformingundermarineconditions,itistruethat935

photosynthesisraisescarbonatesaturationfasterinlowionicstrengthwatersthaninseawater936

Page 42: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

42

(Fairchild,1991)andnomodernmarineanalogueshavebeendescribed.Thedominantprocess937

creatingcarbonatesinAlpinelakesiswater-columnphotosynthesisfromalgalblooms(Kelts&938

Hsü,1978),andthishasguidedmanyinterpretationsoflateQuaternaryvarves,allowing939

inferenceofasuccessionofeventsthroughtheyear(e.g.Neugebaueretal.,2012).However940

lakesvarygreatlyintheirhydrology,internalstructure,salinityandstateofcarbonate941

saturationandtherearemanydifferentpatterns,e.g.carbonatemineralproductionmay942

continuethroughtotheautumn(Shanahanetal.,2008)ormaypartlydependonperiodswhen943

thereisinputofionsfromriverineinput(Stockheckeetal.,2012),ormayinpartrelateto944

winterfreezingconditions(Kaluginetal.,2013).Variationsinredoxconditionsovertime945

influencethepreservationofvarvesinmodernlakesandinthecaseoftheGotlanddeepofthe946

brackishBalticSeaepisodicoxygenationepisodesmaytriggerachainofeventsleadingto947

characteristicMn-carbonatelayerssuperimposedontheannualpattern(Virtasoloetal.,2011).948

TheabsenceofburrowingorganismsinCryogeniantimesledtocontinuouspreservationof949

varvestructure,buttheMn-chemistryofthesecarbonatesisquiteconsistent(Fairchildetal.,950

1989;Baoetal.,2009)implyinglessstrongredoxfluctuationsinthewaterbody.951

Thecrystalpseudomorphsalsopresentimportantenvironmentalevidence.Thefacies952

occurrenceofthesepseudomorphsarguesagainstanevaporativeorigin.Althoughdolomite953

sampleswithhighisotopevaluesindicatessomeevaporation,theoxygenisotopecomposition954

ofthedominantlimestoneanddolomiteoccurrencesistypicalforfaciesassociation5andlacks955

evidenceforincreasedsalinity.This,togetherwiththecarbonatecomposition,impliesa956

carbonateprecursor.Theveryregularmodeofreplacementbycalcitewithinternalcrystal-957

growthzonation(Fig.17E)indicatesthattheprecursorwasmoresolublethancalcite,butstill958

capableofformingeuhedra,andhencecrystallineratherthanamorphous.Vateriteand959

monohydrocalcitecanberuledoutbecausetheyinvariablyformspherulitesormicrocrystalline960

Page 43: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

43

precipitates(Dahl&Buchardt,2006;Pollocketal.,2006;Rodriguez-Blancoetal.,2014).961

Althougharagonitetypicallyformsmosaicsofmicrocrystallineorthorhombicfibres,itiscapable962

offormingradiatingpseudo-hexagonaltwinned“ray”crystalsofsimilarsizetothoseseeninthe963

presentstudy(Fairchildetal.,1990,Riccionietal.,1996).However,wheresix-sidedcross-964

sectionsareseenintheWilsonbreenFormation(Fig.16E),theyareoftenelongatedratherthan965

equant,andthemostelongatedcrystalsincross-sectionshowapairofterminatingfaces,nota966

basalpinacoidcharacteristicofaragonite.StrontiumcontentofWilsonbreenrhythmitesisalso967

low,whereasitistypicallyhighinformerlyaragoniticlimestones(e.gFairchildetal.,1990).968

Ikaiteisahigh-pressurephase,metastableatEarthsurfaceconditions,butbecomes969

relativelymorestableatcoldtemperatures(Kawanoetal.,2009),andnearlyalwaysforms970

naturallyatcooltemperatures(-1.9to+7°C,Huggettetal.,2005),onthesedimentsurfacein971

spring-fedalkalinelakesandfjordsandwithinmarinesediment(Buchardtetal.,2001).Itreadily972

disintegratestoformcalciteunlessthesolutioncontainsaninhibitorforcalciteprecipitation.973

Bischoffetal.(1993)foundthatphosphatewasmosteffectiveinthisrespectandindeed974

significantphosphatelevelsaretypicalofmodernikaiteoccurrences(Huggettetal.,2005;975

Sellecketal.,2007).Itisacknowledgedthatikaitemayhavebeenmuchmorewidelypresentas976

aprimaryphasethanhadbeenrealized(Shearman&Smith,1985;Bischoffetal.,1993;977

Buchardtetal.,2001).Thisisbeingborneoutbynewdiscoveriessuchasinseaice(Fig.19C,978

Nomuraetal.,2013)andasmillimetre-scalecrystalsincoldlakes(Fig.19D,E;fromthe979

PatagonianArgentinianLagunaPotrokAlke,Oehlerichetal.,2013).980

Inthediscussionabove,ikaiteastheprecursorphaseforthepseudomorphsintheFA5981

wasdeducedbyaprocessofelimination,butitisimportanttodemonstratethattheobserved982

propertiesareconsistentwiththisidentification.Ikaiteisamonoclinicmineralthatvaries983

considerablyinhabit,fromequant(Sekkal&Zaoui,2013)toelongateprismatic(Buchardtetal.984

Page 44: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

44

2001;Lastetal.,2013)andthedominantcrystallographicformsvarygreatly,andmaybe985

steppedorcurved(Shearman&Smith,1985),whichmakeitspositiveidentificationdifficult.986

Mostofourknowledgeofitslikelymorphologycomesfrompseudomorphs,includingthe987

“bipyramidal”aggregatesofcrystalsknownasglendonites(Davidetal.,1905;Fig.18A),foundin988

shalesassociatedwithPermianglacialdepositsandothercool-waterenvironmentsandthe989

“thinolites”ofQuaternarylakesofthewesternGreatBasin,USA,figuredbyDana(1884)[Fig.990

19B]andinterpretedasikaitepseudomorphsbyShearman&Smith(1985)andShearmanetal.991

(1989).Swainson&Hammond(2001)reinforcedthisidentificationfollowingdeterminationof992

refinedlatticecellparametersofa=8.8,b=8.3andc=11.0Åwithangleβbetweenaandcof993

110°.994

ThepseudomorphsoftheWilsonbreenFormationareinterpretedtorepresenta995

combinationofforms.Prismandpinacoidformsmeetatinternalanglesof90°and110°when996

cutatahighangletothefaces.Thiswouldaccountforthehighermodeinthecrystalangle997

distribution(Fig.18C)andthecommon“rhomb”shapesinsection,similartothecrystalsinFig.998

19C.Secondlythe30-60°modeisinterpretedasrepresentingthejunctionsbetweenprismatic999

facessuchasthoseseentoterminatecrystalsinFigs.18A,19B,E.Itisnotablethatikaiteisonly1000

one-thirdasdenseascalciteandsopseudomorphsincalcitewouldbeexpectedtobeinitially1001

highlyporouseveniftheCaCO3wasprecipitatedlocally.Thisisconsistentwiththestylesof1002

preservationobserved(Fig.16),theexampleofFigs.17Eand18Dcomparingwellwithexamples1003

inLarsen(1994),Huggettetal.(2005),Sellecketal.(2007)andFranketal.(2008).Animportant1004

corollaryisthatthereplacivecalcitemosaicsobservedinFA5(andFA4)limestonesmore1005

generally(Figs.15B,17F)arelikewisealsolikelytobeafterikaite.1006

Identificationofadiageneticprocess,ikaitereplacement,thatisexpectedtobe1007

syngenetic,andpreservationofthecrystalgrowthzonesinCL,lendsweighttothepreservation1008

Page 45: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

45

ofprimaryisotopicchemistryinFA5(andFA4)carbonates.Furthermore,forFA5thealternation1009

withice-raftedsedimenttakentoindicatetemperaturesconsistentlyclosetofreezingand1010

hencegiventhelowδ18Osignatures,thewaterbodymusthavebeenfresh.ApplicationofKim&1011

O’Neil’s(1997)experimentallydeterminedfractionationfactorsextrapolatedto0°C,indicates1012

thatwatercompositionsontheVSMOWscaleareapproximately2.7‰higherthancalcite1013

compositionsontheVPDBscale,i.e.-8.3to-15.5‰,arangewhichislikelytoreflectmixingof1014

differentwatersources.Dolomitefacieshavevaluesonaverage6‰higher,implyingformation1015

fromwatersofonaveragehighersalinityandhighermeanMg/Ca(Mülleretal.,1972).1016

Thereareplentyofmodernanaloguesforcalcareousmicrobiallaminaeincoldlakes,1017

eveninsuchextremeenvironmentstodayastheice-coveredlakesoftheMcMurdoDryValleys1018

ofAntarctica(Parkeretal.,1981),orreducingsolutionhollowsbeneaththeGreatLakes1019

(Voorhuisetal.,2012).OnecuriousphenomenonarethickcementcrustsfoundinbothFA5and1020

FA2.ApossibleoriginfortheseisthephenomenonobservedincertainAntarcticlakesofthe1021

localizedliftingofmatsbygasgeneration(Parkeretal.,1981).Earlycementationofthemat1022

wouldallowamoregradualfilloftheresultingfenestraeasfoundinmodernAntarcticlakes1023

(Whartonetal.,1982).1024

Inrespectofseasonality,manywell-studiedmodernlakesshowaturnoverassociated1025

withcoolinginwinterandmayhaveafrozensurfaceinthatseason.Inthatcase,winter1026

sedimentationistypicallydominatedbyclayandorganicmatter(e.g.Lauterbachetal.,2011,1027

Kaluginetal.,2013),butboththesecomponentsarescarceintheWilsonbreenFormation1028

examples.InAntarctica,carbonateprecipitationislinkedtopeakwatercolumnormicrobialmat1029

photosynthesisinlateSpringtoearlysummer(e.g.Whartonetal.,1982;Lawrence&Hendy,1030

1985),limitedalsobynutrientavailability.Highersedimentinputwouldbeexpectedinthelate1031

summertoautumnwhenicecoverwasataminimum.1032

Page 46: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

46

Acluetotheoverallsimilarityofthemicrobialfabricsinthedifferentfaciesassociations1033

maybediscernedintheworkonAntarcticstromatolites.Thefirstmajormat-formertobe1034

identified(PhormidiumfrigidumFritsch)wasknowntobepre-adaptedtocoldenvironments1035

andlowlightconditions(Parkeretal.,1981)andtoleratesconditionsfromfreshtosalineand1036

anoxictooxygen-saturated.Simmonsetal.(1993)amplifiedthatthisspeciesisfoundnotonly1037

inlakes,butalsoinglacialmeltstreams,soilsandcryoconiteholesonablatedglaciersurfaces,1038

thatiseasilyspanningtherangeofenvironmentsencounteredformicrobialdepositsinthe1039

WilsonbreenFormation.Voorhuisetal.(2012)foundthataspeciesofPhormidiumalso1040

dominatedthematcommunityatlowoxygenlevelsina23m-deepGreatLakessinkholeand1041

demonstratedthatthegenushasgeneticpropertiesthatfacilitatetolerationofsulphideor1042

utilizationofitforanoxygenicphotosynthesis.Itthereforeseemsthatitislikelythatthe1043

WilsonbreenFormationmicrobialcommunitieswereoflowdiversity,asexpectedfor1044

extremophiles,withPhormidiumorasimilarancestor,dominatingthebiota.1045

1046

1047

Verticalandlateralfaciesrelationships1048

1049

Verticalfaciestransitionscanbeusedtoestablishwhethersedimentarysuccessions1050

havepredictablycyclic,Markovproperties(Powers&Easterling,1982).Atransitionmatrix1051

derivedfromalltheloggedW2sections(Fig.S7)demonstratesthatthereareverticaltransitions1052

betweenallofthefaciesassociations,exceptFA1/FA7whichareonlyfoundboundingW2,not1053

withinit.Thisindicatesastochasticelementtothefaciesaccumulation,buttherearealso1054

clearlypreferredtransitions.Althoughdataareinsufficientforformalstatisticalanalysis,since1055

totaloccurrencesofeachFaciesAssociationaresimilar,therelativenumberoftransitionsisa1056

usefulguide(Fig.22).Twosetsofthemostcommontransitionsconcurwiththeinterpretations1057

Page 47: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

47

madeearlier.Firstly,fluvialchannels(FA2)mostcommonlypassupintofloodplainsediments1058

(FA3)andvice-versa.SuchacloserelationshipcouldnotbeanticipatedifFA2weremarine.1059

Secondly,calcareouslakesediments(FA5)passintoFA6(glacilacustrine)andvice-versa(andthis1060

isalsothedominantpatterninmemberW3).Thisrelationshipemphasizesthetransitional1061

natureofchangebetweenmajoramountsoffloatingiceandreductioninicesufficientto1062

permitcarbonateaccumulationinmicrobialmats.Othertransitions,suchasthosebetweenice-1063

raftedsedimentation(FA6)andfloodplainandlake-marginalsediments(FA3and4),would1064

requiremoresuddenchangesinlakelevel.1065

Overall,theNortheastGreenland-NESvalbardNeoproterozoicsedimentarybasinis1066

envisagedaselongate,withbasementexposedinthefarSWinGreenland(Fairchild&Hambrey,1067

1995)andaxialglacierflowtotheNNEinNESvalbard(Flemingetal.,2016).IntheFormationas1068

awhole(Fig.1)theinferredpalaeogeographyisreflectedinsourcingthesubglacialadvances1069

fromtheSSWcorrelatedwithgrounding-linefaciesinW3onlyinthenorthernsections.Within1070

memberW2however,thefaciesmosaicsdonotillustratethisoverallpatternsoclearly.Fig.221071

illustratesthecumulativethicknessofeachofthefaciesassociationsanddemonstratesthat1072

thereisnosimplespatialtrendinfacieswithinW2,exceptperhapsforthehighincidenceof1073

fluvialfacies(FA2)inthesouthernmostsection.Suchacomplexfaciesmosaicimpliesthatwater1074

andsedimentarederivedfrommultiplesources.1075

1076

1077

Integrationofsedimentological,geochemicalandmodellingevidence1078

1079

InthissectionweextendtheargumentsastowhytheWilsonbreenFormationenvironments1080

canbeconsideredasacoherentwholeandhencebeconsideredbyamodernanalogueina1081

Page 48: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

48

singleclimaticsetting.Consideringfirstthesedimentologicalevidence,FA5containsclear1082

evidenceofsyn-glacialdeposition(ice-raftedsedimentandikaiteformation)andFacies4Rand1083

4Ishowsimilartypesofcarbonateaccumulation,andlocalizeddropstonedeposition,butmore1084

evidenceofreworkingbywavesinshallowwater.FA3evincesahyperaridterrestrial1085

environmentthatneverthelessbordersaccumulationofmicrobialtufasinstreamswith1086

regularlyfluctuatingdischarge(Facies2S).Facies4Sevokesalandscapewithsignificantaeolian1087

sedimenttransport.Allofthesefaciesareconsistentwithacold,aridterrestrialenvironment,1088

butfewresemblestandardNeoproterozoicfaciesbetweenglaciations(Fairchild,1993).1089

Secondly,thegeochemicalevidencefromsulphateisotopesystematics(Baoetal.,2009;1090

Bennetal.,2015)demonstratesthatthroughoutthedepositionofallthecarbonatefaciesin1091

W2andW3,atmosphericPCO2wasveryhigh(probablyoftheorderof0.1bar)andyettheseare1092

icehouse,notgreenhousesediments.1093

Thirdly,avarietyofmodellingconstraintsindicatethatglaciationandhighPCO2canonly1094

coincideinthecaseofaSnowballEarth,thatisaplanetthatisundergoingahysteresisofCO21095

andclimateinwhichinitiallowPCO2triggersglaciationwhichatacriticalstageofdevelopment1096

becomesgloballydistributedbecauseofice-albedofeedbacks.Anecessaryconditiontoescape1097

fromsuchanextremeiceageisbuild-upofhighPCO2.Modellingofcontinentalenvironments1098

withtheWilsonbreencaseinminddemonstratesthatatsufficientlyhighPCO2,glacialadvances1099

andretreatscanbetriggeredbyprecessionalforcing(Bennetal.,2015),butthattheclimate1100

remainsuniformlycold,changingprimarilyintermsoftheaccumulationofsnowandablationof1101

snowandice.Continentalicevolumeschangelittleandsosignificantsealevelchangewould1102

notbeexpected.Deglaciationtowarm,ice-freeconditionsisnotreversiblewithouta1103

necessarilyslow(multi-millionyear)fallinPCO2(LeHiretal.,2009).Inthisperspective,onceone1104

hasdemonstratednon-marineconditionsforpartoftheWilsonbreenFormation,thenthe1105

Page 49: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

49

expectationwouldbethatitwouldallbecontinentalincharacter.Marinetransgressionwould1106

notbeexpecteduntilglaciationisover,andindeedsuchadistincttransgressionisfound1107

truncatingtheWilsonbreenFormation(Fairchild&Hambrey,1984;Halversonetal.,2004).1108

OverallthisimpliesthatinSvalbard,isostaticdepressionbyneighbouringicesheetswasmuch1109

smallerthaneustaticsealevelfallduetobuild-upofice(Bennetal.,2015).Insummary,the1110

Wilsonbreenfaciesarelikelytoreflectamosaicofaridterrestrialenvironmentssubjectedto1111

glaciation,whichbringsusbacktothemodernanalogue.1112

1113

ComparisonwiththeMcMurdoDryValleysandsynthesis1114

1115

Theaimofthissectionisbothtoassessthedegreeofsimilarityofthemodernand1116

NeoproterozoicsettingsandtogainfurtherinsightsfrommodernandQuaternaryphenomena1117

intothelikelycontrolsonWilsonbreendeposition.Westartbyexaminingthreetopicswhere1118

differencesmightbeexpected:tectonicsetting,(palaeo)latitude,andthecompositionof1119

bedrocksundergoingweatheringwithimplicationsforcarbonatemineralogy,andthenuse1120

insightsfromtheDryValleystoaidsynthesizingtheinterpretationofstableisotopefieldsofthe1121

carbonates.1122

TheWilsonbreenFormationrepresentsasmallpartofalargelymarinedepositional1123

basinthatpersistedformorethan300Myanddepositedapileofsediments(HeclaHoek1124

Supergroup)manykilometresthick.TheoutcropbelthasaNNE-SSWtrend,andtheoriginal1125

basinmayhavebeenanintracratonicriftwithasimilartrend(Cawoodetal.,2007)leadingto1126

thetabularnatureoftheFormationfromnorthtosouth.TheDryValleysregionoccupiesa1127

hingebetweentheupliftingTransantarcticMountainsandthesubsidingMcMurdoSound1128

(Etienneetal.,2007).Whilstuplandareasnotcoveredbyicehaveneithererodednor1129

Page 50: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

50

accumulatedsediment,significantQuaternarysedimentaccumulationshavebeendrilledin1130

LowerTaylorValley(McKelvey,1981).Meltwaterissuppliedbothfromoutletglaciersandlocal1131

valleyglaciers,andicesheetadvancefromtheadjacentRossEmbaymenthasoccurred1132

repeatedly.Incontrast,sincetheSvalbardareawasalreadyatsealevelpriortoglaciation,anda1133

panglaciationthenensuedwithnothickicecoverlocally,apronouncedeustaticsealevelfall1134

shouldhaveisolatedthebasinfromthesea.Theproximityofuplandareastosourceglaciersis1135

alsounknown,butthisbasinconfigurationoffersthepossibilityofglacieradvancebothalong1136

andacross-strike,leadingtocreationanddestructionoflakes,ashasbeenthecaseinthelate1137

QuaternaryintheDryValleys.Suchexternallyimposedchangesinlakelevelorglacialadvances1138

andretreatswouldbesuperimposedonanyintrinsictendencyforfaciesmigrationandarethe1139

mostlikelyreasonforthemyriadverticalfaciestransitionsandcomplexlateralgeometriesin1140

theWilsonbreenFormation.1141

ThehighpalaeolatitudesoftheDryValleysensuresahighseasonalityoftemperature1142

suchthatmeltwaterproductionislimitedtoacoupleofmonthsinsummer.TheWilsonbreen1143

Formationisthoughttohavelaininthesub-tropics(Lietal.,2013)whereseasonalitytoday1144

primarilyrelatestomoisturebalance.ThisalsoappliesinthelatestagesofaSnowballEarth,1145

sincegeneralcirculationmodellingindicatesthatalternatingseasonsinwhichprecipitation1146

exceedsablationinthesummerandvice-versainthewinterwouldhavebeenastrongfeature1147

oftheclimateinlatitudes20-30°fromtheequator(Bennetal.,2015).TheSnowballclimatealso1148

hasgreatlyenhanceddiurnalandannualtemperaturevariabilityatagivenlatitudecompared1149

withtoday(Pierrehumbert,2005)sincetemperaturerespondsdirectlytoinsolation,withless1150

effectivesmoothingthantodaybylaterallatentheattransportbymoisture.Theimplications1151

remaintobefullyexplored,butBennetal.(2015)givesanindicativeplot(theirFig.S15)1152

demonstratingthat,inthemonthofApril,althoughmeantemperaturesremainbelowzero,1153

Page 51: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

51

lowlandareasinthetropicsandsub-tropicsshouldexperienceasignificantnumberofpositive1154

degreedayswhenmeltingcanoccur.Theoveralleffectisthat,openwaterinWilsonbreenlakes1155

wasclearlyextensive,atleastseasonally,contrastingwiththeperennialicecoverintheDry1156

Valleys,apartfrommarginalmoats.1157

Anotherlatitude-relatedfactoristherelativesensitivitytoclimaticchangerelatedto1158

orbitalforcing.WhilsttheDryValleyregionissusceptibletofacieschangesrelatedtosubtle1159

environmentalchangesoninter-annualtomultimillennialscales,themostsignificant1160

environmentalchangesrelatedtoglacialadvancesandretreatsareonorbitaltimescales(Hendy1161

1980).Fig.1illustratesthatfortheWilsonbreenFormationasawhole,thereareaboutten1162

periodsofcessationofglacialdeposition,withuncertaintiesbecauseofthethinandlensing1163

(possiblyeroded)intervalsinW3inparticular.Accumulationratesofannuallylaminated1164

carbonatefacies,bothfluvially(FA2)andinlakes(FA4/FA5)isoftheorderof1mm/year:hence1165

suchretreatphasesrepresentminimumperiodsof103-104yearssinceperiodsofnon-1166

depositionduetolackoflocalaccommodationspaceorsedimentsupplyarelikely.Such1167

timescalesareapproachingthepresent-dayMilankovitchscaleofclimaticfluctuation,an1168

observationwhichstimulatedthemodellingofprecessionalcyclesinBennetal.(2015).Given1169

thatprecession(ontheca.20kytimescale)isgreatlyenhancedduringhighereccentricity(on1170

the100katimescale),aplausibleinterpretationofmembersW2andW3isthattheyrepresent1171

oneortwoeccentricitycycles,withineachofwhichseveralprecession-relatedfluctuationsare1172

recorded.1173

ModernAntarcticahasverylittlecarbonatebedrock.Nevertheless,alkalinityis1174

generatedbothbycarbonateandsilicateweathering,permittingcarbonateprecipitation,1175

particularlyinlakes,controlledbyseasonalphotosynthesis.Bycontrast,theWilsonbreen1176

Formationreflectstheerosionofcarbonate-richcatchmentsandcalciteprecipitationis1177

Page 52: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

52

recognizedalsoinstreams.Althoughlimestonemakesup20%ofthegravelfraction,dolomiteis1178

theonlycarbonateinthefinefractionofdetritusbecauseofpreferentialcalcitedissolution,1179

implyingthatunmodifiedmolarMg/Caratioswillonaveragebe<1,althoughwillincreaseas1180

calciteisreprecipitatedwithinthebasin.DatafromstreamsandmostlakesintheDryValleys1181

alsohaveMg/Ca<1,althoughextensiveCaCO3precipitationinLakeFryxellleadstoenhanced1182

Mg/Ca(Greenetal.,1988)andpresumablysuchwaterswereresponsibleforprecipitationof1183

aragoniteinmanylateQuaternarylakes(Hendy,1979).Ratherthanaragonite,ikaiteis1184

recognizedasaprecursortocalciteintheWilsonbreencase.Modernexamplesofikaite1185

formationareassociatedwithhighaqueousphosphatewhichactsasaninhibitortocalcite1186

precipitation(Bischoffetal.,1993)andyetmodernAntarcticlakesareoligotrophic.However,1187

Burton(1993)stressedthattheroleofinhibitorsiscomplexbecausetherearemanypotential1188

inhibitingspecies(e.g.magnesium,phosphate,sulphate,organicradicalsandmanyother1189

speciesdependingonconcentration)andtheycaninteract.Onepossiblefactoristhatacircum-1190

neutralpHwouldbeexpectedinWilsonbreenwatersbecauseofhighatmosphericPCO2which1191

hastheeffectofincreasingthebalanceofHPO42-toPO4

3-andstrengtheningthephosphate-1192

inhibitioneffectoncalcite;thiseffectisalsoaccentuatedbyhighsulphate(Burton,1993).1193

ModerndolomitehasnotyetbeenrecognizedinAntarctica,yetitiscommoninthe1194

Wilsonbreenfacies,apparentlyaidedbyfactorssuchasevaporationandfluctuatingredox,and1195

possiblyalsothewidespreadoccurrenceofdolomiterockflourasnuclei.1196

Intheprevioustext,extensiveevidencehasbeenpresentedforthedevelopmentof1197

stablemineralogyintheenvironmentbyprimaryprecipitationorearlydiagenesis,astability1198

favouredbylowenvironmentaltemperatures.Inturnthisarguesfortreatingthestableisotope1199

dataasdirectindicatorsofdepositionalconditions.Giventheverywiderangeofδ18Ovalues,1200

theeffectsofvariationindepositionaltemperature,orminorpost-depositionalexchange,are1201

Page 53: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

53

minimized.Carbonisotopesareinanycaseresilienttosecondaryalteration(Banner&Hanson,1202

1990).AsynthesisoftheWilsonbreencarbonatesinrelationtothestableisotopefieldsisgiven1203

inFig.23.Theδ13Csignatureislinkedtoacquisitionofcarbonfrombedrockandoxidationof1204

organicsourcesandvariableequilibrationwithatmosphericcarbondioxide,whilstvariabilityin1205

δ18Oisinterpretedasduetomixingofmeltwatersordifferentcompositionsofprimary1206

meltwaterscoupledwithevaporation.WenowdiscusstheseasfactorsintheDryValley1207

context.1208

Regardingcarbonisotopes,intheDryValleystheδ13Ccompositionofacarbonatesource1209

isnotwelldefined,butapotentialorganicsourceisfoundintheformofdark-coloured1210

cryoconiteholes,whichperiodicallyareflushed,providingnutrientsforephemeralstreamsand1211

lakebasins(Bagshawetal.,2013).Additionofrespiredcarbonfromthissourcecanbeseenin1212

thechemistryofsomeAntarcticstreamswithδ13Cvaluesaslightas-9.4‰(Lyonsetal.,2013).1213

Mostvaluesare-3to+2‰,possiblyreflectingcarboncontributionfromacarbonatesource1214

rock(Leng&Marshall,2004)andrangingupto5‰whichLyonsetal.(2013)attribute1215

qualitativelytoprogressiveequilibrationwithatmosphericCO2.Chemicalequilibrationbetween1216

atmosphericCO2andanAlpinemeltstreamwasshowntobeattainedwithinafewhundred1217

metresofflow(Fairchildetal.,1999),althoughthissituationfallsshortofisotopicequilibration,1218

requiringmoreextensiveexchangeuntilthelargegaseoussourceofcarbondominates1219

(Fairchild&Baker,2012,chapter5).Moreefficientprocessesformodifyingδ13Carefoundin1220

DryValleylakes,whereverticaltrendscausedbywater-columnphotosynthesisatshallow1221

depths(leadingtopositivevaluesofδ13C),organicmatteroxidation(causingadecreaseinδ13C1222

withdepth),andlocalmethanogenesis(releasingCO2withcomplementaryhighδ13Cvaluesat1223

depth)havebeendescribed(Lawrence&Hendy,1985;Neumannetal.,2004).Coldlakesin1224

Page 54: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

54

othersettingscansometimesdevelopverylowδ13Cvaluesthroughreleaseofmethanefrom1225

solidhydrates(PropenkoandWilliams,2005).1226

1227 Foroxygenisotopesinstreams,Gooseffetal.(2006)gathereddataonδ18Ovariationfor1228

glacierice,snow,streamsandlakes,althoughinterpretationwascomplicatedbyevidentstrong1229

inter-annualvariations.InTaylorValleythemeancompositionofglaciericeineachsub-basin1230

feedingaspecificlakevariedfrom-21to-33‰andsomesampleswereaslightas-45‰.1231

Streamsamplesvariedfrom-42to-22‰andlayclosetothemeteoric-waterlineupto-32‰,1232

butdivergedfromitathighervalues,reflectingtheconsequencesofevaporation.This1233

correspondedalsotostreamlengthsofgreaterthan2km.Inadditiontosimplesurface1234

evaporation,mixingwithisotopicallyheavyshallowsubsurface(hyporheic)waterwasalsoa1235

factor,indicativeoftheeffectivenessofevaporationofsubsurfacewateratashallowwater1236

table.Furtherisotopefractionationoccurswherewaterresideslongerinsalinelakes.1237

Matsubayaetal.(1979)measuredandmodelledthe18O-enrichmentsinthemostsalineponds1238

intheDryValleyareaandfoundupto20‰highervaluesintheunfrozenDonJuanPondand1239

theeastlobeofLakeBonneycomparedwiththesource.Likewise,Nakaietal.(1975)1240

documenteda23‰variationinδ18Ocompositionofcalciteswiththehighestvalues1241

representingevaporativedepositsonlandsurfaces.Suchpronounced18Oenrichmentsalong1242

streamcoursesandtheca.20‰totalvariationareonlypermittedbecauseofthe1243

meteorologicalfactorsleadingtopersistentlylowrelativehumiditiesof50-60%.1244

Fortheancientcarbonates,itisusefultoconsiderthepresenceorabsenceofcovariance1245

ofδ18Oandδ13C(Figs.7,23).Talbot(1990)compileddatafromavarietyofmodernandancient1246

lakesandfoundthatalackofisotopiccovariationistypicalofopenlakesinwhichcontrolling1247

factorsforthevariationinthetwoisotopesaredecoupled.Thiscanbecomparedwiththe1248

limestonesofFA4andFA5(Figs.7b,23).Conversely,covaryingtrendsinlacustrinecarbonates1249

Page 55: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

55

(FA4andFA5dolomites)wereidentifiedasacharacteristicfeatureofclosedlakesandreflected1250

acombinationofevaporationtocauseincreaseinδ18O,andresidencetime,permitting1251

equilibrationwithatmosphericCO2asafirst-ordercontrolonultimateδ13Cvalues.Although1252

δ13Candδ18OdataonAntarcticstreams(Gooseffetal.,1006;Lyonsetal.,2013)wasobtained1253

separatelyandsohasnotbeencross-plotted,theseenvironmentstoocanbeanticipatedto1254

displaycovariation.TheslopesofcovariationinTalbot’s(1990)datawerefoundtobequite1255

varied,withlowerslopesinterpretedasreflectingbroad,shallowlakesinwhichevaporation1256

wouldplayamoreprominentrole.Thedatawereprimarilyfromlimestoneandwater-column1257

precipitates,althoughexampleswereshownwherebenthiccarbonateanddolomitesfittedthe1258

trends.Apartfromattaininghighabsolutevaluesforδ18OinFA3,theWilsonbreenFormation1259

carbonatesshowcovaryingslopesandrangeswithinthosepresentedbyTalbot(1990),1260

providingaconfirmationthattheevaporation-equilibrationexplanationfordatatrendsis1261

reasonable.1262

Firstweconsiderδ13Cdata:wherecovariationsareabsentandatthestartingpointsfor1263

covaration.Theinitialcarbonisotopecompositionofaglacialmeltstreammaynotreflectany1264

atmosphericinfluencebecausemanymeltwatersderivefromicewithlowaircontentandhave1265

PCO2valueswellbelowatmospheric(Fairchildetal.,1994).Themeanδ13Cofdetritaldolomitein1266

theWilsonbreenFormationis+2.4‰(Fig.6B),butwithsignificantlocalvariations(±1.3‰)and1267

additionaluncertaintybecauselimestoneappearstohavepreferentiallydissolvedfromthe1268

matrix.Acombinationofmoderatelypositiveδ13Cfromdetritusandorganiccarboncouldhave1269

fixedthestartingδ13Cvalueofaround+1‰fortheFA2covaryingtrend.Thehigherstarting1270

pointforFA3reflectsthemoreevolvednatureofthesefluidswhichareconsistentlyforming1271

dolomite.ThetrendforFA4andFA5dolomitesstartsatlowervaluesof0to+1‰,withinthe1272

rangeofcalcitesintheselacustrinefacies.Carbonisotopesignatures<+1‰,thatislowerthan1273

Page 56: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

56

thoseinfluvialfacies,presumablyreflectsadditionofcarbonfromanorganicsource,butoverall1274

variationsarenotlargeenoughtosuggestaroleformethanogenesis.Intheopenlakesimplied1275

bythelackofisotopecovariationinFA4andFA5calcites,thehighδ13Cvaluescouldreflect1276

eithertheeffectsofphotosynthesisorgreaterCO2-equilibrationwithoutevaporation.Themost1277

extremehighδ13C-lowδ18OlimestonesinFA4arefrommemberW3(Fig.12);theseare1278

intraclasticbrecciasimplyingpossibleexposurewhichwouldhaveaidedatmospheric1279

equilibration.Nodifferenceisnotedbetweenobviouslymicrobialandotherlimestones,a1280

commonpatternintheNeoproterozoic(Fairchild,1991).Lowδ13Cvaluesoccurineachsection1281

studiedlocationandarealmostalwaysstratigraphicallyclosetovaluesthataremuchhigher,1282

possiblyindicativeofchanginglakelevels.TheFA5sedimentsfromW3allhaverelativelylow1283

valueswhichmightreflectarelativelydeepwatersetting,consistentwiththedominanceofice-1284

raftedsedimentationinthismemberinthesouthernsectionsandtheuniversaldisruptionof1285

FA5sedimentsbyslumping.1286

Nowweconsiderthetheoreticalδ13Cend-pointresultingfromequilibration.Carbonate1287

precipitatedfromasolutioninisotopicequilibriumwithatmosphericCO2isexpectedtodisplay1288

δ13Cvaluesheavierthantheatmosphereby10.4‰at0°C(fallingto9.1‰at20°C),as1289

calibratedbytheexperimentalworkofMooketal.(1974).Thelong-term(>108year)δ13C1290

compositionoftheatmosphereshouldshowvariationlargelyinparallelwithoceanwaterwith1291

whichittendstoequilibrate,andoceanwaterinturnhasacompositionconstrainedbythe1292

proportionalburialofisotopicallylightorganiccarbon.Asaresult,short-termvariationscanbe1293

expectedbecauseoffluxvariabilities,asdemonstratedbydirectmeasurementofpast(pre-1294

industrialHolocene)atmospheresfromicecoresshowingarangefrom-6.3to-6.6‰(Elsiget1295

al.,2009).Afurthermass-balanceconstraintisthebulkEarthmeancompositionofcarbon1296

(Berner,2004).Thelattercanbeestimatedfrommantleandmeteoritesamplesasaround-7‰,1297

Page 57: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

57

butvolcanicgasesaretypicallysomewhatheavier(Javoyetal.,1986).Anatmospherewitha1298

compositionaround-6‰wouldbeinequilibriumatzerodegreeswithcarbonatesaround+4.41299

‰.1300

ThecarbondioxidelevelintheSnowballEarthatmosphereshouldhaveprogressively1301

risenbecauseofsustainedinputfromvolcanicsourcesandlimitedremoval,mainlyby1302

dissolutionintheoceanwherevergapsintheicecoveroccurred(LeHiretal.,2008).Thelimited1303

opportunitiesforback-exchangefromtheoceansimplythattheatmosphereshouldhave1304

providedagoodsampleofthecarbonisotopecompositionofvolcanicemissions.FortheW21305

data,eachofthefaciesassociationfields(Figs.12,23)topsoutataround3.5to4.5‰whichis1306

closetotheexpectedvaluesforequilibrationwiththeatmospheredominatedbyvolcanic1307

emissionsasdiscussedabove.MemberW3dolocreteshaveδ13Cvalues1‰higherthan1308

consideredsofar(Fig.12),butthisdifferenceisdifficulttointerpretwithoutanoveralldata1309

trend.Onepossibilityisthatthereisalocalcontributionbyfreezing,whichLyonsetal.(2013)1310

invoketoexplainδ13Cvaluesintherange+5to+12‰oncarbonate-encrustedrocksontheDry1311

Valleys’landsurface.1312

Wenowfocusattentiononδ18O,startingwiththerangeofvaluesincovaryingtrends.1313

Therangeofδ18OinFA2limestonesisratherlessthanobservedintheDryValleystreams,1314

demonstratingthefeasibilityofevaporationasadriverforvariability,althoughsomevariation1315

insourcewatercompositionisalsopossible.SimilarremarksapplytothedolomitesofFA4and1316

FA5,althoughlargelyopenlacustrineenvironmentssuchasthesearenotfoundintheDry1317

Valleys.TheslopeofcovariationismuchlowerfortheFA3thanfortheotherfaciesassociations,1318

whichisconsistentwithasurficialoriginleadingtomoreefficientevaporation(Talbot,1990).1319

Allowingfora3‰offsetbetweendolomiteandcalcite(Land,1980),theevaporativetrend1320

(Figs.7B,12)extendsbeyondthecompositionoffluviallimestonesbyafurther11‰for1321

Page 58: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

58

dolocretes(Facies3D)and15‰forstromatoliticlaminites(Facies3S).Evaporationofcoastal1322

seawater,undertypicalhighhumidityconditionswouldcauseanincreaseinδ18Oofatmost61323

‰,whereas17‰increasefroma-10‰startingpointwasobservedinafreshwaterTexan1324

pondunderconditionsoflessthan50%humidity(Lloyd,1966).TheextremeenrichmentsinFA31325

stromatoliticcrusts,requiresimilarlylowhumiditiestothisexampleandtheDryValleys,and1326

couldonlybepossibleforfaciesdevelopedatthelandsurface.1327

TheFA4andFA5lacustrinecalciteshavelowerδ18OcompositionsthanthoseofFA21328

fluviallimestones.Byanalogywithmodernenvironments,thisislikelytoreflectalocal,low1329

altitudesourceofwaterforFA2,whereasthevariabilityinδ18OwithinFA4andFA5couldreflect1330

varyingmeltwatersources,includinglargeglacierswithlowδ18O.Therangeofδ18Oisactually1331

ratherlessinFA2thanintheDryValleystreamsandgiventhatthevaluesaretypicallyheavier1332

thanthelakes,arelativelylocal,low-altitudesourceformeltwaterisimplied.FortheCarbonate1333

LakeMarginFA4,theδ18OvaluesaresimilartoCarbonateLakeFA5andthereisalackof1334

isotopiccovariationwithbothsetsofdata.Thiswouldimplyanopenlake(Talbot,1990),but1335

careisneededwithsuchaninterpretationbecausethedatarepresentseveraldifferentlakes1336

thatformedsuccessively.Asderivedearlier,therangeofδ18Owatervaluesimpliedfromcalcite1337

precipitationat0°Cisaround-8.5to-15.5‰ontheV-SMOWscale.Thisrangemightbe1338

explainedbyvariablemixingoflocalsnow,localglaciericeandmeltfromlargerorhigher1339

glaciers,byanalogywiththeDryValleyregion.1340

TheultimatedriverforRayleighfractionationintheatmosphere,whichleadsto18O-1341

depletedvaluesinatmosphericprecipitation,ispartialcondensationandremovalofvapourasa1342

resultofafallintemperatureoftheairmass.InferredWilsonbreenmeltwaterδ18Ovalues1343

higherthanthoseinthemodernDryValleysimpliesalesserdegreeoffractionation,as1344

originallynotedbyFairchildetal.(1989).Acomparablemodernglacialareaforthe1345

Page 59: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

59

Wilsbonbreenintermsofδ18OistheVatnajökullicecapofIcelandbelowwhichRobinsonetal.1346

(2009)foundarepresentativeice-andsnowmeltcompositionof-12‰.Notethatindirect1347

evidenceformoreisotopicallylightNeoproterozoicmeltwaterhasbeenfoundintworecords1348

fromSouthChina(Zhao&Zheng,2010;Pengetal.,2013),althoughthesedonotnecessarily1349

relatetoapanglacialandintheformercaseisayounger,Ediacaranglaciation.Amorepertinent1350

recordisthatofKennedyetal.(2008)incalcite-cementedMarinoantidalsiltstonesofSouth1351

Australiawherecalciteaslightas-25‰wasanalyzed,andinterpretedtoreflectinputof1352

meltwaterfromhighlyfractionatedlow-latitudeicesheets,althoughtheremaybeother1353

possibleinterpretationsofthesedatabearinginmindtheactivedecompositionofclathratesat1354

thissite.Insummary,thedistinctivelyheavyisotopicsignatureofWilsonbreenmeltwatermay1355

beacharacteristicfeatureoflow-latitudeglaciationandclearlyrequiresstudybyanisotope-1356

enabledgeneralcirculationmodel.1357

13581359

CONCLUSIONS1360

1361

1.CarbonateintheWilsonbreenFormationconfirmsthenon-marineenvironmentof1362

depositioninaglaciatedbasinsuppliedwithdebrisfromerosionofplatformcarbonates.The1363

consistentlydolomiticnatureofthedetritalmatrixofWilsonbreenFormationsediments1364

contrastswiththecommonpresenceoflimestoneincoarserdebrisanddemonstratesthe1365

preferentialdissolutionofcalciteoverdolomite.Carbonate-richmeltwaterswerethusableto1366

precipitateCaCO3oncesupersaturationwasachievedbyprocessessuchasphotosynthesisor1367

evaporation.1368

2.Evidencefromphysicalsedimentarystructuresallowsfourfaciesassociationstobe1369

distinguishedinwhichcarbonatewasprecipitated,distinctfromthreefaciesassociations1370

Page 60: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

60

dominatedbyglacialandperiglacialprocesses.TheFluvialChannelFaciesAssociation(FA2)1371

commonlycontainsmicrobiallimestonelaminaewithmm-scalelaminationandnotablesyn-1372

depositionalradiaxialcalcitecements.Thesecomparephysicallywithmodernmicrobialmatsin1373

ephemeralAntarcticstreams.TheDolomiticFloodplainFaciesAssociation(FA3)consistsofsoil1374

zone/playasurficialdolocretesanddolomiticstromatolitesinwhichdolomitewasprobablya1375

primaryprecipitate.TheCarbonateLakeMarginFaciesAssociation(FA4)typicallydisplays1376

micriticandlocallymicrobiallaminaeinterlaminatedwithwave-sortedsiltsandsandswithlocal1377

developmentofintraclasticbreccias.Finally,theCarbonateLakeFaciesAssociation(FA5)1378

displaysmm-scale(varved)alternationsofmicriticcarbonateorlaminatedmicrobialcarbonate1379

(includingmicrospariticandfenestrallaminae)withpoorlysortedsedimentcontaining1380

recognizableice-rafteddebris.LocallyinmemberW2,andpervasivelyinmemberW3,partly1381

lithifiedsedimentsweredisturbedbyslumpfoldingandlocallytransformedtocarbonate-rich1382

debrisflows.1383

3.InbothFA4andFA5,therearetexturalindicatorsofmineralogicalreplacements.1384

DolomitecanbeseentoreplaceaCaCO3precursor.Althoughsomecalciteislikelytobe1385

primary,calcitepseudomorphsafterikaite(CaCO3.6H2O)arecommon.Theikaiteformed1386

individualcrystalswithinthesediment,formedcrustswhichgrewcentripetallyintopores,and1387

locallygrewupwardsatthesediment-waterinterface.Thisparagenesisisnowbecomingbetter1388

knowninmoderncoldlakes.1389

4.Stableisotopedatademonstratethatcarbonatesinthedifferentfaciesassociations1390

formdistinctfieldswhichareallinterpretedasconsistentwithprimarydepositionalconditions.1391

LimestonesinFA4andFA5lackδ13C-δ18Ocovariationandwereprimarilyinfluencedbymixing1392

ofmeltwatersources,thevariableadditionoflightcarbonfromorganicdecomposition,and1393

somere-equilibrationwiththeatmosphere.Othersub-setsdemonstratecovariation,1394

Page 61: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

61

interpretedasacombinationofevaporationandequilibrationwiththeatmosphere.Thisallows1395

theδ13CcompositionofCO2releasedfromvolcanismduringtheglaciationtobeconstrainedto-1396

6to-7‰.Directevidenceofprimaryfluidcompositionsisunavailablebecauseofsecondary1397

fluidmigrationintoinclusions,despitethepresenceofprimarytraceelementgrowthzones.1398

Nevertheless,theverywiderangeofδ18Ovaluesmustbeprimarilyrelatedtochangesinwater1399

composition,giventheconsistentlycooldepositionalconditions.Theexceptionallyhighδ18O1400

signaturesofFA3dolomites,upto+14.7‰VPDB,attesttothehyperaridityoftheenvironments.1401

Conversely,theinferredδ18Ocompositionsoftheinputmeltwaters(-8to-15‰VSMOW)aremore1402

comparabletomodernIcelandthantopresent-daypolarregions.Thisislikelytoreflect1403

relativelylimitedRayleighfractionationintheatmospherebecauseofitsrelativewarmthlinked1404

toenhancedabsorptionofinfra-redradiationfromhighCO2levels.1405

5.Althoughpreferredfaciestransitionsoccur,thereisnodevelopmentoverallofmulti-1406

faciescyclicity.Thestrongisotopiccovariationsassociatedwithclosedlakesandstreams,and1407

rhythmiccarbonatelaminaearestrongmotifsofnon-marinefacies.Intheseenvironments,the1408

landscapewasrepeatedlytransformedbydamminganddrainingoflakesastheglaciers1409

advancedandretreated.Inturnthesearelikelytohaverepresentedamplifiedgeomorphic1410

responsestosubtleclimaticshiftsinapersistentlyhyper-aridsettingforwhichtheMcMurdo1411

DryValleysprovidearichmodernanalogue.AlthoughWilsonbreenlakeswerenotperennially1412

ice-coveredasinthemodernenvironment,manypointsofsimilaritybetweenthemodern1413

Antarcticandtheancientenvironmentshavebeendrawninthisstudy,specificallyincludingthe1414

ratesandstylesofsedimentdeposition,biogeochemistry,andextreme18O-enrichmentrelated1415

tothehyperaridclimate.1416

6.ThecarbonatesoftheWilsonbreenFormationaredistinctiveandincludeunique1417

faciesandrecord-breakingisotopecompositions.Theyrepresent,alongwithinterbedded1418

Page 62: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

62

diamictites,thecomplexenvironmentalresponsetochangingratesofaccumulationand1419

ablationforcedbyaseriesofprecessionalcycleslateintheevolutionofaSnowballEarth.1420

1421

1422

ACKNOWLEDGEMENTS1423

1424

ThefieldworkandsubsequentanalyseswerefundedbyNaturalEnvironmentResearchCouncil1425

grantGR3/NE/H004963/1withinprojectGAINS(GlacialActivityInNeoproterozoicSvalbard).1426

WearegratefultotheNorwegianauthoritiesinSvalbardandthelogisticaldepartmentofthe1427

UniversityinSvalbardinfacilitatingourfieldwork,andothermembersoftheGAINSteamfor1428

theircollegialityandscientificzest.TheseniorauthorrecordshispersonalappreciationtoPaul1429

Hoffmanforhisinspiration,andsupportforthisprojectatacriticalstage,toMartinKennedyfor1430

hisfriendship,andrigorouslycriticalfeedbackonNeoproterozoicdataandideas,andtoTony1431

Spencerforhisinsight,andcarefuleditorialcommentsonadraft.Journalreferees,including1432

AlexBrasier,gaveinvaluableadvicethatledtoarestructuringofthepaperandsharpeningofits1433

arguments.1434

1435REFERENCES14361437Abbott,D.S.,Voigt,A.andKoll,D.(2011)TheJormungandglobalclimatestateandimplications1438

forNeoproterozoicglaciations.J.Geophys.Res.,116,D18103,doi:10.1029/2011JD015927.1439Allen,P.A.(1984)ReconstructionofancientseaconditionswithanexamplefromtheSwiss1440

Molasse.Mar.Geol.,60,455-473.1441Allen,P.A.andEtienne,J.L.(2008)SedimentarychallengetoSnowballEarth.Nat.Geosci.,1,1442

817-825.1443Alonso-Zarza,A.M.(2003)Palaeoenvironmentalsignificanceofpalustrinecarbonatesand1444

calcretesinthegeologicalrecord.Earth-Sci.Rev.,60,261-298.1445Andrews,J.E.(2006)Palaeoclimaticrecordsfromstableisotopesinriverinetufas:Synthesisand1446

review.Earth-Sci.Rev.,75,85-104.1447Andrews,J.E.andBrasier,A.T.(2005)Seasonalrecordsofclimatechangeinannuallylaminated1448

tufas:shortreviewandfutureprospects.JournalofQuaternaryScience20,411–421.1449Arnaud,E.,Halverson,G.P.andShields-Zhou,G.(eds)(2011)TheGeologicalRecordof1450

Page 63: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

63

Neoproterozoicglaciations.Geol.Soc.LondonMem.,36.1451Bagshaw,E.A.,Tranter,M.,Fountain,A.G.,Welch,K.,Basagic,H.J.andLyons,W.B.(2013)Do1452

cryoconiteholeshavethepotentialtobesignificantsourcesofC,N,andPtodownstream1453depauperateecosystemsofTaylorValley,Antarctica?ArcticAlpineAntarcticRes.,45,440-1454454.1455

Banner,J.L.andHanson,G.N.(1990)Calculationofsimultaneousisotopicandtrace-element1456variationsduringwater-rockinteractionwithapplicationstocarbonatediagenesis.Geochim.1457Cosmochim.Acta,54,3123-3137.1458

Bao,H.(2014)Sulfate:AtimecapsuleforEarth’sO2,O3andH2O.ChemicalGeology,396,108-1459118.1460

Bao,H.,Lyons,J.R.,andZhou,C.(2008)TripleoxygenisotopeevidenceforelevatedCO2levels1461afteraNeoproterozoicglaciation.Nature,453,504-506.1462

Bao,H.,Fairchild,I.J.,Wynn,P.M.andSpötl,C.(2009)Stretchingtheenvelopeofpastsurface1463environments:NeoproterozoicglaciallakesfromSvalbard.Science,323,119-122.1464

Bao,H.,Chen,Z.Q.andZhou,C.M.(2012)AnO-17recordoflateNeoproterozoicglaciationin1465theKimberleyregion,WesternAustralia.PrecambrianResearch,216-219,152-161.1466

Barrett,P.J.(2013)ResolvingviewsonAntarcticNeogeneglacialhistory–theSiriusdebate.1467EarthEnv.SciTrans.Roy.Soc.Edin.104,31-53.1468

Benn,D.I,Bao,H.,Dumas,C.,FlemingE.J.,Hambrey,M.J.,LeHir,G.,McMillan,E.A.,Petronis,1469M.J.,Ramstein,G.,Stevenson,C.T.E.,Wynn,P.M.andFairchild,I.J.Orbitallyforcedclimatic1470fluctuationinSnowballEarth:Geologicalevidenceandmodelresults.Forsubmissionto1471Science.1472

Berner,R.A.(2004)ThePhanerozoicCarbonCycle.OUP.1473Bischoff,JL.,Fitzpatrick,J.A.andRosenbauer,R.J.(1993)Thesolubilityandstabilizationof1474

ikaite(CaCO3.6H2O)from0°to25°C:Environmentalandpalaeoclimaticimplicationsfor1475

thinolitictufa.J.Geol.,101,21-33.1476Bosak,T.andNewman,D.K.(2003)Microbialnucleationofcalciumcarbonateinthe1477

Precambrian.Geology,31,577-580.1478Brasier,A.T.(2011)Searchingfortravertines,calcretesandspeleothemsindeeptime:1479

Processes,appearances,predictionsandtheimpactofplants.Earth-Sci.Rev.104,213-239.1480Buchardt,B.,Israelson,C.,Seaman,P.andStockmann,G.(2001)IkaitetufatowersinIkka1481

Fjord,southwestGreenland:theirformationbymixingofseawaterandalkalinespring1482water.J.Sedim.Res.,71,176-189.1483

Budyko,M.I.(1969)TheeffectsofsolarradiationvariationsontheclimateoftheEarth.Tellus,1484XXI,611–619.1485

Burton,E.A.(1993)Controlsonmarinecarbonatemineralogy:reviewandassessment.Chem.1486Geol.,105,163-179.1487

Caldeira,K.andKasting,J.F.(1992)SusceptibilityoftheearlyEarthtoirreversibleglaciation1488causedbycarbondioxideclouds.Science,359,226–228.1489

Calkin,P.E.andRutford,R.H.(1974)TheSandDunesofVictoriaValley,Antarctica.Geog.Rev.,149064,189-216.1491

Calver,C.R.,Crowley,J.L.,Wingate,M.T.D.,Evans,D.A.D.,Raub,T.D.andSchmitz,M.D.1492(2013)GloballysynchronousMarinoandeglaciationindicatedbyU-Pbgeochronologyofthe1493CottonsBreccia,Tasmania,Australia.Geology,41,1127-1130.1494

Cao,X.andBao,H.(2013)Dynamicmodelconstraintsonoxygen-17depletioninatmospheric1495O2afterasnowballEarth.Proc.Natl.AcadSci.USA,110,14546-14550.1496

Page 64: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

64

Cawood,P.A.,Nemchin,A.,Strachan,R.,Prave,T.andKrebbendam,M.(2007)Sedimentary1497basinanddetritalzirconrecordsalongEastLaurentiaandBalticaduringassemblyand1498breakupofRodinia.J.Geol.Soc.Lond.,164,257-275.1499

Cohen,A.S.andThouin,C.(1987)NearshorecarbonatedepositsinLakeTanganyika.Geology,150015,414-418.1501

Dahl,K.andBuchardt,B.(2006)MonohydrocalciteintheArcticIkkaFjord,SWGreenland:First1502reportedmarineoccurrence.J.Sedim.Res.,76,460-471.1503

Dana,E.S.(1884).AcrystallographicstudyofthethinoliteofLakeLahontan.U.S.Geol.Surv.1504Bull.12,429–450.1505

David,T.W.E.,Taylor,J.G.,Woolnough,W.G.andFoxall,H.G.(1905)Occurrenceofthe1506pseudomorphglendoniteinNewSouthWales.Rec.Geol.Surv.N.S.W.,3,161-179.1507

Daves,N.S.andGibling,M.R.(2010)PaleozoicvegetationandtheSiluor-Devonianriseoffluvial1508lateralaccretionsets.Geology,38,51-54.1509

Dickson,J.L.,Head,J.W.,Levy,J.S.andMarchant,D.R.(2013)DonJuanPond,Antarctica:Near-1510surfaceCaCl2-brinefeedingEarth’smostsalinelakeandimplicationsforMars.Sci.Rep.3,15111166.DOI:10.1038/srep01166.1512

Domack,E.W.andHoffman,P.(2013)Anicegrounding-linewedgefromtheGhaubglaciations1513(635Ma)onthedistalforeslopeoftheOtavicarbonateplatform,Namibia,anditsbearing1514onthesnowballEarthhypothesis.Geol.Soc.Am.Bull.,123,1448-1477.1515

Doran,P.T.,McKay,C.P.,Fountain,A.G.,Nylen,T.,McKnight,D.M.,Jaros,C.andBarrett,J.E.1516(2008)HydrologicresponsetoextremewarmandcoldsummersintheMcMurdoDry1517Valleys,EastAntarctica.Antarct.Sci.,20,499-509.1518

Dowdeswell,J.A.,Hambrey,M.J.andWu,R.T.(1985)ClastshapeandfabricinPrecambrianand1519modernglacialsediments.J.Sedim.Petrol.55,691-704.1520

Dutkiewicz,A.,Herczeg,A.L.andDighton,J.C.(2000)Pastchangestoisotopicandsolute1521balancesinacontinentalplaya:cluesfromstableisotopesoflacustrinecarbonates.Chem.1522Geol.,165,309-329.1523

Elsig,J.,Schmitt,J.,Leuenberger,D.,Schneider,R.,Eyer,M.,Leuenberger,M.,Joos,F.,Fischer,1524H.andStocker,T.F.(2009)StableisotopeconstraintsonHolocenecarboncyclechanges1525fromanAntarcticicecore.Nature,461,507-510.1526

Etienne,J.L.,Allen,P.A.,Rieu,R.andLeGuerroué,E.(2007)Neoproterozoicglaciatedbasins:a1527criticalreviewoftheSnowballEarthhypothesisbycomparisonwithPhanerozoicglaciations.1528In:Hambrey,M.J.,Christoffersen,P.,Glasser,N.F.&Hubbard,B.(eds.)GlacialProcessesand1529Products.SpecialPublicationoftheInternationalAssociationofSedimentologists,1530doi:10.1002/9781444304435.ch19.1531

Eyles,N.andJanuszczak,N.(2004).‘Zipper-rift’:atectonicmodelforNeoproterozoicglaciations1532duringthebreakupofRodiniaafter750Ma.Earth-Sci.Rev.,65,1-73.1533

Fairchild,I.J.(1980)SedimentationandoriginofalatePrecambrian'dolomite'fromScotland.1534JournalofSedimentaryPetrology,40,423-446.1535

Fairchild,I.J.(1983)EffectsofglacialtransportandneomorphismonPrecambriandolomite1536crystalsizes.Nature,304,714-716.1537

Fairchild,I.J.(1991)OriginsofcarbonateinNeoproterozoicstromatolitesandtheidentification1538ofmodernanalogues.PrecambrianResearch,53,281-299.1539

Fairchild,I.J.(1993)Balmyshoresandicywastes:theparadoxofcarbonatesassociatedwith1540glacialdepositsinNeoproterozoictimes.InWright,V.P.(ed.)SedimentologyRev.,1,1-16.1541

Fairchild,I.J.andHambrey,M.J.1984.TheVendiansuccessionofnortheasternSpitsbergen–1542petrogenesisofadolomite-tilliteassociation.Precamb.Res.,26,111-167.1543

Page 65: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

65

Fairchild,I.J.andSpiro,B.(1987)Petrologicalandisotopicimplicationsofsomecontrasting1544Precambriancarbonates,NESpitsbergen.Sedimentology,34,973-989.1545

Fairchild,I.J.andHerrington,P.M.(1989)Atempestite-evaporite-stromatoliteassociation(late1546Vendian,EastGreenland):ashoreface-lagoonmodel.PrecambrianResearch,43,101-1271547

Fairchild,I.J.andHambrey,M.J.(1995)VendianbasinevolutioninEastGreenlandandNE1548Svalbard.PrecambrianRes.,73,217-233.1549

Fairchild,I.J.andKennedy,M.J.(2007)NeoproterozoicglaciationintheEarthSystem.J.Geol.1550Soc,London,164,895-921.1551

Fairchild,I.J.andBaker,A.(2012)SpeleothemScience–fromProcesstoPastEnvironment.1552Wiley,Chichester.1553

Fairchild,I.J.,Hambrey,M.J.,Spiro,B.&Jefferson,T.H.(1989)LateProterozoicglacial1554carbonatesinnortheastSpitsbergen:newinsightsintothecarbonate-tilliteassociation.1555Geol.Mag.,126,469-490.1556

Fairchild,I.J.,Marshall,J.D.&Bertrand-Sarfati,J.(1990)Stratigraphicshiftsincarbonisotopes1557fromProterozoicstromatoliticcarbonates(Mauritania)–influencesofprimarymineralogy1558anddiagenesis.Am.J.Sci.,290A,46-79.1559

Fairchild,I.J.,Bradby,L.,Sharp,M.andTison,J.-L.(1994)Hydrochemistryofcarbonateterrains1560inAlpineglacialsettings.EarthSurf.Proc.Land.,19,33-54.1561

Fairchild,I.J.,Killawee,J.A.Hubbard,B.andDreybrodt,W.(1999)Interactionsofcalcareous1562suspendedsedimentwithglacialmeltwater:afieldtestofdissolutionbehaviour.Chem.1563Geol.,155,243-263.1564

Fairchild,I.J.,Baker,A.,Borsato,A.,Frisia,S.,Hinton,R.W.,McDermott,F.andTooth,A.F.1565(2001)High-resolution,multiple-trace-elementvariationinspeleothems.Journalofthe1566GeologicalSociety,London,158,831-841.1567

Fleming,E.J.(2014) Magnetic,structuralandsedimentologicalanalysisofglacialsediments:1568insightsfrommodern,QuaternaryandNeoproterozoicenvironments.University of Birmingham, 1569unpubl.PhD.thesis,http://etheses.bham.ac.uk/5136/1570

Fleming,E.J.,Stevenson,C.T.E.,Petronis,M.S.,Benn,D.I.,Hambrey,M.J.andFairchild,I.J.1571(2016)CriteriafortherecognitionofsubglacialprocessesduringaNeoproterozoic1572panglaciation,NESvalbard”Inrevisionforthisissue,Sedimentology1573

Fountain,A.G.,Lyons,W.B.,Burkins,M.B.,Dana,G.L.,Doran,P.T.,LewisK.J.,McKnight,D.M.,1574Moorhead,D.L.,Parsons,A.N.,Priscu,J.C.,Wall,D.H.,Wharton,R.A.andVirginia,R.A.1575(1999)PhysicalcontrolsontheTaylorvalleyecosystem.Bioscience,49,961-971.1576

Frank,T.D.,Thomas,S.G.andFielding,C.R.(2008)Onusingcarbonandoxygenisotopedata1577fromglendonitesaspaleoenvironmentalproxies:AcasestudyfromthePermianSystemof1578easternAustralia.J.SedimRes,78,713-723.1579

Gooseff,M.N.,Lyons,W.B.,McKnight,D.M.,Vaughn,B.H.,Fountain,A.G.andDowling,C.1580(2006)Astableisotopicinvestigationofapolardeserthydrologicsystem,McMurdoDry1581Valleys,Antarctica.Arctic,Antarctic,AlpineRes.,38,60-71.1582

Green,W.J.andLyons,W.B.(2009)ThesalinelakesoftheMcMurdoDryValleys,Antarctica.1583Aquat.Geochem.15,321-348.1584

Gregg,J.M.,Howard,S.A.andMazzullo,S.J.(1992)Earlydiageneticrecrystallizationof1585Holocene(<3000yearsold)peritidaldolomites,AmbergrisCay,Belize.Sedimentology,39,1586143-160.1587

Grotzinger,J.P.andKnoll,A.H.(1999)StromatolitesinPrecambriancarbonates:Evolutionary1588milepostsorenvironmentaldipsticks?Ann.Rev.EarthPlanet.Sci.,27,313-358.1589

Page 66: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

66

Hall,B.L.,Hendy,C.H.andDenton,G.H.(2006)Lake-iceconveyordeposits:Geomorphology,1590sedimentology,andimportanceinreconstructingtheglacialhistoryoftheDryValleys.1591Geomorphology,75,143-156.1592

Hall,B.L.,Denton,G.H.,Sonte,J.O.andConway,H.(2013)Historyofgroundedicesheetinthe1593RossSeasectorofAntarcticaduringtheLastGlacialMaximumandthelasttermination.In:1594Hambrey,M.J.,Barker,P.F.,Barrett,P.J.,Howman,V.,Davies,B.,Smellie,J.L.andTranter,M.1595(eds.)AntarcticPalaeoenvironmentsandEarth-SurfaceProcesses.Geol.Soc.LondonSpec.1596Publ.,381,167-181.1597

Halley,R.B.(1977)OoidfabricandfractureintheGreatSaltLakeandthegeologicrecord.J.1598Sedim.Petrol.,47,1099-1120.1599

Halverson,G.P.(2006)ANeoproterozoicChronologyIN:Xiao,S.&Kaufman,A.J.(Eds.)1600NeoproterozoicGeobiologyandPaleobiology,Springer,NewYork,231-271.1601

Halverson,G.P.(2011)GlacialsedimentsandassociatedstrataofthePolarisbreenGroup,1602northeasternSvalbard.In:Arnaud,E.,Halverson,G.P.andShields-Zhou,G.(eds)(2011)The1603GeologicalRecordofNeoproterozoicglaciations.Geol.Soc.LondonMem.,36,571-579.1604

Halverson,G.P.,Hoffman,P.F.,Schrag,D.P.andKaufman,A.J.(2002)Amajorperturbationof1605thecarboncyclebeforetheGhuabglaciation(Neoproterozoic)inNamibia:Preludeto1606snowballEarth?Geochem.Geophys.Geosyst.,3,1035.doi:10.1029/2001GC000244.1607

Halverson,G.P.,Maloof,A.C.andHoffman,P.F.(2004)TheMarinoanglaciation1608(Neoproterozoic)innortheastSvalbard.BasinRes.,16,297-324.1609

Halverson,G.P.,Hoffman,P.F.,Schrag,D.P.,Maloof,A.C.andRice,A.H.N.(2005)Towardsa1610Neoproterozoiccompositecarbon-isotoperecord.Geol.Soc.Am.Bull.,117,1181-1207.1611

Halverson,G.P.,Dudás,F.Ö.,Maloof,A.C.andBowring,S.A.(2007)Evolutionofthe87Sr/86Sr1612compositionofNeoproterozoicseawater.Palaeogeog.Palaeoclimatol.Palaeoecol.,256,1613103-129.1614

Halverson,G.P.,Wade,B.P.,Hurtgen,M.T.andBarovich,K.M.(2010)Neoproterozoic1615chemostratigraphy.Precamb.Res.,182,337-3501616

Hambrey,M.J.(1982)LatePrecambriandiamictitesofnortheasternSvalbard.Geol.Mag.,119,1617527-551.1618

Hambrey,M.J.(1983)CorrelationofLateProterozoictillitesintheNorthAtlanticregionand1619Europe.Geol.Mag.120,209-232.1620

Hambrey,M.J.andSpencer,A.M.(1987)LatePrecambrianglaciationofcentralEastGreenland.1621Medd.GrønlandGeosci.19.1622

Hambrey,M.J.andFitzsimons,S.J.(2010)Developmentofsediment-landformassociationsat1623coldglaciermargins,DryValleys,Antarctica.Sedimentology,57,857-882.1624

Hambrey,M.J.andGlasser,N.(2012)Discriminatingglacierthermalanddynamicregimesinthe1625sedimentaryrecord.Sedim.Geol.,251,1-33.1626

Harland,W.B.(1964)CriticalevidenceforagreatInfra-Cambrianglaciation.Geol.Rundsch.,54,162745-61.1628

Harland,W.B.(1997)TheGeologyofSvalbard.Geol.Soc.LondonMem.,17.1629Harland,W.B.,Hambrey,M.J.andWaddams,P.(1993)VendianGeologyofSvalbard.Norsk.1630

Polarinst.Skr.193,150pp.1631Hendy,C.H.(1979)LatePleistoceneglacialchronologyoftheTaylorValley,Antarctica,andthe1632

globalclimate.Quat.Res.,11,72-84.1633Hendy,C.H.(1980)LateQuaternarylakesintheMcMurdoSoundregionofAntarctica.1634

GeografiskaAnnal.,82A,411-432.1635Hendy,C.H.Sadler,A.J.,Denton,G.H.andHall,B.L.(2000)Proglaciallake-iceconveyors:anew1636

mechanismforthedepositionofdriftinpolarenvironments.Geogr.Annal.82A,249-274.1637

Page 67: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

67

Hoffman,P.F.(2011)Strangebedfellows:glacialdiamictiteandcapcarbonatefromthe1638Marinoan(635Ma)glaciationsinNamibia.Sedimentology,58,57-119.1639

Hoffman,P.F.andSchrag,D.P.(2002)ThesnowballEarthhypothesis:testingthelimitsofglobal1640change.TerraNova,14,129-155.1641

Hoffman,P.F.,Kaufman,A.J.,Halverson,G.P.andSchrag,D.P.(1998)ANeoproterozoic1642SnowballEarth.Science,281,1342-1346.1643

Hoffman,P.F.,Halverson,G.P.,Domack,E.W.,Husson,J.M.,Higgins,J.A.andSchrag,D.P.1644(2007)ArebaslEdiacarn(635Ma)post-glacial“capdolostones”diachronous?EarthPlanet.1645Sci.Lett.,258,114-131.1646

Hoffman,P.F.,Halverson,G.P.,Domack,E.W.,Maloof,A.C.,Swanson-Hysell,N.L.andCox,1647G.M.(2012)CryogenianglaciationsonthesoutherntropicalpaleomarginofLaurentia(NE1648SvalbardandEastGreenland),andaprimaryoriginfortheupperRussøya(Islay)carbon1649isotopeexcursion.PrecambrianRes.,206-207,137-158.1650

Hood,A.V.S.andWallace,M.W.(2012)SynsedimentarydiagenesisinaCryogenianreef1651complex:Ubiquitousmarinedolomiteprecipitation.SedimentaryGeology,255-256,56-71.1652

Hood,A.V.S.andWallace,M.W.(2014)Marinecementsrevealthestructureofananoxic,1653ferruginousNeoproterozoicocean.J.Geol.Soc.London,171,741-744.1654

Huggett,J.M.,Schultz,B.P.,Shearman,D.J.andSmith,A.J.(2005)Thepetrologyofikaite1655pseudomorphsandtheirdiagenesis.Proc.Geol.Assoc.,116,207-220.1656

Hyde,W.T.,Crowley,T.J.,Baum,S.K.andPeltier,W.R.(2000)Neoproterozoic‘snowballEarth’1657simulationswithacoupledclimate/ice-sheetmodel.Nature,405,425-429.1658

Javoy,M.,Pineau,F.andDelorme,H.(1986)Carbonandnitrogenisotopesinthemantle.1659Chem.Geol.,57,41-62.1660

Kaczmarek,S.E.andSibley,D.F.(2014)Directphysicalevidenceofdolomiterecrystallization.1661Sedimentology,61,1862-1882.1662

Kalugin,I.,Darin,A.,Rogozin,D.andTretyakov,G.(2013)Seasonalandcentennialcyclesof1663carbonatemineralisationduringthepast2500yearsfromvarvedsedimentinLakeShira,1664SouthSiberia.Quat.Int.,290-291,245-252.1665

Kawano,J.,Shimobayashi,N.,Miyake,A.andKitamura,M.(2009)Precipitationdiagramof1666calciumcarbonatepolymorphs:itsconstructionandsignificance.J.Phys.Condens.Matter,166721,doi:10.1088/0953-8984/21/42/425102.1668

Kelts,K.andHsü,K.J.(1978)Freshwatercarbonatesedimentation.In:Lerman,A.(Ed.),Lakes.1669Chemistry,Geology,Physics.SpringerVerlag,NewYork,pp.295-323.1670

Kennedy,M.J.,Christie-Blick,N.andSohl,L.E.(2001a)AreProterozoiccapcarbonatesand1671isotopicexcursionsarecordofgashydratedestabilizationfollowingEarth’scoldest1672intervals?Geology,29,443-446.1673

Kennedy,M.J.,Christie-Blick,N.andPrave,A.R.(2001b)Carbonisotopiccompositionof1674NeoproterozoicglacialcarbonatesasatestofpaleoceanographicmodelsforsnowballEarth1675phenomena.Geology,29,1135-1138.1676

Kennedy,M.,Droser,M.,Mayer,L.M.,Pevear,D.andMrofka,D.(2006)LatePrecambrian1677oxygenation:Inceptionoftheclaymineralfactory.Science,311,1446-1449.1678

Kennedy,M.J.,Mrofka,D.andvonderBorch,C.C.(2008)Snowballearthterminationby1679destabilizationofequatorialpermafrostmethaneclathrate.Nature,453,642-645.1680

Kennedy,M.J.andChristie-Blick,N.(2011)CondensationoriginforNeoproterozoiccap1681carbonatesduringdeglaciation.Geology,39,319-322.1682

Killingsworth,B.A.,Hayles,J.A.,Zhou,C.andBao,H.(2013)Sedimentaryconstraintsonthe1683durationoftheMarinoanOxygen-17depletion(MOSD)event.Proc.Natl.Acad.Sci.,110,168417686-17690.1685

Page 68: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

68

Kim,S.T.andO’Neil,J.R.(1997)Equilibriumandnonequilibriumoxygenisotopeeffectsin1686syntheticcarbonates.Geochim.Comochim.Acta,61,3461-3475.1687

Kirschvink,J.L.(1992)LateProterozoicLow-LatitudeGlobalGlaciation:theSnowballEarth.In:1688Schopf,J.W.,Klein,C.(Eds.),TheProterozoicBiosphere:AMultidisciplinaryStudy.Cambridge1689UniversityPress,pp.51-52.1690

Klappa,C.F.(1979)Lichenstromatolites:Criteriaforsubaerialexposureandamechanismfor1691theformationoflaminarcalcretes(caliche).J.Sedim.Petrol.,49,387-400.1692

Knoll,A.H.andSwett,K.(1990)CarbonatedepositionduringtheLateProterozoicEra:an1693examplefromSpitsbergen.Am.J.Sci.,290-A,104-132.1694

Knoll,A.H.,Hayes,J.M.,Kaufman,A.J.,Swett,K.andLambert,I.B.(1986)Secularvariationin1695carbonisotoperatiosfromUpperProterozoicsuccessionsofSvalbardandEastGreenland.1696Nature,321,832-838.1697

Knoll,A.H.,Fairchild,I.J.andSwett,K.(1993)CalcifiedmicrobesinNeoproterozoiccarbonates1698–implicationsforourunderstandingoftheProterozoicCambriantransition.Palaios,8,512-1699525.1700

Kulling,O.(1934)ScientificResultsoftheSwedish--NorwegianArcticExpeditioninthesummer1701of1931.XI.'TheHeclaHoekFormation'aroundHinlopenstretet.Geogr.Annlr.Stockh.,16,1702161-254.1703

Lan,Z,Liu,X.,Zhu,M.,Chen,Z.,Zhang,Q.,Li,Q.,Lu,D.,Liu,Y.andTangG.(2014)Arapidand1704synchronousinitiationofthewidespreadCryogenianglaciations.Precamb.Res.,1705http://dx.doi.org/10.1016/j.precamres.2014.10.0151706

Lancaster,N.andTeller,J.L.(1988)InterdunedepositsoftheNamibSandSea.Sediment.Geol.170755,91-107.1708

Land,L.S.(1980)Theisotopicandtraceelementgeochemistryofdolomite:thestateoftheart.1709In(D.H.Zenger,J.B.Dunham&R.L.Ethingtoneds.),ConceptsandModelsofDolomitization,1710SEPMSpec.Publ.,28,87-110.1711

Larsen,D.(1994)Originandpaleoenvironmentalsignificanceofcalcitepseudomorphsafter1712ikaiteintheOligoceneCreedeFormation,Colorado.J.Sed.Res.,A64,593-603.1713

Last,F.M.,Last,W.M.,Fayek,M.,Halden,N.M.(2013)Occurrenceandsignificanceofacold-1714watercarbonatepseudomorphinmicrobialitesfromasalinelake.J.Paleolimnol.,50,505-1715517.1716

Lauterbach,S.,Baruer,A.,Andersen,N.,Danielpol,D.L.,Dulski,P.,Hüls,M.,Milecka,K.,1717Namiotko,T.,Obremska,M.,vonGrafenstein,U.andDeclakesParticipants.(2011)1718EnvironmentalresponsestoLateglacialclimaticfluctuationsrecordedinthesedimentsof1719pre-AlpineLakeMondsee(northeasternAlps).J.Quat.Sci.,26,253-267.1720

Lawrence,M.J.F.andHendy,C.H.(1985)WatercolumnandsedimentcharacteristicsofLake1721Fryxell,TaylorValley,Antarctica.NZJ.Geol.Geophys.,28,543-552.1722

LeHeron,D.P.,Cox,G.,Trundley,A.andCollins,A.(2011)Seaice-freeconditionsduringthe1723Sturtianglaciations(earlyCryogenian),SouthAustralia.Geology,39,31-34.1724

LeHeron,D.P.,Busfield,M.AndKamona,F.(2013)AninterglacialonSnowballEarth?Dynamic1725icebehaviourrevealedintheChuosFormation,Namibia.Sedimentology,60,411-427.1726

LeHir,G.,Ramstein,G.,Donnadieu,Y.andGoddéris,Y.(2008)Scenariofortheevolutionof1727atmosphericpCO2duringasnowballEarth.Geology,36,47-50.1728

LeHir,G.,Donnadieu,Y.,Goddéris,Y.,Pierrehumbert,R.T.,Halverson,G.P.,Macouin,M.,1729Nédélec,A.andRamstein,G.(2009)TheSnowballEarthaftermath:Exploringthelimitsof1730continentalweatheringprocesses.EathPlanet.Sci.Lett.,277,453-463.1731

Leng,M.J.andMarshall,J.D.(2004)Palaeoclimateinterpretationofstableisotopedatafrom1732lakesedimentarchives.Quat.Sci.Rev.,23,811-831.1733

Page 69: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

69

Lewis,A.R.,Marchant,D.R.,Ashworth,A.C.,Hemming,S.R.andMachlus,M.L.(2007)Major1734middleMioceneglobalclimatechange:EvidencefromEastAntarcticaandtheTransantarctic1735Mountains.Geol.Soc.Am.Bull.,119,1449-1461.1736

Li,Z.-X.,Evans,D.A.D.andHalverson,G.P.(2013)Neoproterozoicglaciationsinarevisedglobal1737palaeogeographyfromthebreakupofRodiniatotheassemblyofGondwanaland.Sed.Geol.,1738294,219-232.1739

Lloyd,R.M.(1966)Oxygenisotopeenrichmentofseawaterbyevaporation.Geochimica et 1740Cosmochimica Acta,30,801-814.1741

Lyons,W.B.,Priscu,J.C.,Laybourn-Parry,J.,Moorhead,D.,McKnight,D.M.,Doran,P.T.and1742Tranter,M.(2001)TheMcMurdoDryValleyslong-termecologicalresearchprogram:new1743understandingofthebiogeochemistryoftheDryValleylakes:areview.PolarGeog.,25,202-1744217.1745

Lyons,W.B.,Leslie,D.L.,Harmon,R.S.,Neumann,K.,Welch,K.A.,Bisson,K.M.andMcKnight,1746D.M.(2013)Thecarbonstableisotopebiogeochemistryofstreams,TaylorValley,Antarctica.1747Appl.Geochem.,32,26-36.1748

Macdonald,F.A.,Schmitz,M.D.,Crowley,J.L.,Roots,C.F.,Jones,D.S.,Maloof,A.C.,Strauss,1749J.V.,Cohen,P.A.,Johnston,D.T.andSchrag,D.P.(2010)CalibratingtheCryogenian.Science,1750327,1241-1243.1751

Marchant,D.R.andHead,J.W.(2007)Antarcticdryvalleys:Microclimatezonation,variable1752geomorphicprocesses,andimplicationsforassessingclimatechangeonMars.Icarus,192,1753187-222.1754

Marchant,D.R.,Mackay,S.L.,Lamp,J.L.,Hayden,A.T.andHead,J.W.(2013)Areviewof1755geomorphicprocessesandlandformsintheDryValleysofsouthernVictoriaLand:1756implicationsforevaluatingclimatechangeandice-sheetstability.In:Hambrey,M.J.,Barker,1757P.F.,Barrett,P.J.,Howman,V.,Davies,B.,Smellie,J.L.andTranter,M.(eds.)Antarctic1758PalaeoenvironmentsandEarth-SurfacePro.cesses.Geol.Soc.LondonSpec.Publ.,381,319-1759352.1760

Matsubaya,O.,Sakai,H.,Torii,T.,Burton,H.andKerry,K.(1979)Antarcticsalinelakes-stable1761isotoperatios,chemicalcompositionsandevolution.Geochim.Cosmochim.Acta,43,7-25.1762

McKelvey,B.(1981)DVDP1763McKnight,D.M.,Niyogi,D.K.,Alger,A.S.,Bomblies,A.,Conovitz,P.A.andTate,C.M.(1999)1764

DryValleystreamsinAntarctica:Ecosystemswaitingforwater.Bioscience,49,985-995.1765McKnight,D.M.,Tate,C.M.,Andrews,E.D.,Niyogi,D.K.,Cozzetto,K.,Welch,K.,Lyons,W.B.1766

andCapoine,D.G.(2007)ReactivationofacryptobionticstreamecosystemintheMcMurdo1767DryValleys,Antarctica:Along-termgeomorphologicalexperiment.Geomorphology,89,186-1768204.1769

Moncrieff,A.C.M.andHambrey,M.J.(1990)Marginal-marineglacialsedimentationinthelate1770PrecambriansuccessionofeastGreenland.In:Dowdeswell,J.A.andScourse,J.D.(eds.)1771GlacimarineEnvironments:ProcessesandSediments.GeologiclSocietySpecialPublication,177253,387-410.1773

Mook,W.,Bommerson,J.andStaverman,W.(1974)Carbonisotopefractionationbetween1774dissolvedbicarbonateandgaseouscarbondioxide.EarthPlanet.Sci.Lett.22,169–176.1775

Mountney,N.P.andThompson,D.B.(2002)StratigraphicevolutionandpreservationofAeolian1776duneanddamp/wetinterdunestrata:anexamplefromtheTriassicHelsbySandstone1777Formation,CheshireBasin,UK.Sedimentology,49,805-833.1778

Müller,G.,Irion,G.andFörstner,U.(1972)FormationanddiagenesisofinorganicCa-Mg1779carbonatesinthelacustrineenvironment.Naturwissenschaften,59,158-164.1780

Nakai,N.,Wada,H.,Kiyosu,Y.andTakimoto,M.(1975)Stableisotopestudiesontheorigin1781

Page 70: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

70

andgeologicalhistoryofwaterandsaltsintheLakeVandaarea,Antarctica.Geochem.J.,,9,17827-24.1783

Neugebauer,I.,Brauer,A.,Dräger,N.,Dulski,P.,Wulf,S.,Plessen,B.,Mingram,J.,Herzschuh,1784U.andBrande,A.(2012)AYoungerDryasvarvechronologyfromtheRehweisepalaeolake1785recordinNE-Germany.Quat.Sci.Rev.,36,91-102.1786

Neumann,K.,Lyons,W.B.,Priscu,J.C.,Desmarais,D.J.andWelch,K.A.(2004)Thecarbon1787isotopiccompositionofdissolvedinorganiccarboninperenniallyice-coveredAntarcticlakes:1788searchingforabiogenicsignature.AnnalsGlac.,39,518-524.1789

Neuser,R.D.andRichter,D.K.(2007)Non-marineradiaxialfibrouscalcites–examplesof1790speleothemsprovedbyelectronbackscatterdiffraction.Sediment.Geol.,194,149-154.1791

Nomura,D.,Assmy,P.,Nehrke,G.,Granskog,M.A.,Fischer,M.,Dieckmann,G.S.,Fransson,A.,1792Hu,Y.andSchnetger,B.(2013)Characterizationofikaite(CaCO3

.6H2O)crystalsinfirst-year1793ArcticseaicenorthofSvalbard.Ann.Glaciol.,54,125-131.1794

Nylen,T.H.,Fountain,A.G.andDoran,P.T.(2004)Climatologyofkatabaticwindsinthe1795McMurdodryvalleys,southernVictoriaLand,Antarctica.J.Geophys.Res.Atm.109,D03114.1796doi:10.1029/2003JD003937.1797

Oehlerich,M.,Mayr,C.,Griesshaber,E.,Lücke,A.,Oeckler,O.M.,Ohlendorf,C.,Schmahl,1798W.W.andZolitschka,B.(2013)Ikaiteprecipitationinalacustrineenvironment–1799implicationsforpalaeoclimaticstudiesusingcarbonatesfromLagunaPotrokAIke(Patagonia,1800Argentina).Quat.Sci.Rev.,71,46-53.1801

Parker,B.C.,Simmons,G.M.,Love,F.G.,Wharton,R.A.andSeaburg,K.G.(1981)Modern1802stromatolitesinAntarcticDryValleylakes.Bioscience,31,656-661.1803

Peng,Y.,Bao,H.,Zhou,C.,Yuan,X.andLuo,T.(2013)Oxygenisotopecompositionof1804meltwaterfromaNeoproterozoicglaciationinSouthChina.Geology,41,367-370.1805

Pierrehumbert,R.T.(2005)ClimatedynamicsofahardsnowballEarth.J.Geophys.Res.,110,1806D01111,doi:1029/2004JD005162.1807

Pierrehumbert,R.T.,Abbot,D.S.,Voigt,A.andKoll,D.(2011)ClimateoftheNeoproterozoic.1808Ann.Rev.EarthPlanet.Sci.,39,417-460.1809

Pollock,M.D.,Kah,L.C.andBartley,J.K.(2006)Morphologyofmolar-toothstructuresin1810Precambriancarbonates:Influenceofsubstraterheologyandimplicationsforgenesis.J.1811Sedim.Res.,76,310-323.1812

Powers,D.W.andEasterling,R.G.(1982)ImprovedmethodologyforusingembeddedMarkov1813chainstodescribecyclicalsediments.J.Sedim.Petrol.,52,913-923.1814

Propenko,A.A.andWilliams,D.F.(2005)Depletedmethane-derivedcarboninwatersofLake1815Baikal,Siberia.Hydrobiologia,544,279-288.1816

Radke,B.M.andMathis,R.L.(1980)Ontheformationandoccurrenceofsaddledolomite.J.1817Sedim.Petrol.,50,1149-1168.1818

Rao,C.P.,Goodwin,I.D.andGibson,J.A.E.(1998)Shelf,coastalandsubglacialpolarcarbonates,1819EastAntarctica.CarbonatesandEvaporites,13,174-188.1820

Riccioni,R.-M.,Brock,P.W.G.andSchreiber,B.C.(1996)Evidenceforearlyaragoniteinpaleo-1821lacustrinesediments.J.SedimRes.,66,1003-1010.1822

Riding,R.(2000)Microbialcarbonates:thegeologicalrecordofcalcifiedbacterial-algalmats1823andbiofilms.Sedimentology,47(suppl.1),179-214.1824

Robinson,Z.P.,Fairchild,I.J.andArrowsmith,C.(2009)Stableisotopetracersofshallow1825groundwaterrechargedynamicsandmixingwithinanIcelandicsandur,Skeiðarársandur.1826HydrologyinMountainRegions:Observations,ProcessesandDynamics(Proceedingsof1827SymposiumHS1003atIUGG2007,Perugia,July2007).Int.Assoc.Hydrol.Sci.Publ.326,119-1828125.1829

Page 71: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

71

Rodriguez-Blanco,J.D.,Shaw,S.,Bots,P.,Roncal-Herrero,T.andBenning,L.G.(2014)Therole1830ofMginthecrystallizationofmonohydrocalcite.Geochim.Cosmochim.Acta,127,204-220.1831

Rooney,A.D.,Macdonald,F.A.,Strauss,J.V.,Dudás,F.O.,Hallmann,C.andSelby,D.(2014)Re-1832OsgeochronologyandcoupledOs-SrisotopeconstraintsontheSturtiansnowballEarth.1833Proc.Natl.Acad.Sci.,111,51-56.1834

Rooney,A.D.,Strauss,J.V.,Brandon,A.D.andMacdonald,F.A.(2015)ACryogenian1835chronology:Twolong-lastingsynchronousNeoproterozoicglaciations.Geology,43,459-462.1836

Schrag,D.P.,Berner,R.A.,Hoffman,P.F.andHalverson,G.P.(2002)Ontheinitiationofa1837snowballEarth.Geochem.Geophys.Geosyst.3,1036.doi:10.1029/2001GC000219.1838

Sekkal,W.andZaoui,A.(2013)Nanoscaleanalysisofthemorphologyandsurfacestabilityof1839calciumcarbonatepolymorphs.Sci.Rep.,3,1587.Doi:10.1038/srep01587.1840

Selleck,B.W.,Carr,P.F.andJones,B.G.(2007)Areviewandsynthesisofglendonites1841(pseudomorphsafterikaite)withnewdata:assessingapplicabilityasrecordersofancient1842coldwaterconditions.J.Sedim.Res.,77,980-991.1843

Shanahan,T.M.,Overpeck,J.T.,Beck,J.W.,Wheeler,C.W.,Peck,J.A.,King,J.W.andScholz,1844C.A.(2008)TheformationofbiogeochemicallaminationsinLakeBosumtwi,Ghana,and1845theirusefulnessasindicatorsofpastenvironmentalchanges.J.Paleolimnol.,40,339-355.1846

Shearman,D.J.andSmith,A.J.(1985)Ikaite,theparentmineralofjarrowite-type1847pseudomorphs.Proc.Geol.Assoc.,96,305-314.1848

Shearman,D.J.,McGugan,A.,Stein,C.andSmith,A.J.(1989)Ikaite,CaCO3.H2O,precursorof1849

thethinolitesintheQuaternarytufas,andtufamoundsoftheLahontanandMonoLake1850Basins,westernUnitedStates.Geol.Soc.Am.Bull.,101,913-917.1851

Simmons,G.M.,Vestal,J.R.andWharton,R.A.(1993)Environmentalregulatorsofmicrobial1852activityincontinentalAntarcticlakes.In:W.J.GreenandE.I.Friedmann(eds.),Physicaland1853BiogeochemicalProcessesinAntarcticLakesAm.Geophys.UnionAntarct.Res.Ser.,59,165-1854195.1855

Speirs,J.C.,McGowan,H.,Steinhoff,D.F.andBromwich,D.H.(2013)Regionalclimate1856variabilitydrivenbyfoehnwindsintheMcMurdoDryValleys,Antarctica.Int.J.Climatol.,33,1857945-958.1858

Spencer,A.M.(1971)LatePre-CambrianglaciationinScotland.Mem.Geol.Soc.Lond.6,5-102.1859Spötl,C.andWright,V.P.(1992)GroundwaterdolocretesfromtheUpperTriassicoftheParis1860

Basin,France:acasestudyofanarid,continentaldiageneticfacies.Sedimentology,39,1119-18611136.1862

Stockhecke,M.,Anselmetti,F.S.,Meydan,A.F.,Odermatt,D.andSturm,M.(2012)Theannual1863particlecycleinLakeVan(Turkey).Palaeogeog.Palaeoclimatol.Palaeocol.,333-334,148-1864159.1865

Sugden,D.E.,Marchant,D.R.,Potter,N.,Souchez,R.A.,Donton,G.H.,Swisher,C.C.andTison,1866J.-L.(1995)PreservationofMioceneglaciericeinEastAntarctica.Nature,376,412-414.1867

Swainson,I.P.andHammond,R.P.(2001)Ikaite,CaCO3.6H2O:Coldcomfortforglendonitesas1868

paleothermometers.Am.Mineral.,86,1530-1533.1869Talbot,M.R.(1990)Areviewofthepalaeohydrologicalinterpretationofcarbonandoxygen1870

isotopicratiosinprimarylacustrinecarbonates.Che.Geol.(Isot.Geosci.),80,261-279.1871Tandon,S.K.andFriend,P.F.(1989)Near-surfaceshrinkageandcarbonatereplacement1872

processes,ArranCornstoneFormation,Scotland.Sedimentology,36,1113-1126.1873Trindade,R.I.F.,Font,E.,D’Agrella,M.S.,Nogueira,A.C.R.andRiccomini,C.(2003)Low-1874

latitudeandmultiplegeomagneticreversalsintheNeoproterozoicPugacapcarbonate,1875Amazoncraton.TerraNova,15,441-446.1876

Page 72: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

72

Vasconcelos,C.,McKenzie,J.A.,Warthmann,R.andBernasconi,S.M.(2005)Calibrationofthe1877δ18Opaleothermometerfordolomiteprecipitatedinmicrobialculturesandnatural1878environments.Geology,33,317-320.1879

Virtasolo,J.J.,Leipe,T.,Moros,M.andKotilainen,A.T.(2011)Physicochemicalandbiological1880influencesonsedimentary-fabricformationinasalinityandoxygen-restrictedsemi-enclosed1881sea:GotlandDeep,BalticSea.Sedimentology,58,352-375.1882

Voorhuis,A.A.,Biddanda,B.A.,Kendall,S.T.,Jain,S.,Marcus,D.N.,Nold,S.D.,Sheldon,N.D.1883andDick,G.J.(2012)CyanobacteriallifeatlowO2:communitygenomicsandfunctionreveal1884metabolicversatilityandextremelylowdiversityinaGreatLakessinkholemat.Geobiology,188510,250-267.1886

Warren,J.(1989)EvaporiteSedimentology.Prentice-Hall,NewJersey.1887Warren,J.(2000)Dolomite:occurrence,evolutionandeconomicallyimportantassociation.1888

Earth-Sci.Rev.,52,1-81.1889Wharton,R.A.,Parker,B.C.,Simmons,G.M.,Seaburg,K.G.andLove,F.G.(1982)Biogenic1890

calcitestructuresforminginLakeFryxell,Antarctica.Nature,293,293-295.1891Williams,G.E.(1979)Sedimentology,stable-isotopegeochemistryandpalaeoenvironmentof1892

dolostonescappinglatePrecambrianglacialsequencesinAustralia.J.Geol.Soc.Aust.,26,1893377-386.1894

Williams,G.E.(2008)Proterozoic(pre-Ediacaran)glaciationandthehighobliquity,low-latitude1895ice,strongseasonality(HOLIST)hypothesis:Principlesandtest.Earth-Sci.Rev.,87,61-93.1896

Wilson,A.T.(1981)AreviewofthegeochemistryandlakephysicsoftheAntarcticdryareas.In1897(ed.L.D.McGinnis).DryValleyDrillingProjectpp.185-192.Washington:Am.Geophys.1898Union.1899

Wilson,C.B.andHarland,W.B.(1964)ThePolarisbreenSeriesandotherevidencesoflatePre-1900Cambrianiceages.Geol.Mag.,101,198-219.1901

Wright,V.P.(1990)Amicromorphologicalclassificationoffossilandrecentcalcicand1902petrocalcicmicrostructures.In:Douglas,L.A.(Ed.)SoilMicromorphology:ABasicandApplied1903Science.Elsevier,Amsterdam,pp.401–407.1904

Wright,V.P.andTucker,M.E.(2009)Calcretes:anintroduction.InWright,V.P.&Tucker,M.E.1905(eds.)Calcretes.Int.Assoc.Sedimentol.ReprintSeries,1-24.1906

Xiao,S.,Bao,H.,Wang,H.,Kaufman,A.J.,Zhou,C.,Li,G.,Yuan,X.andLing,H.(2004)The1907NeoproterozoicQuruqtaghGroupineasternChineseTianshan:evidenceforapost-1908Marinoanglaciation.Precamb.Res.130,1-26.1909

Zhang,F.,Xu,H.,Konishi,H.,Kemp,J.M.,Roden,E.E.andShen,Z.(2012)Dissolvedsulphide-1910catalyzedprecipitationofdisordereddolomite:Implicationsfortheformationmechanismof1911sedimentarydolomite.Geochimi.Cosmochim.Acta,97,148-165.1912

Zhao,Y.Y.andZheng,Y.F.(2010)Stableisotopeevidenceforinvolvementofdeglacial1913meltwaterinEdiacarancarbonatesinSouthChina.Chem.Geol.,271,86-100.1914

Page 73: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

73

Table1:NeoproterozoicchronostratigraphyandNESvalbardlithostratigraphy(afterHalversonetal.,2007,Halverson,2011,updatedbyunpublisheddata).Glacialunitshighlightedinred.ThispaperdealswiththeWilsonbreenFormation,representingtheyoungerofthetwoCryogenianglaciations.

GeologicalSystem Group Formation Member

Thick-ness(m)

Lithologies Interpretedenvironment

Ediacaran

Polarisbreen

DracoisenD4toD7 265

Sandstonesandmudstones(D4andD6);dolomiteD5andD7 Playas(D4toD6);Coastal(D7)

D1toD3 200Capcarbonate(D1)transitional(D2)toblack

shaleD3) Transgressivecoastal(D1)tooffshore(D2-D3)

Cryogenian

Wilson

breen

W3(Gropbreen) 65-95

Diamictitesandsandstoneswithminorlimestone Glacilacustrine;subglacialatbase

W2(MiddleCarbonate)

20-30

Threemainintervalsofcarbonate-bearingsandstonesandsiltstoneswithintervening

diamictites

Carbonateintervalsarefluvialandlacustrinewithglacialinfluence;diamictitesare

glacilacustrinerainoutdeposits

W1(Ormen)

55-85

Brecciatedunderlyingdolomitelocallyoverlainbysandstonesandconglomeratespassingupintodiamictitesandsandstones

withlocalrhythmites

Basalperiglaciatedsurface,locallysucceededbyfluvialdeposits,thenglacilacustrinerainout

depositsandsedimentgravityflows

Elbobreen

E4(Slangen) 20-30 Ooliticdolomite Regressiveperitidal

E3(Macdonaldryggen)

200 Finelylaminateddolomiticsiltyshale Offshoremarine

E2(Petrovbreen) 10-20 Dolomiticdiamictites,rhythmitesandconglomerates

Glacimarine

(basetobedefined)

E1(Russøya) 75-170 Dolomitesoverlainbylimestonewithmolartoothstructure,blackshaleanddolomite

Shallowmarine

Tonian

Akadem

iker-

breen

Backlund-toppen

530 Limestoneanddolomite Carbonateplatform

Draken 350 Intraclasticdolomite Peritidal

Svanberg-fjellet

425 Limestoneanddolomite Carbonateplatform

Grusdiev-breen

700 Limestoneanddolomite Carbonateplatform

Page 74: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

74

Page 75: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

75

Table2.SummaryofcharacteristicsofcarbonatesinmembersW1andW3.Analysesareofcalciteexceptwhereitalicized(dolomite).s=standarddeviation;n=numberofsamples.

Section

Member,mabovememberbase(frommembertop)

Faciesassociation Lithology

δ18O δ13C

mean s mean s n

AND W330(-15)5

Intraclasticstromatoliticrhythmites(carbonatelayers5-10mmthick)withinterveningdiamictite.Somecalcite-filledpseudomorphs -9.22 0.20 0.27 0.33 5

AND W338(-7)5

Stromatoliticlimestone(laminae5-10mmthick)withdiamictitelaminae,variablybrokenupwithindiamictite.Observedover100mlaterally. -8.16 0.55 0.23 0.70 6

AND W340.5(-4.5) 5 Brecciatedlimestone - - - - -REIN W356(-6.5) 5 Limestonewithscatteredsand -8.92 - -0.44 - 1

KLO W325(-18) 5 Carbonatesinterlaminatedwithdiamictiteatbaseofbed.EFK15closelyresemblesthemiddlecarbonatelayeratsectionAND.

-7.97 - 1.83 - 1-5.03 - 1.04 - 1

KLO W328(-15) 5 Laminatedcarbonatesindiamictite.Somecrystalpseudomorphsbothwithinsedimentandgrowingupwards. -8.86 0.4 -0.38 0.1 3

-4.04 - 1.16 - 1

KLO W331(-12)5

Laminatedcarbonatesinice-raftedsedimentswithprominentupwardgrowingcrystalpseudomorphs(indolomite)ofikaite. -9.44 2.38 0.31 1.09 4

KLO W335(-8) 5 Similartohorizon4mlowerinsection. - - - - -

PIN W3n/a(-26)5

Slumpfoldedandbrecciatedthicklylaminatedstromatoliticlimestoneinredsiltysandydiamictites.Traceablelaterallyfor30m

-12.53 0.28 -0.04 0.29 3

ORM W13.5(-20.5)5

Slump-foldedrhythmiteswithdistinctmm-scalestromatoliticlimestonelaminae,somewithbulboustops,separatedbydiamictite. -12.5 - 0.32 - 2

ORM W328(-30)3

Sandstonewithconvolutebeddingwithnodulardolocrete(floatingquartz,micro-nodulesandcracks)alongspecificlaminae. -9.78 - -5.60 - 2

ORM W333(-25) 4Diamictiterestsonmassivestromatoliticlimestonewithpseudomorphsandslumpfolds

orintraclastsovergreenishcross-laminatedsandstonewithooids. -10.76 1.12 2.20 1.56 6

ORM W346.5(-11.5)5

Red,thicklylaminatedandslump-foldedstromatoliticlimestoneindiamictite.Locallymassivewithlotofearlycement. -9.44 2.38 0.31 1.09 4

Page 76: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

76

Table3.FaciesandfaciesassociationsoftheWilsonbreenFormation.Thefaciesassociationsare1numberedtorepresentanenvironmentalcontinuumasdepictedinFig.7A.23FaciesAssociation ConstituentFacies EnvironmentalInterpretation1:DeformedDiamictiteDetailedfaciesanalysisinFlemingetal.(2016)

Dominatedbymassivediamictites,locallywithdeformedstratificationwithlenticularsandandgravelbodies(1-5mthick)withdisruptedmargins.Locallyassociatedwithupwards-increasingshearofunderlyingsedimentandstriatedboulderpavements.

Subglacialtillandchannelbodies;glacitectonites.

2:FluvialChannel 2S:Bedsof0.5-4mveryfinetomedium-grained,locallycross-stratifiedsandstonewitherosionalconglomeraticbase.Somevariantshavelow-angleaccretionsurfaceswithsilt-dominatedbeds.Stromatoliticlimestoneiseitherabsentorabundant,formingdmpackageswithmm-cm-scalelaminaeseparatedbysandlaminaeandlaterallyerodedintotrainsofintraclasts.2T:Asabove,butlackingcarbonateprecipitates

Ephemeralstreamchannelsandswithstronglyseasonalflows.Insomecasesthereisawidespreadcarpetofcalcifiedmicrobialmats.

3:DolomiticFloodplain

Allfaciescontaindolomitewithapositiveδ18Ocompositionthatactivelycements,displacesand/orupwardlyaccretesthesediment.3D:Nodules,cm-todm-scaleofdolomite-cementedsiltsandsandstransitionaltostructurelessdm-tom-scalebedswithfloatingsiltandsandindolomite,internalnodulesandcalcite-cementedfractures3S:Stromatoliticdololaminites,dm-scaleandmm-laminated

Dolocretesrepresentingsoilhorizons,typicallyabovefluvialdeposits,withlocallyraisedwatertable3N:Nodulardolocrete3D:Beddeddolocrete3S:Subaerialstromatolites

4:CalcareousLakeMargin

4R:Rhythmiteswithmm-scaledolomite,limestoneormixedmineralogylaminae,commonlydesiccated,alternatingwith1-10mmwavycross-laminatedsiltysandstones.Carbonatelaminaeareoftenstromatolitic.Almostinvariablyreddened.4I:Intraclastic,dm-scale,veryfine-tomedium-grainedsandstones.Verylocallycontainooids.4S:Indistinctlyhorizontallystratifiedwell-sortedfine-tomedium-grainedsandstone,withwell-roundedgrains,locallywithcm-scaledolomitelaminae.

3R:Shallowlaketoplayaenvironmentwithwave-reworkedsedimentalternatingwithmicrobialmataccretion.3I:Discretestormhorizonsinshallowlake/playareworkingsandandstromatoliticcarbonate3S:Aeoliansandflatdeposits

5:CarbonateLake 5R:Rhythmiteswithmm-scalelimestone,dolomiteormixedmineralogylaminae,usuallywithstromatoliticmicrostructureandlocallybuildingdmstromatoliteswithcm-scalerelief.Alternatewith0.1-5mmlaminaeofdiamictite/wacke,commonlywithtillpelletsandoccasionallonestones.Slumpfoldingandbrecciationcommon.5D:Discretegraveltodiamictiteunitswithsignificantintraclasticdebrisinadditiontoterrigenousgravel.

5R:Carbonatemicrobialmatdepositsinlacustrineenvironmentsubjecttoseasonalice-raftingandslopeinstability.5D:Slope-relatedresedimentation.

6:GlacilacustrineDetailedfaciesanalysisinFlemingetal.(2016)

Dominatedbymassiveandstratifieddiamictiteswithcommonlonestonesandtillpellets.Decimetre-tom-scaleintervalsofsiltyrhythmitesoccurlocally,especiallyinmemberW1.Maycontainlensesofconglomerate,sometimeschannelled,andlensesorthinbedsofsandstoneformingpackageswhichcanbeinclinedatupto20°.

Ice-raftedglacilacustrinesedimentlocallyreworkedassediment-gravityflows.Inclinedpackagesformgrounding-linefans(termedproximalglacilacustrineonFig.1)andrhythmiteslikewisereflectice-marginretreat.

7:PeriglacialSeeFairchild&Hambrey(1984)andBennetal.(2015)

Decimetre-widesandstonewedgespenetratingupto2mintounderlyingsedimentfromadiscretesurfacethatmayhaveagravellag.AtbaseofWilsonbreenFormation,gravelwithventifactsoverlyingshattereddolostone.

Exposedperiglaciatedbedrockandsandwedgesfromexposedperiglacialenvironment.

4 5

Page 77: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

77

6FigureCaptions7

8

Fig.1.Reconstructionofthesedimentaryarchitectureandpalaeoenvironmentsofthe9

WilsonbreenFormationanditsconstituentmembers(W1toW3).Precipitatedcarbonateis10

presentinthepalaeoenvironmentalgroupcalled“CarbonateLacustrineandFluvial”throughout11

W2(exceptlocallyatthetopandbase),alsoinW3andatoneofthelocationsinW1aslistedin12

Table2.TheSvalbardarchipelagoisshownbottomrightandSpitsbergenisthemainislandofthe13

group,whilstNordaustlandetistheislandtotheNE.TherectangleontheSvalbardmapshowsthe14

studyareaasenlargedupperrightwithWilsonbreenFormationoutcrops(red)withinnunataks15

(grey)risingfromthehighlandsnowfield.Fromnorthtosouth,studylocationsare:DRA16

(Dracoisen);herethemainsectionislocatedonanunatakinformallyknownasMultikolorfjellet17

withsomeadditionalsamplingfromW2atasecondnunatakwetermTophatten1kmtothe18

north;DIT(Ditlovtoppen);AND(EastAndromedafjellet);REIN(aridgeonSouthAndromedafjellet19

informallyknownasReinsryggen);KLO(SouthKlofjellet);withsomeadditionalobservationsfrom20

apartialW2section1kmaway,atNorthKlofjellet;McD(MacDonaldryggen);GOL(Golitsynfjellet,21

intermediatebetweenMcDandBAC)–apartialW2sectionwasillustratedbyFairchildetal.22

(1989);BAC(Backlundtoppen-Kvitfjelletridge);PIN(anunnamednunatakinformallytermed23

Pinnsvinryggen);SLA(SoutheastSlangen)andORM(SouthOrmen).24

25

Fig.2.Examplesofstudiedsectionoutcrops.A.MemberW2atMultikolorfjellet,Dracoisen(DRA)26

illustratingthethreegroupsofglacialretreatfaciesbeds(numbered1to3)separatedby27

diamictiteswhichalsomakeupmembersW1andW3.B.MemberW2atORM(SouthOrmen)with28

palesand-dominatedunitsanddarkredfinerunits.Beddingisinvertedanddipssteeplyaway29

fromthephotographer.C.REIN(Reinsryggen)sectiononthesouthflankofAndromedafjellet30

Page 78: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

78

illustratingWilsonbreenFormationmembersoverlainbycapcarbonatememberD1.D.KLO31

(SouthKlofjellet)sectionoftheentireWilsonbreenFormationonsteepslopescutbyminorfaults,32

oneofwhichishighlighted.E.BAC(Backlundtoppen-Kvitfjelletridge)photomontagefrom33

helicopterhoveringabovetheglacierWilsonbreen.Thevisiblesectionisvertical(thrustfault34

shown)andtheaccessiblepartdefinesanarrowridgebetweenthecliffandasnowbankonthe35

ridgecrest.36

37

Fig.3.A.ObliqueaerialviewoftheMcMurdoDryValleys(1/1/1999imageryfromUSGeological38

SurveyviaGoogleEarth)withlocationarrowedininsetofAntarctica(upperright).EAIS=East39

AntarcticIceSheet.LGM=LastGlacialmaximum.Abbreviationsonupperrightinset:EA=East40

Antarctica,WA=WestAntarctica,RIS=RossIceShelf.Thelowerleftinsetshowsanobliqueaerial41

photographlookingwestupTaylorValleywithcold-basedvalleyglaciersonhillsideonleft,ice-42

coveredLakeBonney(valleyfloor,right)withthetipoftheTaylorGlacierbeyond.B.Despitesub-43

zerotemperatures,runoffoccursfromtheLowerWrightGlacier(anoutletglacierofthecoastal44

WilsonPiedmontGlacier)andfeedstheOnyxRiver.Thisstreamflowsinlandtothewest,45

eventuallytoLakeVanda,visibleinA.inthecentralpartofthevalley.Notetheaeoliansands46

bankedagainstheglacier.C.ObliqueaerialviewofVictoriaLowerGlacier(EendofVictoriaValley)47

whichfeedsastreamflowinginland,westwardstoLakeVida,seeninthedistance.Aeoliandunes48

tranversetothestreamarevisibleonright-sideofthethevalley.49

50

Fig.4.ProfileofmemberW2atDracoisen.Thelithologicallogemphasizesphysicalcharacteristics51

(seekey,upperright)whilsttheassignmenttofaciesassociations(centre)alsodrawson52

petrologicalandstableisotopeinformation.FA1toFA6representanenvironmentalcontinuum53

(cf.Fig.6)andFA7isgroupedwithFA1astheterrestrialglacialend-member.Eachdatapoint54

Page 79: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

79

representsthestratigraphicpositionofastudiedsampleorobservedlithologicalboundaryinthe55

field.Theoxygenisotopecompositionofprecipitatedcalcitesanddolomites(thelatteradjusted56

by-3‰)areshown.Mixed-mineralogysamples(<90%calciteordolomiteincalcite-dolomite57

mixtures)arenotplotted.Thesameconventionsareusedforprofilesoftheotherstudied58

sections,whicharepresentedassupportingfigures(Figs.S1-S6).59

60

Fig.5.Detritaltexturesandminerals.A.andB.PairedimagesofapolishedthinsectionunderCL61

andintransmittedlightrespectivelyofthematrixofasiltysandstone(W2,81.2m,Dracoisen)62

illustratingtheabundanceoffaintblue-luminescingfeldsparandvariedfragmentsofbothbright63

anddullred-luminescingdolomiteinthemudfraction.C.Thinsection,transmittedlight.Siltstone64

gradedrhythmites(W3,60.4m,EastAndromedafjellet)displayingseveralsand-sizedtillpellets.D.65

Crossedpolars.Matrixatthetopofagradedsiltlayerillustratingquartzo-feldspathicdebrisand66

micron-sizeddolomite,butnoclayminerals(W1,10mSlangen).67

68

Fig.6.Summarycartoonoffaciesassociations.FaciesAssociations2to5arecolour-codedhere69

andinisotopeplots.Themarginofanicesheetisdepicted,terminatingpartlyonlandand,inthe70

foreground,inthelake.FA1isshowninasubglacialenvironment(subglacialsedimentsare71

colouredbrown);periglacialphenomenaarealsogroupedinthisfaciesassociation.FA2andFA372

bothoccurinafluvialsetting(sedimentscolouredyellow),whilstFA5andFA6weredepositedin73

lakes(sedimentscolouredlightbrown).FA4includesbothshallowlacustrineandcoastal74

sediments.75

76

Fig.7.A.Summaryofstableisotopecompositionsofprecipitatedcarbonate,togetherwiththe77

meancompositionofdolomiticdetritus.Dolomiteandcalcitegroupingsareseparatedandonly78

Page 80: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

80

sampleswith>90%ofeitherdolomiteorcalciteinthecarbonatefractionareplotted.B.Stable79

isotopefieldsillustratingdegreeofcovarianceofthesamplegroups.80

81

Fig.8.Faciesassociation2(FluvialChannel).A-FareFacies2S(W2,Dracoisen,ataroundthe60m82

level),whereasGandHarefacies2T.A.Sandstonewithmicrobiallaminitesandlow-domed83

stromatolitesvariablybrokenintointraclasts.B.Stainedthinsectionintransmittedlightof84

stromatolitemicrostructurewithmicrite(M),microspar(S),fenestral(F)anddetrital(D)laminae.85

C.Stainedthinsectionintransmittedlightshowingthebrokenedgesofstromatoliticintraclasts86

withradiaxialcalcitecementcrustsinacalcareoussandstonematrix.D.Cross-stratifiedsandstone87

(set30cmhigh)withstromatoliteintraclastsoverlainbycurrentrippleforms.E.Polishedrock88

slicewitharrowdenotingmicromilledtraverseshowninF.F.Micromillisotopetraverseacross89

twomicrite/microsparlaminaandacentralzoneofcalcitesparwhichhasamuchlowerisotope90

signature.G.Sandstonebody(withpebblybase)showingaccretionarysurfaces(e.g.dashedline).91

Palaeohorizontalshownbysolidblackline.(W2,Ditlovtoppen,119m).H.Photomontageof92

tabularsandstoneunitofFA2withapebblehorizonnearitstop(arrowed).Itrestserosivelyon93

floodplain(FA3)siltsandisoverlainbyredlakemargin(FA4)sediments;ruleris25cmlong(W2,94

Dracoisen,83m).95

96

Fig.9.PhotomicrographsofstromatoliticlimestonesfromFA2.A.Pairedtransmittedlight97

(left)andCL(right)micrographs.Stromatoliticlaminaeoforange-luminescingmicrospar(MS)with98

subhedralauthigenicquartzandclasticlayer(M)includingquartzandfeldspargrains(thelatter99

luminescesdarkblue).Largefenestraisfilledbyradiaxialcalcite(R)seeninbothtransverseand100

basalsectionsanddisplayingbrighterearliergrowthanddullerlatergrowth.Thesefabricsarecut101

byavein(V)filledwithbrighttodullluminescingcalcite.W2,Dracoisen,58.5m.B.Stainedthin102

Page 81: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

81

section,transmittedlight.Alternatingmicrite,microsparandclasticlaminaewithprominent103

irregularvertical“filamentous”structureofclearcalcite.W2,Dracoisen,58.5m.104

105

Fig.10.FA3(Dolomiticfloodplain).Facies3DisshowninA-D,Facies3Sintheothers,andboth106

faciesinE.AlloftheFacies3SimagescomefromW2,Dracoisen,70m.A.Nodulardolocretewith107

calcite-linedvugsinsiltstonewithscaleinmm(W2,EastAndromedafjellet,35m).B.Stainedthin108

sectioninplanepolarizedlightshowingmatrix-supportedfabricofdolomitecementationofsandy109

siltstone.Dolomicrosparlinesafenestrawhichisoccludedbycalcite.W2,Dracoisen,70m.C.Thin110

sectioninplanepolarizedlight.Grain-supporteddolomicritecementofsiltysandstone.The111

dolomitehasaδ18Ocompositionof+2.7‰andhasauniformtextureincontrasttoclastic112

dolomiteofFig.4D.W2,SouthKlofjellet,57m.D.Displacivedolomitecementsupportingsiltand113

sandgrains.Well-developedstructureofdarknoduleswhichshowdifferentCLcharacteristics114

fromsurroundingdolomitefromwhichtheyareseparatedbycurvedcracks.W3,SouthOrmen,78115

m.E.Stainedthinsectionofinterlaminateddolomite-cementedsandandmicrobiallaminaewith116

fenestrae,someoccludedbyferroandolomite(turquoisearrow)orferroancalcite(purplearrow).117

F.Stainedthinsectionillustratingsimilarfabricto(D.),butwithcalcitecementationofcracksand118

largerpores(W2,Dracoisen,83m)G.Fieldphotographoftexturedbeddingsurfaceof119

dololaminiteidentifiedasmicrobialmattexture(W2,Dracoisen,70m).H.Polishedrockchipof120

microbialdololaminiteswitharrowmarkingpositionof5.2mmmicromilltraverse(showninJ.121

below).I.Microbiallaminitesdrapingdownwardsintounderlyinglaminatewhosebrecciationis122

attributedtoevaporitedissolutioncollapse.Outlinedruleris20cmlong.J.Stableisotopeprofile123

(in‰withrespecttoV-SMOW)ofmicrobialdololaminitesalonglineillustratedinH.Theisotopes124

covaryoveramagnitudeof6‰forδ18Oand1‰forδ13C.125

126

Page 82: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

82

Fig.11.FA3(dolomiticfloodplain).A.Transmittedlight,stainedthinsection.Sandydolocrete(FA3)127

containingequantnodulecementedbyferroansaddledolomite(turquoise),withlocallatecalcite128

(red),interpretedasafillofasmallanhydritenodule.W2,Backlundtoppen-Kvitfjelletridge,74.7129

m.B.Facies3Sstromatolitewithfenestrae.Pairedtransmittedlight(left)andCL(right)images.130

Brightlyluminescingdolomitemaybeprimaryoranearlyreplacementofaprecursor.W2,131

Dracoisen69.95m.C.Pairedtransmittedlight(left)andCL(right)images.Dolocreteshowingvery132

fine-grainedquartzsandgrainsfloatingindolo(micro-)sparwithcrystalsdisplayingacommon133

zonationofbrighttodullCL.Displaciveprimarydolomitegrowthisthepreferredinterpretation.134

W2,Ditlovtoppen,118.5m.D.Pairedtransmittedlight(left)andCL(right)images.Dolocrete,135

similartoFig.10D,F,withsparsefloatingquartzandfeldspar(blackandbluerespectivelyinCL)136

andcalcite-filledcracks(centre)andpores(base).Uniformlyluminescingdolomicritecrystals,differ137

inbrightnesswithinnodulespresumablyformingatdifferentstages.Calcite-filledporesshowCL138

zonation(base)ornoCL(cracks,centre).W2,Dracoisen,82.9m.139

140

Fig.12.Stableisotopeplot,differentiatingfacieswithinFA3and(inpurpleandlargersymbols)141

samplesfrommemberW3.142

143

Fig.13.FA4(CalcareousLakeMargin).ImagesA,B,DandH-JareFacies4R;C,EandGareFacies4I144

andFisFacies4S.A.Laminatedrhythmiclimestonesandsiltysandstoneswithconspicuous145

isolatedwaveripplestructureincentreofview.W2,Dracoisen,90m.B.Sand-richexampleof146

facies4Rwithcross-laminatedsiltysandsanddolomiticrhythmites,inpartdesiccatedoreroded147

toformintraclasts.Whiteareasneartoparemineral(probablesalt)pseudomorphs.W2,148

Ditlovtoppen,109m.C.Waverippleswith15cmwavelengthonbedtopW2,Dracoisen149

(Tophatten),approximatelyequivalenttothe87mlevelonFig.4.D.Carbonaterhythmitesurface150

Page 83: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

83

cutbydesiccationcracksandbearingsaltpseudomorphs.W2,Reinsryggen,82.5m.E.Stainedthin151

section,planepolarizedlightofooliticintraclasticsandstone.Ooidsarebimineralic(calciteand152

dolomite)withdominantconcentricstructure.W3,SouthOrmen,84m.F.Partofscannedthin153

sectionintransmittedlight.Well-sortedquartzosesandstonewithverywell-roundedgrainsand154

low-anglelaminationmarkedbysubordinateinterstitialdolomite.W2,Ditlovtoppen,114.2m.G.155

Stainedthinsectionintransmittedlight.Sandstonewithconspicuousstromatoliticrhythmite156

limestoneintraclasts.W2,Backlundtoppen-Kvitfjelletridge,76.5m(supportingFig.6).H.Two-157

metrehighsectionatofDitlovtoppen(108.5-110.5onsuppl.Fig.1)showingpoorlystratified158

sandstonebed(Facies4S)overlyingFacies4Rwithseveraldiscretegradedintraclasticsandstone159

beds(Facies4I).I.Polishedslabofdolomiticrhythmiteswithdesiccationcracks(C).The3.2mm-160

longmicromillisotopetraverseofJisindicated.W2,SouthOrmen,31.3m.J.Isotoperesultsfrom161

themicromilltraversewithlighterisotopevaluescorrespondingtodetritaldolomitematrixand162

theheaviestvalues(atright)indicativeofprecipitateddolomitecomposition.163

164

Fig.14.FA4illustratingcontrastbetweendetritalandreplacivedolomite.AandB.Paired165

transmittedlightandCLimagesrespectively.Enlargementoftheboundarybetweenadolomicrite166

lamina(below)andadetritallamina(top)ofthesamesampleasinFig.13I,J.Thedetritallayer167

showsquartz(blackinCL),feldspar(blue),adolomiteclast(brightring)whilstthedolomicrite168

showsaconsistentzonationofcrystalswithabrightcoreaswellassomefinesilt-sizedsiliciclastic169

debris.Thedolomicriteisinterpretedasanearlydiageneticreplacementofanearlycarbonate170

phase.W2,SouthOrmen,31.3m.171

172

Fig.15.FA5(CalcareousLake)inmemberW2.AllillustrateFacies5R,buttransitionstoFacies5D173

areshowninDandE.A.Thinsectionintransmittedlight.Calcareousrhythmiteswithsubordinate174

Page 84: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

84

clasticsedimentincludingtillpellets(e.g.yellowarrows).Whiteareas,1-2mmacross,aremineral175

pseudomorphs.Reinsryggen,81m.B.Calcareousrhythmiteswithirregularlaminatopsindicative176

ofmicrobialstructureandgrowthdomesabovevuggyareaswithsyn-depositionalcalcitecements.177

Notescaleinmm.Reinsryggen,80.5m.C.Sawnandpolishedhandspecimenillustratingagrowth178

faultacrosswhichthestratigraphyofstromatoliticrhythmitelayerschanges.Notescaleincm.179

EastAndromedafjellet,30.3m–notethisisathinrhythmiteoccurrencewithindiamictite180

(supportingFig.1).D.Stainedthinsectionintransmittedlight.Dolomitedropstone(d)deforms181

underlyinglimestonerhythmiteandliesatthebaseofacoarserresedimentedlayerincluding182

limestoneintraclasts.Ditlovtoppen,108m.E.Lowerhalfofadiscrete40cmdiamictitedebrisflow183

unitwithrhythmitesdeformedbyslumpingatthebase.Numerals1cmapartontape,lowerright184

corner.Ditlovtoppen,109m(wedgingoutover100mtothesectionshowninsupportingFig.1).F.185

Stromatoliticrhythmites,alternatelypurewhiteandimpuresediment-bearinglimestone.186

Backlundtoppen-Kvitfjelletridge,77m.LocationofmicromilltraverseofGillustrated.G.Micromill187

traverseasinFillustratingasystematicshiftinδ18O,butwithinarelativelynarrowrangeof1‰,188

similartorangeofuncorrelatedvariationinδ13C.189

190

Fig.16.FA5(calcareouslake)inmembersW3andW1.AllshowFacies5Rwithvarioustransitions191

toFacies5D.A.Diamictitesoffacesassociation6becominginterlaminated(yellowarrows)with192

limestonerhythmites.Slumpfoldsinupperleft.Lenscapforscale.W3,SouthKlofjellet,116.5m.193

B.Limestonerhytmitesdevelopingslumpfoldsupwardsandtransitioningtoanintraclastic194

diamictite.W3,SouthKlofjellet,116.5m.C.Polishedhandspecimenillustratingerosional195

truncationofstromatoliticrhythmitelaminaebydiamictitewithprominentcm-scalepebbles.W3,196

SouthKlofjellet,120m.D.Thinsectionintransmittedlightofpartlybrecciatedrhythmitewith197

laminaeuptocmscalewithinterstitialice-raftedsediment.Equantwhiteareasafewmmacross198

Page 85: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

85

aremineralpseudomorphs.W3,EastAndromedafjellet,63m.E.Slump-folded1-3mmlimestone199

rhythmitelayerswithinterstitialgreenice-raftedsediment.Scaleisincm.Thisistheonly200

precipitatedcarbonatehorizoninW1(SouthOrmen,3.5m).201

202

Fig.17.StromatoliticfabricsinFA5.A.Transmittedlight.Millimetre-scalecalcitelaminites203

separatedbythinnerice-raftedlaminaeandlocallycontainingtillpellets(P).Calcitelaminites204

displaypeloidalclotsandlocalfenestraeandhavevariablybulboustops.W2,Reinsryggen,79.8m.205

B.Transmittedlight.SimilarhorizontoC.displayingclasticlaminaoverlainbyclottedandfenestral206

microbiallaminawithbulboustop.W2,EastAndromedafjellet,13.5m.C.Stainedthinsection,207

transmittedlight.Dolomiticmicrobiallaminatecontainingdolomicriteanddolomicrosparlaminae208

andfloatingdetritus(white).Conspicuousfenestraearefilledbypink-stainedcalcite.W2,South209

Ormen,31.4m.D.Transmittedlight.W2,Reinsryggen,79.8m.Faintlyclotted(peloidal)micrite210

(examplesarrowed)andmicrosparlaminaewithinterveningcalcite-filledfenestra.Darkpatches211

aremicro-tillpellets(somearelabelledP),nowpartlysilicified.212

213

Fig.18.Crystalpseudomorphs.B-GareallFA5.A.PermianglendonitefromSouthAustralia:ikaite214

pseudmorphsthatoriginalgrewinglacimarinemudrocks.Pencilforscale.Sampleprovideby215

MalcolmWallace.B.Transmittedlightviewofinterlaminateddiamictitesandlaminated216

limestones,microbialinpart,anddisplayingtwodistincthorizonsofupward-growingcrystals.217

Crystalsinfluencesubsequentsedimentationpatternandhencegrewintothewatercolumn.W3,218

SouthKlofjellet,116.5m.C.Histogramofapparentinterfacialanglesfromthinsectionsofsamples219

showninB.Modesaremostconsistentwithanikaiteprecursor(seetext)D.Transmittedlight,220

stainedthinsectionofsamesampleasB.Pseudomorphsarecompositeofmosaicsofzoned,221

mostlyferroan(bluish)calcitecrystals.Outeredgesofcrystalshaveinpartbeendissolvedandin222

Page 86: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

86

partsilicified.W3,SouthKlofjellet,116.5m.E.Transmittedlight.Calcite-cementedcrystal223

pseudomorphs,morphologyconsistentwithikaite,instromatoliticlimestone.W3,SouthOrmen,224

85m.F.Transmittedlight.Indistinctcalcite-cementedprobablyikaitepseudomorphs,morphology225

probablyconsistentwithikaite,instromatoliticlimestone.W2,Reinsryggen,81.2m.G.226

Transmittedlight.Dolorhythmiteshostingdolomitepseudomorphs,inferredtobeafterikaite,227

withvaryingmicrite-microspar-sparreplacivetextures.W2,NorthKlofjellet,67m.228

229

Fig.19.Wilsbonbreencrystalpseudomorphs(A)comparedwithikaitecrystals(C)and230

pseudomorphsofdifferentagesandcontexts(B,D,E).A.Polishedhandspecimen(samesample231

asFig.16B.Notesmallpinkpebbletoleftindiamictitelayeroverlyingtopcrystallayer.Crystals232

grewupwardsatthreehorizonsandweredrapedbyoverlyingsedimentsbeforebeingreplacedby233

calciteasillustratedinFigs.18Dand20A.W3,SouthKlofjellet,116.5m.B.Examplesof“thinolite”234

crystalsfromDana(1884),interpretedasikaitepseudomorphsbyShearmanetal.(1989).Scale235

notgivenintheoriginal,butcrystalsaretypicallycm-dm-scale.C.Profilesofikaitecrystals236

recoveredfromArcticseaicebypartialmelting(Nomuraetal.,2013).D.andE.ikaite237

pseudomorphsfromaPatagonianlake(Oeherlichetal.,2013).D,illustratescrystalswithequant238

habitandsteppedfacesasseenbyscanningelectronmicroscopy.E.illustratespseudomorphs239

attachedtomossfilaments.240

241

Fig.20.CalcitefabricsofFA5.A.Transmittedlight,stainedthinsection.Enlargementoftheikaite242

pseudomorphsofFig.15Ashowingreliccrystaloutlinesindarkmicriteandreplacivecalcite243

(micro-)sparmosaicofzonedeuhedralnon-ferroancalciteovergrowthbyferroancalcite.W3,244

SouthKlofjellet,116.5m.B.Pairedtransmittedlight(left)andCL(right)images.Fenestral245

microbialfabricsimilartoFig.17Ddisplayingconsistentcrystalzonation:brightertodullerin246

Page 87: Continental carbonate facies of a Neoproterozoic ... · 90 distinctive marine transgressive ‘cap carbonate’ (following Williams, 1979) over the 91 Wilsonbreen Formation. Halverson

87

micriticmatrixandsharperzoneswithinfenestralcements.Fabricisconsistenteitherwithprimary247

calcitegrowthwithinextracellularpolymericsubstanceorreplacementofikaite,followedby248

cementationoffenestrae.W2,Reinsryggen,80.6m.249

250

Fig.21.Vertical(upward)faciestransitionsinmemberW2.ForthispurposeFA1andFA7are251

conflated.Thewidthofthearrowsisproportionaltothenumberoftransitionsminusone.The252

transitionmatrixshowninsupportingFig.8indicatesthatatleastoneverticaltransitionoccurs253

betweeneachofthefaciesassociationsexceptFA1.Seetextfordiscussion.254

255

Fig.22.Relativethicknessofstratabelongingtothedifferentfaciesassociationsinthefive256

sectionswithcomparablythickcarbonatefaciespreservedinW2,fromsouthtonorth.Seetextfor257

discussionandabbreviationsinFig.1.258

259

Fig.23.Diagrammaticsummaryoftheprocessesresponsibleforvariationinisotopecomposition260

oftheWilsobreencarbonateand,interpretationsoftheirparageneseswith(atbase)acartoon261

environmentalprofile.LargenumbersrefertoFaciesAssociations2to5.262

263

N.B.SupportingInformationissuppliedasafree-standingpdfandanExceldocument;supporting264

figurecaptionsarenotrepeatedhere.265

266