19
Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601 21.06.22 International Conference on Particle Physics and Astrophysics, Moscow-2015

Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

Embed Size (px)

Citation preview

Page 1: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

Continuum correlations in accreting X-ray pulsars

Mikhail Gornostaev, Konstantin Postnov (SAI),Dmitry Klochkov (IAAT, Germany)

2015, MNRAS, 452, 1601

21.04.23International Conference on Particle Physics and Astrophysics,

Moscow-2015

Page 2: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23

Outline

• Motivating observations• 2D accretion column modeling• Spectral calculations: saturated

Comptonization + reflected emission• Conclusions

ICPPA, Moscow-2015

Page 3: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23

Rossi X-ray Time Explorer (1995-2012)

• All-Sky Monitor (ASM)• 1-12 keV• Continuous monitoring • Bright transient XRP

EXO 2030+375, GX304−1, 4U 0115+63, V 0332+63, A 0535+26 and MXB 0656−072)

Credit: MIT/NASA

ICPPA, Moscow-2015

Page 4: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23

Observations

In all bright transient XRPs spectral hardness increases with luminosity and saturates above some value

Postnov, Gornostaev+’15ICPPA, Moscow-2015

Page 5: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23

Accretion columns

• At low accretion rates – braking by Coulomb interaction with NS atmosphere

• At high accretion rates – braking by radiation (Davidson’73, Basko & Sunyaev’75, Wang & Frank’81… Mushtukov+’15)

ICPPA, Moscow-2015

Page 6: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23

Two models of the accretion columns.Boundary conditions

Shockwave

Decelerationzone

Magnetic field lines

Magnetic pole

Basko M. M., Sunyaev R. A.,1976, MNRAS, 175, 395

10

0 0 0

( ) 10

(0)

)

3

0

)

2

( (r r

v

v

F r rF

U

d

c

cm/s

ICPPA, Moscow-2015

Page 7: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

Basic equations (cylindrical geometry)• steady-state momentum equation for accretion braking by radiation with energy density U

S = ρv is the accreting matter flux

• energy equation

• radiation transfer equation in the diffusion approximation

• mass continuity equation

Page 8: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

Reduce to one 2D equation

Dimensionless variables0

0

/ /

/ /T T

T T

r S r c rv c

z S z c zv c

(cf. Davidson 1973, Wang & Frank 1981)

Page 9: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

Filled-column geometry

z

Hollow-columngeometry,wall thickness is 0.1r0

(r0 is the radius of corresponding filled column)

Page 10: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

Lines of equal optical depth

Filled column, accretion rate is 1017 g/s

Column appears as a cylinder wall!

Page 11: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

Radial bolometric flux Fr(z) from filled accretion column

Lines from bottom to up correspond to mass accretion rate 2, 3, 5, 8, 12 x 1017 g/s

Page 12: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

Photon modes in strong magnetic field

21.04.23 ICPPA, Moscow-2015

X

O

Page 13: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

• Extraordinary photons in proper plasma frame for ν<<νg

(Lyubarsky’86)

• With fixed total flux Ф• Take Ф(z)~Fr(z)/2

• Integrate along z

Saturated comptonization in strong magnetic field

Page 14: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

Spectra of accretion columns (in the accreting plasma rest-frame)

• Left: the spectrum of sidewall emission from optically thick filled-cylinder accretion column, as seen by the local observer, for mass accretion rates2, 3, 5, 8, 12 (from bottom to up, respectively)• Right: the spectral hardness ratio HR as a function of mass accretion rate

Page 15: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

Single-scattering Compton X-ray albedo from a NS atmosphere with strong magnetic field

• The electron number density is ne = 5 × 1025 cm−3, electron temperature T = 3 keV, magnetic field B = 3 × 1012 G, photon incident angle to the magnetic field π/ 4 (NB weak dependence on the incident angle!)

• Extraordinary and ordinary photon spectra are shown by the solid and dashedlines, respectively. The cyclotron line is ignored

Page 16: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

Doppler boosting significant reflection from the neutron star surface

• Fraction of the reflected component (hard) in the total spectrum decreases with accretion rate effective spectral softening

Page 17: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

Spectra of accretion columns with account for radiation reflected from NS atmosphere

• Left: the total spectrum of direct sidewall and reflected from the NS atmosphere from the optically thick filled accretion column for mass accretion rates (from bottom to up, respectively)• Right: the hardness ratio HR of the total spectrum. Shown are calculations for the NS radius RNS = 10 km (squares) and RNS = 13 km (circles)

Page 18: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

Hardness ratio of the total emission(direct plus reflected from the NS atmosphere)

from a hollow-cylinder accretion columnas a function of mass accretion rate

Page 19: Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601

21.04.23 ICPPA, Moscow-2015

Conclusions

• Spectral hardness of transient accreting XRP increases with luminosity and saturates (decreases) above some value ~1037-38 erg/s

• Sidewall emission from optically thick accretion columns (saturated Comptonized spectra X-photons) always gets harder with Lx

• Addition of the reflected emission from NS surface allows to explain observations

• Even with account for reflection, hollow columns should be harder and saturate at higher accretion rates than filled columns