42
Prof. Marcos Dantus Prof. Vadim V. Lozovoy Controlling NLO processes, vibrational and electronic excitation, and strong field chemistry COI Disclosure: Dantus is the founder and president of Biophotonic Solutions Inc. COI Disclosure: Dantus is the founder and president of Biophotonic Solutions Inc.

Controlling NLO processes, vibrational and electronic

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Controlling NLO processes, vibrational and electronic

Prof. Marcos Dantus

Prof. Vadim V. Lozovoy

Controlling NLO processes, vibrational and electronic excitation, and strong field chemistry

COI Disclosure: Dantus is the founder and president of Biophotonic Solutions Inc.COI Disclosure: Dantus is the founder and president of Biophotonic Solutions Inc.

Page 2: Controlling NLO processes, vibrational and electronic

Multidisciplinary

Collaborations with

Universities and Industry

Dantus Group

Sensing

Biomedical imaging

Phase Control

Laser Design

Page 3: Controlling NLO processes, vibrational and electronic

J. Phys. Chem. A 106, 9369 (2002).

J. Chem. Phys. 118, 3187 (2003). Two vs. three photon

Optics Express 12, 1061-1066 (2004). Binary phases

Optics Express 13, 10882 (2005). Selective excitation

Physical Review A 74, 041805(R) (2006). pseudorandom Galois fields

Applied Optics, 49, (32), 6348-6353 (2010). Two-photon excitation spectroscopy

Multiphoton Intrapulse Interference (MII)

General approach to control n-photon transitions and non-linear optical processes

Walowicz, Pastirk, Comstock, Shane, Xu, Coello, Lozovoy and Dantus

Binary Phase Modulation: Physical Review A 74, 041805(R) (2006)

Page 4: Controlling NLO processes, vibrational and electronic

Pulse Characterization and CompressionPastirk, Xu, Gunn, Dela Cruz, Zhu, Martin, Rezan, Fry, Mackay, Coello, Harris, Shane,

Gunaratne, Borukhovich, Tseng, Weinacht, Nogueira, Cruz, Pestov, Lozovoy and Dantus

Optics Letters 29, 775-777 (2004).First

J. Opt. Society B 23, 750-759 (2006).Quantitative

Opt. Express 14, 8885-8889 (2006).Remote

Opt. Express 14, 9537-9543 (2006).Pre amp

Opt. Express 14, 10939-10944 (2006).Octave

spanning

Opt. Express 15, 16061 (2007) Surface SHG

Opt. Express, 15, 1932-1938 (2007).THG in air

Laser Focus World 43, 101-104, (2007)

J. Opt. Soc. Am. B 25, A140-A150 (2008)

Interference without interferometer

Opt. Express 16, 592-597 (2008).MIIPS 2

Opt. Express, 16, Issue 14, pp. 10033-10038 (2008)

2GHZ Octave spanning

Opt. Letters 35, 1422-1424 (2010).MIIPS sonogram

Preamp

Shaping

Page 5: Controlling NLO processes, vibrational and electronic

Pulse Shaping

Workshop 2012

-600 -400 -200 0 200 400 600

-400

-300

-200

-100

0

100

200

300

400

500

SO

D [

fs2]

time [fs]

0.8*1012

W/cm2

0.92*1012

W/cm2

1.25*1012

W/cm2

1.68*1012

W/cm2

2.1*1012

W/cm2

2.5*1012

W/cm2

Transient SOD changes measured by single shot MIIPSResults from1mm quartz

Page 6: Controlling NLO processes, vibrational and electronic

Experimental Results: Active SOD+TOD+Amplitude Compensation

Pestov et al. Presented at UFO 2011

Page 7: Controlling NLO processes, vibrational and electronic

Optics Express, 17, 14351 (2009) Multi-comb Shaping

Optics and Photonics News 20, 42-43 (2009).

Optics Express, 16, 15109 (2008) Asynchronous encrypted information

transmission with sub-6 fs with 2.12 GHz repetition rate laser.

Pulse Shaping and CommunicationsPestov, Xu, Coello, Nogueira, Cruz, Lozovoy, and Dantus

Page 8: Controlling NLO processes, vibrational and electronic

Appl. Opt. 46, 8394 (2007) Water and ocular GVD

Optics Express 19, 5163-5170 (2011) GVD of atmospheric gases

AIP Advances 1, 032166 (2011) GVD of solvents

Metrology and GVD Measurements (sub-fs2 accuracy)Coello, Xu, Miller, Wrzesinski, Gord, Roy, Devi, Pestov, Lozovoy and Dantus

Dispersion of waterDispersion of common solvents

Page 9: Controlling NLO processes, vibrational and electronic

J. Phys. Chem. A 108, 53 – 58 (2003)..

Optics Express 11, 1695-1701 (2003).

PNAS 101, 16996-17001 (2004). Selective two-photon

microscopy through biological tissue

Optics Express 12, 4144 (2004).

J. Photochem. Photobio. A 180, 307 (2006).

Nanomed.Nanotec.Bio. Med. 2, 177 (2006).

Opt. Commun. 281, 1841 (2008)

J. Biomed. Opt., 14, 014002 (2009)

BioOptics World 2 23-24 (2009)

J. Opt. 12, 084006 (2010).

Nature Photonics, 5, 103–109 (2011). Video rate selective SRS

J. Photochem. Photobio B: 115, 42 (2012). Photodamage

Microscopy ImagingPastirk, Xu, Dela Cruz, Walowicz, Comstock, Schelhas, Andegecko, Weisel, Xi, Freudiger,

Min, Holtom, Xie, Saytashev, Arkhipov, Winkler, Zuraski, Pestov, Lozovoy and Dantus

Quantum Control-Based

Functional Imaging Through Biological Tissue

Page 10: Controlling NLO processes, vibrational and electronic

Opt. Express 16, 5499-5504 (2008)

Int. J. High Speed Electronics and Syst. 18, 63 (2008).

Optics & Photonics News 19, 46 (2008)

Appl. Opt. 48, B17 (2009)

Applied Physics Letters 99, 101109 (2011).

Standoff DetectionLi, Harris, Xu, wrzesinski, Pastirk, Bremer, Butcher, Lozovoy and Dantus

Inspired by Dudovich Oron Silberberg Nature 418, 512 (2002)

Page 11: Controlling NLO processes, vibrational and electronic

Applied Physics Letters, L09-03549R1 (2009)

Optics and Photonics News 21, 49 (2010).

J. Raman Spec. 42, 393-398 (2011)

J. Phys. Chem. A, (2012)

Gas phase CARSRoy, Wrzesinski, Pestov, Gunaratne, Gord, Xu, Yue, Bremer, Lozovoy and Dantus

0.0 0.5 1.0 1.5 2.0-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Distance / mm

Distance / m

m

0.0 0.5 1.0 1.5 2.0-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Distance / mm

Distance / m

m

TL pulse excitation

Selective Binary Phase excitation

Selective Single Beam CARSSingle shot thermometry

Page 12: Controlling NLO processes, vibrational and electronic

Chemical Physics Letters 423, 197-201 (2006) Metals

J. Appl. Phys. 106, 123101 (2009) Silicon

Chem. Phys. Lett. (2012) LIBS using fiber oscillator

Micromachining & LIBS

Gunaratne, Kangas, Singh, Gross, Zhu, Parker, Parker, Nie, Lozovoy and Dantus

Single shot ablation of silicon

Page 13: Controlling NLO processes, vibrational and electronic

Nano Letters 6, 2804-2809 (2006).

J. Phys. Chem. C C 114, (29), 12375 (2010).

Plasmonics and nanoparticlesGunn, Ewald, High, Lozovoy and Dantus

Measurement and Control of Ultrashort Optical Pulse Propagation in Metal Nanoparticle-Covered

Dielectric Surfaces; Up to distances >100x focal spot.

Two-photon induced luminescence, far from focal spot

Surface Plasmon Transmission through nanoparticle wires.

Page 14: Controlling NLO processes, vibrational and electronic

J. Phys. Chem. Letters 3, 2458 (2012)

Solvation DynamicsKonar, Shah, Lozovoy and Dantus

Fluorescence Stim. Emission

SHGInt. FROG

Intensity Invariant

Fluorescence

Stim.

Emission

Simulation

Revisiting the chirp effect observed by Bardeen and Shank,

Later by Wilson’s group

Experiment

Theory

Page 15: Controlling NLO processes, vibrational and electronic

Solvation DynamicsKonar, Shah, Lozovoy and Dantus

Normalized Effect = [Max (IFL) – Min (IFL)] / (IFL TL)

If found to be = x

Because IFL TL=x then Effect = x2

Excitation Range from 0.02% to 6%

Quadratic Intensity Dependence

J. Phys. Chem. Letters 3, 2458 (2012)

108 W/cm2

Page 16: Controlling NLO processes, vibrational and electronic

Measuring Interference Between Laser Pulses and Wave Packets Without Imposing

The two optical pulses interfere The spectrum is modulated

Scherer et al. JCP 93, 856 (1990), JCP 95, 1487 (1991)

1st order autocorrelation

2nd order autocorrelation

Michelson Interferometer

Page 17: Controlling NLO processes, vibrational and electronic

J. Phys. Chem. Letters 3, 1329 (2012).

Solvation DynamicsKonar, Shah, Lozovoy and Dantus

Fluorescence

Stim. Emission

SimulationsNon-interfering Interfering

Page 18: Controlling NLO processes, vibrational and electronic

Optics Express 19, 12074-12080 (2011) 42 fs, 10nJ Yb fiber laser

Optics and Photonics News 22, 47 (2011) Self similar evolution

Optics Express 20, 14213 (2012) Osc. with bandwidth greater than gain

Biomed. Optics Express B, 1750 (2012) Imaging with sub-30fs Yb fiber

Fiber Laser Design

Nie, Pestov, Wise, Chong, Liu, Gale, Wabnitz, Renninger, Saytashev, Arkhipov, Lozovoy and Dantus

Compact <9fs fiber lasersSub-30fs Ytterbium oscillator

Soliton Similariton

Page 19: Controlling NLO processes, vibrational and electronic

J. Phys. Chem. A 109, 2413-2416 (2005) binary phases for multidimensional analysis

J. Phys. Chem. A 110, 11388-11391 (2006) search space mapping

Journal of Modern Optics 53, 2533 (2006) chemical recognition

ChemPhysChem, 7, 2471-2473 (2006) control using binary phases

J. Phys. Chem. A.112,3789 (2008) No evidence of interference

Strong FieldPastirk, Kangas, Dela Cruz, Shane, Gunaratne, Zhu, Harris, Lozovoy and Dantus

Binary Search Space Mapping

SHG

Intensity

Page 20: Controlling NLO processes, vibrational and electronic

J. Phys. Chem. A 109, 8447-8450 (2005) quantitative isomer identification

Journal of Mass Spectrometry 42 178 (2006) Isomer identification

Applied Optics, in press (2007). multidimensional

Anal. Chem. 82, 2753 (2010) Atmospheric pressure femtosecond laser

imaging mass spectrometry

Mass Spectrometry Analysis and Imaging

Dela Cruz, Pastirk, Coello, Jones, Gunaratne, Lozovoy and Dantus

Page 21: Controlling NLO processes, vibrational and electronic

J. Am. Chem. Soc. 131, 940 (2009) FS-LID

J. Phys. Chem. A, 114, 10380 (2010).

Journal of the American Society for Mass Spectrometry 12, 2031 (2010).

Mass Spectrometry Reviews 30, 600 (2011) Phosphoproteomics

Journal of Physical Chemistry A 116, 2764 (2012) The mechanism

Mass Spec. Proteomics and Metabolomics

Kalcic, Gunaratne, Jones, Reid, Winkler, Smith, Safran, Stemmer, Palumbo, Lozovoy and Dantus

Post-translational modifications: a challenge for proteomics Proteomics 6,1525-6 (2004)

Tumor antigen p53: (Science Molecule of the year 1993), has >18 phosphorylation sites.

DNA winds around Histones, gene regulation and DNA repair depend on histone PTM’s.

Breaking strong chemical bonds while leaving weak ones intact

Phosphorylation

Page 22: Controlling NLO processes, vibrational and electronic

Photoassociation

Chem. Phys. Letters 245, 393 (1995) J. Chem. Phys.106, 8013 (1997) Chem. Phys. Letters 306, 18 (1999)

Chirp control of chemical reaction J. Chem. Phys. 108, 4375-4378 (1998)

Four Wave Mixing (includes CARS) J. Chem. Phys. 111, 3779 (1999) J. Phys. Chem. A 103, 10226 (1999)

Temporal symmetry Chem. Phys.338, 259 (2007).

Comment (no toluene found from acetophenone) J. Phys. Chem. A 113, 5264 (2009)

Dynamics observed in acetophenone J. Phys. Chem. A 115, 1305 (2011)

Coherent ControlMarvet, Gross, Backhaus, Schmidt, Pastirk, Brown, Grimberg, Gunaratne, Zhu, Shah, Goswami,

Lozovoy and Dantus

-1.5

-1.0

-0.5

0.0

0 1 2 3 4 5

Si g

nal

Inte

nsity

Femtosecond Photoassociation

Parallel

Perpendicular

Time Delay (ps)

Hg + Hg Hg2* hv

Signal is proportional toD-X fluorescence depletion

Page 23: Controlling NLO processes, vibrational and electronic

Back of the Envelope Calculation

AcmR

V&/10 14 −=

The relative velocity of the mercury atoms

fsAxsmv /103/300 3 &−−=−=

The expected chirp in the absorption spectrum

fscm /30 1−−=φ

The calculated chirp required

2310c30

1fs−=−=φ

Å

Å

Cold Molecule 2001: Coherent Control and Cold Molecules

Gif-sur-Yvette, France,

October 21-25, 2001

Unpublished data by I. Pastirk, presented

Page 24: Controlling NLO processes, vibrational and electronic

Looking for electronic coherence in strong fields

62S1/2

62P3/2

800 802 804 806 808 810 812 814 816

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Flu

ore

scen

ce Inte

nsity (

a.u

)

Time Delay (fs)

0 100 200 300 400 500 600 700 800 900 1000

0.5

0.6

0.7

0.8

0.9

1.0

Cesiu

m F

luore

scence Inte

nsity

T ime Delay (fs)

0 2 4 6 8 10 12 14 16

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Flu

ore

scen

ce

Inte

nsity (

a.u

)

Time Delay (fs)

First look at Cs atoms

B. Girard

Page 25: Controlling NLO processes, vibrational and electronic

Looking for evidence of electronic coherence in o-NT photodissociation

Opt. Express 14, 9537 (2006)

ortho-Nitrotoluene

Peak Intensity = 8x1013 W/cm2

0 8 16 24 32 40 48 56 64 72 80 88 96

0.0

0.2

0.4

0.6

0.8

1.0

No

rmaliz

ed Ion

Yie

ld

Time Delay (fs)

Ion 120

cyclopropyl

Page 26: Controlling NLO processes, vibrational and electronic

Dicyclopentadiene (DCDP)

Pump only

Probe only

Pump + Probe MS Signal800 nm, 1013 W/cm2

800 nm, 1011 W/cm2

Goswami, Shah, Konar, Lozovoy and Dantus to be submitted (2012)

Page 27: Controlling NLO processes, vibrational and electronic

Power Dependence Fit for CPD+

Goswami, Shah, Konar, Lozovoy and Dantus to be submitted (2012)

Page 28: Controlling NLO processes, vibrational and electronic

Comparison to Third Harmonic Generation Signal

Goswami, Shah, Konar, Lozovoy and Dantus to be submitted (2012)

Page 29: Controlling NLO processes, vibrational and electronic

Long lived electronic coherence – DCPD fragments

Goswami, Shah, Konar, Lozovoy and Dantus to be submitted (2012)

Page 30: Controlling NLO processes, vibrational and electronic

=1.5 eV, 800nm

+*

Energy (eV)

Reaction Coordinate

+

8.76 eV

Electronic coherence occurs between the

ground and first excited state ion states

Multiphoton Ionization of Di-Cyclopentadiene

Baker et al., Anal Chem, 42, (1970)

Page 31: Controlling NLO processes, vibrational and electronic

Dicyclopentadiene+ (DCDP) time-resolved fragmentation

Goswami, Shah, Konar, Lozovoy and Dantus to be submitted (2012)

Page 32: Controlling NLO processes, vibrational and electronic

Multidisciplinary

Collaborations with

Universities and Industry

Dantus Group

Sensing

Biomedical imaging

Phase Control

Laser Design

Page 33: Controlling NLO processes, vibrational and electronic

Gavin Reid (MSU, Chemistry, Proteomics)

Daniel Jones (MSU, Bio Chem, Metabolomics)

Shaul Mukamel (UC Irvine, NLO pathway assignment)

George Abela MD (MSU, Cardiology)

Chong-Yu Ruan (MSU, ultrafast electron diffraction)

James Resau MD (Van Andel Institute, cancer)

Stephen Boppart (UIUC, femtosecond endoscopy)

Jim Gord (Air Force Research Lab, CARS)

Sukesh Roy (Spectral Engines LLC, CARS, Machining)

Flavio Cruz (UNICAMP, Brazil, Novel laser sources)

Sunney Xie (Harvard, CARS microscopy)

Rich Mathis (Berkeley, low frequency in biomolecules)

Frank Wise (Cornell, fiber laser design)

Thomas Weinacht (SUNY Stony Brook, UV pulse shaping)

Maurice Jansen (Free Univ. Amsterdam, PEPICO)

Shaul Mukamel (UC Irvine, NLO Theory)

Page 34: Controlling NLO processes, vibrational and electronic

Phase control enables fundamental research and applications

The Dantus Research Group

[email protected] visit www2.chemistry.msu.edu/faculty/dantus

Fundamental

Science and

Applications

Page 35: Controlling NLO processes, vibrational and electronic

Backup Slides for Follow Up Discussion

Page 36: Controlling NLO processes, vibrational and electronic

Is photofragmentation pattern phase dependent?

Zhu et al. J. Phys. Chem. A. 112, 3789 (2008)

Comprehensive exploration on the role of phase coherence on

the fragmentation of large molecules by intense shaped pulses

C7H7+ C5H5

+ C3H3+

Page 37: Controlling NLO processes, vibrational and electronic

Experimental Set-Up

L: lens – 300mm

Ti:Saphhire Regenerative Amplifier

- Rep Rate 1000 kHz

- 700 µJ/pulse

Page 38: Controlling NLO processes, vibrational and electronic

Is molecular response predictable?

Page 39: Controlling NLO processes, vibrational and electronic

Effect of phase & amplitude shaping

Page 40: Controlling NLO processes, vibrational and electronic

Generalizing to other molecules

Page 41: Controlling NLO processes, vibrational and electronic

Single Ultrafast Pulse Excitation for Remote CARS

Optics Express 16, 5499-5504 (2008)

Experimental Single-Beam CARS Setup

After MIIPS compression

Page 42: Controlling NLO processes, vibrational and electronic

2010 Pulse Shaping WorkshopAugust 20-22, 2010

Michigan State University

2011 Pulse Shaping Workshop @ MSU Aug 19-21. Keynote by Andrew Weiner