Convection Heat Transfer 3qsy2012-13

Embed Size (px)

Citation preview

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    1/54

    CONVECTIONHEAT TRANSFER

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    2/54

    CONVECTION

    Heat transfer by CONVECTIONoccurs as a result of themovement of fluid on a macroscopic scale in the form ofeddies or circulating currents.

    If currents arise from the heat transfer itself, NATURALCONVECTIONoccurs.

    In FORCED CONVECTIONthe circulating currents are producedby an external agency (e.g. an agitator in a reaction vessel oras a result of turbulent flow in pipe).

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    3/54

    Newtons Law of Cooling:

    Q = h A (Ts-T)

    CONVECTION: heat transfer between a solid

    and a fluid

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    4/54

    CONVECTION BOUNDARY

    LAYERS

    u

    u

    (x)

    The Velocity Boundary Layer

    - velocity boundary layer thickness

    - the value of y for which u = 0.99u

    y

    x

    free stream

    velocity BL

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    5/54

    Velocity Boundary Layer

    Develops whenever there is fluid flow over a

    surface

    Of fundamental importance to problems

    involving convection transport

    In fluid mechanics

    For external flow, it provides the basis for

    determining the local friction coefficient2

    2

    u

    C sf

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    6/54

    T

    t

    T

    t(x)

    The Thermal Boundary Layer

    t- thermal boundary layer thickness

    - the value of y for which (TsT) = 0.99 (Ts- T)

    y

    xTs

    free stream

    thermal BL

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    7/54

    Thermal Boundary Layer

    Must develop if the fluid free stream and surface

    temperatures differ

    At the surface, there is no fluid motion and energy

    transfer occurs only by conduction

    Conduction

    Convection

    TThA

    Qs

    s

    0y

    fs

    y

    TkA

    Q

    TT

    y

    Tk

    hs

    0y

    f

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    8/54

    Significance of Boundary Layers

    For the engineer, the principalmanifestation of the boundary layers areas follows:

    SURFACE FRICTION

    Key BL parameter: friction coefficient, Cf

    CONVECTIVE HEAT TRANSFER Key BL parameter: convective heat transfer

    coefficient, h

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    9/54

    Boundary Layer Parameters

    Key BL parameters are evaluated from BL

    equations BL approximations

    Velocity BL

    Thermal BL

    x

    u,

    y

    u,

    x

    u

    y

    u

    uu

    yyxx

    yx

    x

    T

    y

    T

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    10/54

    Boundary Layer Parameters

    BL similarity parameters

    Parameter Definition Significance

    Reynoldsnumber

    Ratio of inertia and viscous forces

    Prandtl

    number

    Ratio of momentum and thermal

    diffusivities

    Nusselt

    number

    Dimensionless temperature

    gradient at the surface

    k

    C

    Pr

    p

    k

    hLNu

    LuRe

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    11/54

    PRANDTL NUMBER (Pr):a measure of the relative

    effectiveness of momentum and energy transport by

    diffusion in the velocity and thermal boundary layers,respectively.

    For laminar flow

    n is a positive number

    For gas: t (n =1) For liquid metal: t >> (n < 1)

    For oil: t 1)

    n

    t

    Pr

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    12/54

    Momentum and Heat TransferREYNOLDS ANALOGY

    NuCf

    2

    Re

    RePrNuuCh2CSt pf StantonNumber

    for Pr = 1

    Relates key parameters of thevelocity and thermal BL

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    13/54

    Momentum and Heat Transfer

    CHILTON-COLBURN ANALOGY

    If Pr 1 (0.60 < Pr < 60)

    H

    2/3f

    jPrSt2

    C

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    14/54

    FORCED CONVECTION

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    15/54

    Dimensional Analysis in Heat Transfer(Buckingham Method)

    ),,,,,( ukCLhh p

    hukL

    CukL

    ukL

    lkji

    phgfe

    dcba

    3

    2

    1

    For FORCED CONVECTION

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    16/54

    Final form of the correlation for convective heat

    transfer coefficient (forced convection):

    k

    C,

    Luf

    k

    hL p

    PrRe,fNu

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    17/54

    FORCED COVECTION INSIDE PIPES

    1. LAMINAR FLOW INSIDE A PIPE / TUBE (Re < 2100)

    SIEDER-TATE EQUATION [(Re Pr D/L) > 100]

    14.03/1

    PrRe86.1

    w

    b

    L

    D

    k

    DhNu

    Equation 4.5-4 Geankoplis 4ed

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    18/54

    2. TURBULENT FLOW INSIDE A PIPE / TUBE

    2.1 FULLY-DEVELOPED (hydrodynamically and thermally)turbulent flow in a smooth circular tube

    2/3

    D

    D2/3f Pr

    PrRe

    NuStPr

    8

    f

    2

    C

    1/34/5

    DD Pr0.023ReNu

    COLBURN EQUATION

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    19/54

    n4/5DD Pr0.023ReNu

    DITTUS-BOELTER EQUATION

    n = 0.40 for heating (Ts> Tm)

    n = 0.30 for cooling (Ts< Tm)

    0.70 Pr 160

    ReD10,000

    L/D 10

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    20/54

    0.14

    w

    b1/34/5D

    L

    Pr0.027Re

    k

    DhNu

    SIEDER-TATE EQUATION

    0.70 Pr 16000

    Re > 6,000

    L/D 60

    Equation 4.5-8 Geankoplis 4ed

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    21/54

    3. TRANSITION FLOW INSIDE A PIPE / TUBE

    2100 < Re < 6000

    Use Figure 4.5-2 Geankoplis 4ed

    4. ENTRANCE-REGION EFFECT ON h

    0.7

    L L

    D1

    h

    h

    L

    D61

    h

    h

    L

    2 < L/D < 20 4.5-12

    20 < L/D < 60 4.5-13

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    22/54

    5. LIQUID-METALS HEAT-TRANSFER COEFFICIENT

    0.40L 0.625Pek

    DhNu

    Fully developed turbulent flow in

    tubes with uniform heat flux

    L/D > 60

    100 < Pe < 104

    0.8L

    0.025Pe5.0k

    DhNu

    Fully developed turbulent flow in

    tubes with constant wall

    temperaturesL/D > 60

    Pe > 100

    Eq. 4.5-14

    Eq. 4.5-15

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    23/54

    Correlations from Perrys ChE handbook

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    24/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    25/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    26/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    27/54

    FORCED COVECTION OUTSIDE

    VARIOUS GEOMETRIES

    Heat-transfer coefficient on immersed

    bodies is given by

    1/3mPrcReNu

    NOTE: FLUID PROPERTIES ARE EVALUATED AT THE

    FILM TEMPERATURE:

    bwf TT2

    1T

    Eq. 4.6-1

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    28/54

    FLOW PARALLEL TO FLAT PLATE

    Re < 3 x 105(laminar)

    Nu = 0.664 Re0.50Pr1/3 Eq. 4.6-2

    Re < 3 x 105(turbulent)

    Nu = 0.0366 Re0.80Pr1/3 Eq. 4.6-3

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    29/54

    CYLINDER WITH AXIS PERPENDICULAR TO FLOW

    1/3m

    PrcReNu Eq. 4.6-1

    Re m c

    1 - 4 0.330 0.989

    4 - 40 0.385 0.911

    40 to 4 x 103 0.466 0.683

    4 x 103to

    4 x 104

    0.618 0.193

    4 x 104 to

    2.5 x 105

    0.805 0.0266

    TABLE 4.6-1

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    30/54

    FLOW PAST SINGLE SPHERE

    1/30.50Pr0.60Re2.0Nu

    1 < Re < 70,000 Eq. 4.6-4

    0.60 < Pr < 400

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    31/54

    Correlations from Perrys ChE handbook

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    32/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    33/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    34/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    35/54

    FREE CONVECTION

    or NATURAL CONVECTION

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    36/54

    Free or Natural Convection

    Very common

    Either external or internal flows

    Main source of momentum: hydrostatic

    force (buoyancy)

    Tends to result in low Nusselt number

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    37/54

    No imposed flow = No Reynolds number

    Since there is no free-stream velocity to quantify

    the forces of momentum in free convection flows,

    a new dimensionless group for inertial and

    viscous forces is needed.

    Since buoyancy is the source of movement:

    TgL~vg gravitational acceleration

    coefficient of thermal expansion

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    38/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    39/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    40/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    41/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    42/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    43/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    44/54

    Natural Convection from Vertical Planesand Cylinder

    mm aRaGrPraNu

    a and m are constants (see Table 4.7-1

    Geankoplis)

    Properties are evaluated at film temperatureTable 4.7-2 (Geankoplis) gives simplified

    correlations for natural convection from

    various surfaces

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    45/54

    Natural Convection from HorizontalCylinder

    Same as the case of vertical planes and

    cylinders

    Replace L with D

    mm

    aRaGrPraNu

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    46/54

    Natural Convection from HorizontalPlates

    Same as the case of vertical planes and

    cylinder

    L

    Side of a square

    Linear mean of 2 dimensions of a rectangle

    0.90 times the diameter of circular disc

    In general: L = area / perimeter

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    47/54

    Natural convection in enclosed surfaces

    Refer to equations 4.7-5to 4.7-15

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    48/54

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    49/54

    TUBE BUNDLES /BANK OF TUBES

    Typical industrial application as in heatexchangers

    Bundles of tube improve heat transfer byincreasing the surface area

    Bundles of tube are generally eitherarranged in ALIGNED or STAGGEREDconfiguration.

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    50/54

    In general, the STAGGERED configuration is best

    for heat transfer.

    Sn

    Note: ST= SN(in lecture notes) SD= SP

    SL = SP(in lecture notes)

  • 8/10/2019 Convection Heat Transfer 3qsy2012-13

    51/54

    For more than 10 transverse rows and 2000 < Re