30
CORSO DI LAUREA LM56 – CdLM Materials Engineering and Nanotechnology SCHEDE INSEGNAMENTI DIDATTICA PROGRAMMATA a.a. 2020/2021

CORSO DI LAUREA LM56

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CORSO DI LAUREA LM56

CORSODILAUREALM56–

CdLMMaterialsEngineeringandNanotechnology

SCHEDEINSEGNAMENTIDIDATTICAPROGRAMMATAa.a.2020/2021

Page 2: CORSO DI LAUREA LM56

SCHEDAINSEGNAMENTO

BatteriesandfuelcellsCorsodistudiodiriferimento LM56-CdLMagistraleinMaterialsEngineeringand

NanotechnologyDipartimentodiriferimento DipartimentodiIngegneriadell'InnovazioneSettoreScientificoDisciplinare ING-IND/21Docente PatriziaBocchettaCreditiFormativiUniversitari 9Orediattivitàfrontale 81Oredistudioindividuale 144Annodicorso IannoSemestre ILinguadierogazione InglesePercorso PERCORSOCOMUNEPrerequisiti BasicknowledgeofphysicsandchemistryContenuti Thecourseaimstoprovidethestudentswithfundamentalknowledgeand

understandinginelectrochemicalenergyconversionandstorage.Electrochemical,technologicalandmetallurgicalaspectsofbatteriesandfuelcellsdevicesareemphasizedthroughtheoreticallessonsandnumerical/experimentalpractice.

Obiettiviformativi

KnowledgeandunderstandingThecourseprovidesthestudentswithbasicconceptsofelectrochemicalprocessesappliedtoenergyconversionandstoragesystemsbyfocusingtheattentionontheperformance,application,materialscience,andcorrosionaspectsofthebatteriesandfuelcelldevices.ApplyingknowledgeandunderstandingAfterthecourse,thestudentwillacquireabasicknowledgeoftheprincipaltopicsofelectrochemicalchargestorageandenergyconversion.Thestudentwilllearntheoreticalandtechnologicalaspectsofbatteries,fuelcellsandsupercapacitordevices.Thestudentwillalsounderstandmetallurgicalandenvironmentalaspectsofbatteriesandfuelcellsfinalizedtopreventdegradationandpromoteeco-friendlysystemsandrecycleprocessesofwastes.Makingjudgments Studentswillacquiretheabilitytocriticallydiscusstheprincipalproblemsrelatedtobatteriesandfuelcellandtoproposesolutiontomaterialchoices,corrosionphenomenaandstabilityissuesbyusingbasicelectrochemicalandmetallurgicalnotions.CommunicationThestudentswillbeabletocommunicatethescientificknowledgeandmethodologicaltoolsacquiredinthecoursewithavariedandcompositeaudienceinaclearandtechnicalway.Thestudentwill

Page 3: CORSO DI LAUREA LM56

sustainconversationsonelectrochemicalenergyconversionthemesbyevidencingvantagesanddisadvantagesifcomparedwithotherenergyconversionmethods.Theabilitytouseatechnicallanguagewillbeimprovedduringthelaboratorypractice,wherethestudentswillbecalledtoproposesolutionstotheinvestigatedsystems.LearningskillsThestudentwillacquirebasicconceptsofappliedelectrochemistrythatwillguidehim/hertoacriticalassessmentofthepositiveandnegativeaspectsofanovelenergystorageorconversionsystemandtotheprojectofpossiblesolutions.Theseskillswillbeenhancedthankstoalongandfocusedlaboratorypractice.

Metodididattici

Thecourseconsistsoffrontallessons,numericalandexperimentalexercises.ClasscontentswillbegivenmanuallyontheboardorpresentedwiththeaidofPowerPointSlides.Interactionswithstudentswillbestimulatedduringlessonsinordertokeephightheattentionandcomprehensionofthecontents.

Modalitàd’esame

Examswillbecomposedofanoraldiscussionofthetheoreticalpartofthecourse(6credits)andawrittenreportontheexperimentalactivity(3credits).Theoraldiscussionwillrelateonfourtopics:1) Energeticaspectsofenergystorageandconversiondevices;2) Kineticaspectsofenergystorageandconversiondevices;3) Dicussionofabattery/fuelcellsystem;4) Enviromentalandcorrosionaspectsofabattery/fuelcellsystemwiththeaimtoverifytowhatextentthestudenthasacquiredtheaptitudetomanageelectrochemicaltheoreticalaspectofbatteries/fuelcellssystemsandtoapplythemtothedesignandproblemsolvingcharacteristicactivitiesofthesedevices.Thewrittenreportontheexperimentalactivitywillbeevaluatedbytakingintoaccountthelevelofthescientificdiscussion,thecorrectnessofthetechnicallanguageandthecompleteness/precisionoftheoveralldocument.

Programma Theoreticallessons(6credits)Introductiontothecourse.Introductiontoelectrochemistry.Differencesbetweenchemicalandelectrochemicalreactions.Energeticaspectsofgalvanicsystems.Notesonelectrolyticsolutions.Transportphenomenainsolution.Migration,diffusion,convection.Fundamentalaspectsofelectrochemicalkineticsinbatteries:charge-transfer,diffusionandohmiccontrol.Charge-dischargecurves.FaradaicandnonFaradaicprocesses.Electrode/Electrolytedoublelayer.HelmolzeGouy-ChapmanModels.ElectrochemicalImpedanceSpectroscopy:principlesandapplicationstothecharacterizationofenergystorageandconversiondevices.BodeandNyquistdiagrams.Circuitalmodels.Electrochemicalenergystorageandconversion:introductionandelectrochemicalfundamentalaspects.

Page 4: CORSO DI LAUREA LM56

Presentstateoftheartofenergystorageandconversiondevicesforapplicationinmobile(consumerelectronicsandbiomedicaldevices),transport(hybridandelectricvehicles)andstationary(windandphotovoltaicsystems).Ragoneplot.PrimaryBatteries:conventionalcells(Leclanche,manganeseoxide/Zn,silveroxide/Zn,Zn/air),lithiumbatteries,reservebatteries,thermalbatteries,seabatteries.SecondaryBatteries:Pb-acid,nickel-cadmium,silver-zinc,Zn-air.alluminium-air,nickel-metalhydride,lithium.ZEBRAbattery.Processesandmaterialsforhydrogenproductionandstorage.FuelCells:operatingprinciple,generalcharacteristicandclassification.Advantagesanddisadvantages.Triplecontactelectrodes.Thermodynamicandkineticaspects.Polarizationcurves.MembraneElectrodesAssembly.PolymericElectrolyteFuelCells(PEFC).Materialsandoperationofcatalyzedelectrodesandpolymericelectrolytes.Perfluorosulfonicmembranes(Nafion)andprotontransportmechanisms.Watermanagement.AlkalineFuelCells.PhosphoricAcidFuelCells.Directmethanolfuelcells.Moltencarbonatefuelcells.SolidoxideFuelCells.Electrochemicalcapacitorsandsupercapacitors.Hybridsupercapacitors.Electrolyticsupercapacitors.Corrosioninbatteriesandfuelcells:fundamentalsofelectrochemicalcorrosionandmetallurgicalaspectsinbatteriesandfuelcells.Environmentalimpactofbatteriesandfuelcells.Numericalexercisesonenergeticsandkineticsofgalvanicsystems,energyconversionandstorage,corrosionphenomenaappliedtobatteriesandfuelcells.LaboratoryPractice(3credits)Fabricationandelectrochemicalstudyofconventionalbatteries(suchasDaniellcell,Zn-air)andfuelcells(PEMFC).focusingtheattentionontheNernstequationandequilibriumpotentialmeasurements,batterytechnologyandcomponents,half-cellreactions,charging/dischargingtests,andperformanceanalysis.Metallurgicalaspectofcorrosionprocesses.Electrochemicalcorrosionofmaterialstypicallyusedinbatteryandfuelcellsystems.Microstructureanalysisofsamplesaffectedbyelectrochemicalcorrosion.Electrochemicalcorrosionofsamplescharacterizedbythesamecompositionanddifferentmicrostructures:microstructuralanalysisandmechanicalperformances.

Testidiriferimento

ElectrochemicalMethods-FundamentalsandApplications,A.J.Bard,L.R.Faulkner,Wiley(IIedition),2001ModernElectrochemistry2B,2ndeditionJ.O'M.BockriseA.K.N.ReddyKluwerAcademic/PlenumPublishersNY(2000)PietroPedeferri,Corrosioneeprotezionedeimaterialimetallici.Vol.IeVol.II,polipress,2007,MilanoItaliaPapersandreviewsprovidedduringthecourse.

Page 5: CORSO DI LAUREA LM56

Altreinformazioniutili

https://www.unisalento.it/scheda-utente/-/people/patrizia.bocchetta/didattica

Page 6: CORSO DI LAUREA LM56

SCHEDAINSEGNAMENTO

ChemistryIICorsodistudiodiriferimento LM56-CdLMagistraleinMaterialsEngineeringand

NanotechnologyDipartimentodiriferimento DipartimentodiIngegneriadell'InnovazioneSettoreScientificoDisciplinare CHIM/07Docente GiuseppeAgostinoMeleCreditiFormativiUniversitari 9Orediattivitàfrontale 81Oredistudioindividuale 144Annodicorso IannoSemestre ILinguadierogazione InglesePercorso PERCORSOCOMUNEPrerequisiti BasicknowledgeofchemistryandphysicsContenuti Theaimofthissubjectistointroducestudentstothemolecular-level

understandingofthephysicochemicalpropertiesoforganicsubstancesaimedatcharacteristicsofmaterialsandnanomaterials.Thecoursewillbetailoredtomasterstudentswithaspecificbackgroundandinterestinmaterialsciencesandtechnologies,industrialchemistry,chemicalengineering.Theoverallaimofthecourseistotrainthestudentsinthebasicconceptsandtechnologiesrelatedtomolecularmaterialspossessingusefulfunctionalproperties.Particularattentionswillbedevotedtoresponsiveandadaptivematerialsandtothecorrelationbetweenthe(nano)structureofthemolecularcomponentsandthefunctionalpropertiesofthehybridmaterials.

Obiettiviformativi

Aftercompletingthiscourse,thestudentshouldbeableto:-Definewhatconstitutesanorganiccompound.Applythenaminganddrawingconventionstodescribedifferentclassesoforganiccompounds.-Describetherangeofmolecularstructuresfoundamongorganiccompounds.-Describethephysicalstructureofchemicalisomers.-Managegeneralandorganicchemistryissuesingeneral.-Understandtheprinciplesandmanagingtheresultsderivingbyapplicationofspectroscopictechniquesmainlydevotedtothecharacterizationoforganicmaterials.

Metodididattici

Thecourseconsistsoffrontallessonsbyusingslidesandclassroomsimulationofexperiments.Thefrontallessonsareaimedatimprovingstudents'knowledgethroughthepresentationoftheories,modelsandmethods.

Page 7: CORSO DI LAUREA LM56

Partofthepractice-orientedcoursewillbefocusedontheapplicationofspectroscopictechniquesforanalysisoforganicsandhybridmaterialsingeneral.

Modalitàd’esame

InthefinalexamwillbediscussedthetopicspresentedduringthelecturesaswellastoprovideafullstructuralinterpretationofFT-IR,MS,1H-and13C-NMRspectratoelucidatethestructuresofanunknowncompound.

Programma Covalentbondsandshapeofmolecules(2hours).Acidsandbases(2hours).AlkanesandCycloalkanes(2hours).Alkenes(2hours).Alkenes:Reactivity(3hours).Chirality(3hours).Alkynes(2hours).Alkylhalides(3hours).Alcohols,ethersandthiols(1hour).Benzeneanditsderivatives(3hours).Amines(1hour).Aldehydesandketones(2hours).Carboxylicacids(3hours).Functionalderivativesofcarboxylicacids(3hours).Infraredspectroscopy(6hours).MassSpectrometry(6hours).NMRSpectroscopy(10hours).Tutorials(27hours)

Testidiriferimento

McMurryJ.E.-FundamentalsofOrganicChemistryPavia,DonaldL.,Lampman,GaryM.,Kriz,GeorgeSIntroductiontospectroscopyWilliamH.Brown,ThomasPoon,IntroductiontoOrganicChemistry,6thEdition,Wiley

Altreinformazioniutili

Page 8: CORSO DI LAUREA LM56

SCHEDAINSEGNAMENTO

ElectrochemicalTechnologiesCorsodistudiodiriferimento LM56-CdLMagistraleinMaterialsEngineeringand

NanotechnologyDipartimentodiriferimento DipartimentodiIngegneriadell'InnovazioneSettoreScientificoDisciplinare ING-IND/23Docente ClaudioMeleCreditiFormativiUniversitari 9Orediattivitàfrontale 81Oredistudioindividuale 144Annodicorso IannoSemestre IILinguadierogazione InglesePercorso PERCORSOCOMUNEPrerequisiti Basicknowledgeofcalculus,physicsandchemistry.Contenuti Thecourseisfocusedonthefundamentalsofelectrochemistryandits

technologicalapplications,includingcorrosion,industrialelectrochemicalprocessesandelectrochemicalenergyconversionandstoragesystems.

Obiettiviformativi

LearningoutcomesKnowledgeandunderstandingTheaimofthecourseistoprovidestudentswiththefundamentalsofelectrochemistryanditstechnologicalapplications,includingcorrosion,industrialelectrochemicalprocessesandelectrochemicalenergyconversionandstoragesystems.ApplyingknowledgeandunderstandingAfterthecourse,thestudentsshould:-haveacquiredtheskillsnecessarytoaddressthebroadthemeofelectrochemicaltechnologies,discussinginparticularthemostimportantvariables,bothfromathermodynamicandkineticpointofview;-haveunderstoodthemechanismsofchargetransferandbeabletodescribethestructureoftheelectrochemicalinterface;-haveacquiredthebasictoolsforunderstandingthecorrosionofmetallicmaterialsinthedifferentenvironmentsinwhichtheycanbeused;-beabletodiscusstheelectrochemicalprocessesappliedtoindustrialproduction;-haveunderstoodtheelectrochemicaldevicesforelectrochemicalenergyconversionandstoragesystems.MakingjudgementsThecourseprovidestheabilitytocriticallyaddresselectrochemical,corrosionandenergyconversionandstorageproblems.

Page 9: CORSO DI LAUREA LM56

CommunicationThecoursepromotestheabilityofthestudentstoexposetoexpertstheiracquiredscientificknowledgeinpreciseandformaltermsandtonon-specialistsbyusingelementaryconcepts.Learningskills

Studentsareencouragedtoacquirethecriticalskillstodealwithtypicaltheoreticalandpracticalelectrochemicalproblems.Theyshouldbeabletoexposetheiracquiredknowledgesummarizingnotionsfrombooksandslides.

Metodididattici

Thecourseconsistsoffrontallessonsusingslidesmadeavailabletostudentsandclassroomexercises.Thefrontallessonsareaimedatimprovingstudents'knowledgethroughthepresentationoftheories,modelsandmethods.Numericalandpracticalexercisesareaimedatabetterunderstandingofthetheory.

Modalitàd’esame

Inthefinalexam(oral)thetopicspresentedduringthelectureswillbeaddressed;theresultsobtainedduringthelaboratoryexerciseswillbediscussedwiththepossibilitytosolvesimplenumericalexercises.

Programma CourseContent1.Fundamentalsofelectrochemistry(6hours)Fundamentalsofelectrochemistry.Ions,electrolytesandquantisationoftheelectricalcharge.Thenatureofelectrodereactions.Transitionfromelectronictoionicconductivityinanelectrochemicalcell.2.Theelectrode-solutioninterface(6hours)Theelectrode-solutioninterface.Theelectricaldoublelayer.ElectrolysiscellsandGalvaniccells.3.Electrochemicalthermodynamics(9hours)Electrochemicalthermodynamics.Complexthermodynamicsystems.EquilibriuminthermodynamicSystems.Thermodinamicalpotentials.Chemicalwork.Chemicalpotential.Unaryandmulticomponent,homogeneousandheterogeneoussystems.Nonreactingandreactingsystems.Conditionsforequilibrium.Thermodinamicsofsurfaces.Surfacetension.Theequilibriumshapeofcrystals.Adsorptionatsurfaces.Electrodepotentialandthermodynamics.Electrochemicalpotential.Electrocapillaryequation.4.Electrochemicalkinetics(9hours)Electrochemicalkinetics.Kineticsaspectsofthecorrosion.Overpotential.Activation,concentrationandohmicoverpotentials.Butler-Volmerequation.Tafelequation.Limitcurrent.Masstransferandcurrentdistributioninelectrochemicalsystems.Transportinelectrolyticsolutions.Primaryandsecondarycurrentdistribution.5.Corrosion(9hours)Fundamentalsaspectsofcorrosionofmetallicmaterials.Uniformandlocalizedcorrosion.Faradaylaws.Electrochemicalmechanismofthecorrosion.Anodicandcathodicreactions.Thermodynamicsaspectsofthecorrosion.Nernstequation.Stabilitydiagramforwater.ApplicationsoftheNernstEquation.Cellpotentialsandconcentrations.Concentrationcells.PourbaixDiagrams.Corrosion,passivationandimmunityregions.Passivationandpassivityofmetals.Active-passivemetals.Principlesofgalvaniccorrosion.EvansDiagrams.Corrosionpreventionandprotectionmethods.

Page 10: CORSO DI LAUREA LM56

6.Industrialelectrochemicalprocesses(6hours)Electrodeposition,electroforming,electrorefining.7.Electrochemicalenergyconversionandstoragesystems(6hours)Electrochemicalenergyconversionandstoragesystems.Primaryandsecondarybatteries.Electrochemicalreactions.Storagecapacity.Energydensity.Powerdensity.Fuelcells.Electrochemicalsupercapacitors.8.Techniquesforthestudyofelectrochemicalinterfaces(6hours)Electrochemicalmethodsforthestudyoftheelectrode/electrolyteinterface.Quasi-stationarymethods.Twoelectrodeandthreeelectrodesystems.Numericalexercises9.Corrosion(6hours)10.Electrochemicalenergyconversionandstoragesystems(6hours)Laboratoryexercises11.Electrochemicaltechniques(6hours)Electrochemicaltechniques.Thepotentiostat.Current-potentialcurves.Quasi-stationarymethods.Cyclicvoltammetry.12.Spectroelectrochemicaltechniques(6hours)Spectroelectrochemicaltechniques.Infraredspectroscopy.Ramanspectroscopy.Spectroellipsometry

Testidiriferimento

[1]C.H.Hamann,A.Hamnett,V.Vielstich-Electrochemistry[2]V.S.Bagotsky-FundamentalsofElectrochemistry[3]A.J.Bard,L.R.Faulkner-ElectrochemicalMethods:FundamentalsandApplications[4]P.Pedeferri-Corrosioneeprotezionedeimaterialimetallici

Altreinformazioniutili

OfficeHours:byappointmentfixedbye-mailorattheendoftheclass

Page 11: CORSO DI LAUREA LM56

SCHEDAINSEGNAMENTO

PHYSICSOFMATTERMOD.IC.I.Corsodistudiodiriferimento LM56-CdLMagistraleinMaterialsEngineeringand

NanotechnologyDipartimentodiriferimento DipartimentodiIngegneriadell'InnovazioneSettoreScientificoDisciplinare FIS/03Docente EleonoraALFINITOCreditiFormativiUniversitari 6Orediattivitàfrontale 54Oredistudioindividuale 96Annodicorso IannoSemestre IILinguadierogazione InglesePercorso PERCORSOCOMUNEPrerequisiti Sufficiencyincalculus,probabilitytheory,linearalgebra,electromagnetismContenuti Thisisacourseintheoryandmodelsinphysicsofmatter;itaimstofurnish

somebasicknolwedgeconcerningquantumphysicsofatoms,moleculesandsolids.

Obiettiviformativi

KnowledgeandunderstandingThecourseprovidesabasisandanopportunityfororiginalityindevelopingorapplyingideasinamaterialphysicsresearchcontext.Applyingknowledgeandunderstanding:Thecourseprovidesabilitiesinproblemsolvingappliedinneworunfamiliarenvironmentswithinclassicalandquantumphysicscontexts.Makingjudgements:Thecoursegivestheabilitytointegrateknowledgeandhandlecomplexity,andformulatejudgementswithincompletedatatodiscriminatebetweentheclassicalandquantumregime,toevaluatetheappropriatesetofapproximationstobeused.CommunicationStudentshavetobeabletocommunicatetheirconclusionsandrationaletospecialist,byusingatechnicallanguagebasedonformulasandtheorems,andnon-specialistaudiencesbyusinganarrativelanguagebasedonelementaryconcepts.LearningskillsStudentsaretrainedtodevelopcreativethinking,criticalspirit,andautonomy,byusingasaknowledgetechniqueexamplesandcounter-examples.Thetheoreticalapproachofthecourseisagoodtooltoimprovetheirabilityofabstraction

Page 12: CORSO DI LAUREA LM56

Metodididattici

teacher-leddiscussionandassignments

Modalitàd’esame

PhysicsofmatterIisonlythefirstmodulusofthecompletecoursenamedPhysicsofmatter.ThereasinglefinalexamwhichincludesthecontentsofmodulusIandmodulusIITheexamconsistsoftwocascadedparts:thefirstpartiswrittentest(duration:twohoursandahalf);thestudentisaskedtosolveexercises;itisaimedtoverifytowhatextentthestudenthasgainedtheabilitytoapplytheorytosolvesimplecasestudies;thesecondpartisanoraltestaimedtodeterminetowhatextentthestudenthasgainedanoverallknowledgeofthemaintopicsofthecourse.

Programma Introduction:Physicsandtecnologyfromtheendof1800totoday(3hours).Mechanicalandelectromagneticwaves(2hours).Specialrelativity(5hours).ElementsofprobabilityandtheMaxwelldistribution(5hours).Thequantumnatureoflight(5hours).Atomicmodelsandthematterwave(5hours).Quantummechanicsinonedimension(12hours).Theangularmomentum(5hours).Thehydrogenatom,eigenvaluesandeigenfunctions(3hours).Quantumstatistics(2hours).Multielectronatoms(2hours).Introductiontomolecules(5hours).

Testidiriferimento

[1]R.Eisberg,R,Resnick,QuantumPhysics,J.WileyandSons.[2]R.A.Serway,C.J.Moses,C.A.Mojer,ModernPhysics,SaundersCollege[3]M.Born,AtomicPhysics,DoverBooksonPhysics[4]<ahref="https://archive.org/search.php?query=creator%3A%22Ronald+Gautreau+%26+William+Savin%22">R.Gautreau,W.Savin,SchaumsTheoryandProblemainModernPhysics

Altreinformazioniutili

Thisisacourseintheoryandmodelsinphysicsofmatter;itaimstofurnishsomebasicknolwedgeconcerningquantumphysicsofatoms,moleculesandsolids.

Page 13: CORSO DI LAUREA LM56

SCHEDAINSEGNAMENTO

PHYSICSOFMATTERMOD.IICorsodistudiodiriferimento LM56-CdLMagistraleinMaterialsEngineeringand

NanotechnologyDipartimentodiriferimento DipartimentodiIngegneriadell'InnovazioneSettoreScientificoDisciplinare FIS/03Docente NicolaLOVERGINECreditiFormativiUniversitari 6Orediattivitàfrontale 54Oredistudioindividuale 96Annodicorso IannoSemestre IILinguadierogazione InglesePercorso PERCORSOCOMUNEPrerequisiti KnowledgeandunderstandingoftheconceptstoughtinPHYSICSOF

MATTERMOD.I(LM56)Contenuti ThisistheModulusIIofthecoursenamedPhysicsofMatter.TheMod.IIisa

graduatelevelintroductorycoursetothefieldsofatomic,molecularandcondensedmatterphysics.Itaimstopresentthemainpropertiesofatoms,moleculesandsolids,alongwiththeirdetailedtheoreticaldescription/explanationbasedontheconceptsofquantummechanicsandsolidstatephysics.Inparticular,theoriginandpropertiesofbondsinbothmoleculesandsolidsarepresented,withemphasis-forsolids-onmetalsandmetalproperties.SpecialemphasisisplacedthoughoutthisCoursemodulusontheinteractionofatomsand(crystalline)solidswithelectromagneticradiation(X-rays)anditsuseinthephysical-chemicalandstructuralcharacterizationofmaterials.TheoreticalconceptsintroducedduringthelecturesarecomplementedbyLaboratoryclassesdealingwithpracticalsessionsonX-rayfluorescenceandX-raydiffractionmeasurementsoncrystallinematerials.

Obiettiviformativi

AftertheCoursethestudentwillbeabletodescribemajorphysicalpropertiesofatoms,moleculesandsolidsusingtheprinciplesandlawsofquantummechanics.Inparticular,thestudentwillbeableto: -Describeandunderstandelectronicconfigurationsofmany-electronatoms,theirenergylevelsandangularmomentumstates;understandtheoriginandtypesofmolecularbonds; -UnderstandandutilizeX-rayabsorptionandfluorescencespectroscopytoidentifychemicalelementsinagivenmaterial; -Identifysolidsaccordingtothetypeofbondsbetweenatomicconstituents;

Page 14: CORSO DI LAUREA LM56

-Describeandunderstandtheoriginofthemetalselectric/thermalpropertiesandtheirconsequences; -Describeandidentifymajorcrystalstructuresandthespatialarrangementsofconstituentatoms/ions/moleculeswithinthem; -UnderstandtheuseofX-raydiffractionforthestructuralcharacterizationofcrystallinematerials.

Metodididattici

TheCourseiscarriedonthroughclassroomtheoreticallectures(about90%ofthetotalteachinghours)andpracticalLaboratorysessions(about10%oftheteachinghours),thelatterfocussingontheapplicationsofX-rayfluorescencefordeterminingthematerialschemicalcompositionandthesueofX-raydiffractionmeasurementsinthestudyofcrystallinematerials.

Modalitàd’esame

PhysicsofMatterMod.IIisthesecondmodulusoftheCoursenamedPhysicsofMatter.ThereasinglefinalexamwhichincludesthecontentsofModulusIandModulusII.Theexamconsistsoftwocascadedparts:thefirstpartisawrittentest(duration:twohoursandahalf);thestudentisaskedtosolveexercises;itisaimedtoverifytowhatextentthestudenthasgainedtheabilitytoapplyquantumtheorytosolvesimplecasestudies;thesecondpartisanoralexamination/colloquiumaimedatdeterminingtowhatextentthestudenthasgainedanoverallknowledgeofthetopicstreatedwithinthecourse.

Programma Many-electronatoms,X-rayabsorptionandfluorescenceofatoms,LaboratoryI(XRFandmicroanalysisforanalysisofmaterialschemicalcompostion),Bondsinmolecules,IntroductiontoCondensedMatterPhysics,Chemicalbondsinsolids,Classicaldescriptionofelectricconductioninmetals,Electronscontributiontothermalandthermo-electricpropertiesofmetals,Quantumtheoryofelectronsinmetals,Elementsofcrystallography,X-raydiffractionofcrystals,ExperimentalmethodsofX-raydiffractiononcrystals,LaboratoryII(PracticalX-raydiffractiononcrystals).

Testidiriferimento

1.FundamentalUniversityPhysicsVol.3QuantumandStatisticalPhysics(M.AlonsoE.J.Finn),AddisonWesley(1968).2.SolidStatePhysics(N.W.AshcroftN.D.Mermin),Holt-SaundersInternationalEditions(1976).3.IntroductiontoSolidStatePhysics(C.Kittel),ThomsonPress(2003).

Altreinformazioniutili

Page 15: CORSO DI LAUREA LM56

SCHEDAINSEGNAMENTO

Science,TechnologyandSustainabilityofPolymersCorsodistudiodiriferimento LM56-CdLMagistraleinMaterialsEngineeringand

NanotechnologyDipartimentodiriferimento DipartimentodiIngegneriadell'InnovazioneSettoreScientificoDisciplinare ING-IND22Docente MariaenricaFrigioneCreditiFormativiUniversitari 12Orediattivitàfrontale 108Oredistudioindividuale 192Annodicorso IannoSemestre IILinguadierogazione InglesePercorso PERCORSOCOMUNEPrerequisiti KnowledgeofdisciplinesbelongingtoaBachelorDegreeinIndustrial

EngineeringorMaterialsSciencearerequiredtotheStudents:Chemistry,PhysicsandScienceandTechnologyofMaterials.

Contenuti ThecourseaimsatprovidingstudentsacomprehensiveknowledgeofScienceandTechnologyof(naturalorsynthetic)polymers:fromtheirsynthesis,totheirprocessingproceduresandtechniques,theirmacroscopicandmicroscopicpropertiesandcharacteristicsinbothsolidandliquidstates,theirdurability,degradation/biodegradationindifferentenvironmentalconditions,LCA(LyfeCycleAssessment)techniquesappliedtopolymericmaterialsandtheirfinaldisposal.Specificexamplesofnatural(i.e.wood,bio-basedpolymers)andtechnologicallyadvancedpolymers,orclassesofpolymers,willbeillustrated.Issuesrelatedtosustainabilityofpolymersandtheimpactofwasteplasticonthe(ground/marine)environmentwillbediscussed,presentingcasestudiesofinnovativeresearchesaimedatstudying,preventing/limitingthepollutionduetowasteplasticsorofpolymersemployedtoaidtheenvironment.Partofthecoursewillbedevotedtothecharacterizationmethodsandtechniquesforpolymers,withrelatedlaboratoryexperiences.

Obiettiviformativi

Knowledgeandunderstanding.Studentsmusthaveasolidbackgroundwithabroadspectrumofbasicknowledgerelatedtoscience,technologyandsustainabilityof(naturalorsynthetic)polymers:• thestudentsmusthavethebasiccognitivetoolstothinkanalytically,criticallyandtocorrelateinformation’sneededtoanalyze,characterize,process,selectapolymericmaterial,identifyforitanappropriaterecyclingroute;• theymusthavesolidknowledgeofscience,technologyandsustainabilityof(naturalorsynthetic)polymers;

Page 16: CORSO DI LAUREA LM56

• theymustbeabletofindandmanageanyinformationrequiredonaspecific(naturalorsynthetic)polymer,orablendofpolymers,ontextbooks,handbooks,database.Applyingknowledgeandunderstanding.Afterthecoursethestudentshouldbeableto:1)Recognizethemaindifferences,characteristicsandfeaturesofthethreeclassesofpolymers,i.e.thermosetting,thermoplasticandelastomers.2)Selecttheappropriatetechniqueandprocessingconditionsforaspecific(naturalorsynthetic)polymer,orablendofpolymers.3)Identifytherelationshipbetweenchemical-physical,microstructuralcharacteristicsandmacroscopicpropertiesofdifferentpolymers(includingbio-basedones)belongingtothethreeclassesofpolymers.4)Selectaproperpolymericmaterial,orablendofpolymers,foraspecificapplication.5)Selecttheproperrangeofservicetemperatureforapolymer,orablendofpolymers.6)Identifythepropermethodsandtechniquesrequiredtocharacterizeaspecificpolymer,orablendofpolymers,inrelationtothespecificfinaluse.7)Analyzetheresultsofanexperimentaltestaimedatcharacterizingaspecificpropertyofa(naturalorsynthetic)polymer/blendofpolymers.8)Distinguishbetweenthedegradationandbiodegradationprocesses,theconditionsandenvironmentsinwhichtheyoccur,respectively.9)Proposeamethod/techniquefortherecycleofwastepolymersinordertopreventthemtobelandfilled.Makingjudgments.Studentsareguidedtolearncriticallyeverythingthatisexplainedtotheminclass,toselectthemoreappropriatesolution(ofapolymer/blendofpolymers,orofamethod/techniquetocharacterize,processorrecycleprocedure)foranyspecificapplication/requisiteandtoanalyticallyjustifyanychoiceincomparisonwithavailablealternatives,takingintoaccountalsotheeco-sustainabilityconceptsinvolvedinthedifferentchoices.Communication.Thestudentsmustbeabletocommunicatewithavariedandcompositeaudience,notculturallyhomogeneous,inaclear,logicalandeffectivewayandwiththeappropriateterms,usingthemethodologicaltoolsacquiredandtheirscientificknowledge.Thecoursepromotesthedevelopmentofthefollowingskillsofthestudent:abilitytoexposewiththeappropriatespecialistvocabularyanytopicrelatedtoscience,technologyandsustainabilityofpolymers;abilitytodescribeandanalyzethepropersolutionforanyspecificapplication/requisite;abilitytoillustratetheresultsofanexperimentaltestperformedonapolymericmaterial,abilitytodiscussonissuesrelatedtotheirdisposalwithenvironmentalimplications.

Learningskills.Studentsmustacquirethecriticalabilitytorelate,withoriginalityandautonomy,tothetypicalproblemsofscience,technologyand

Page 17: CORSO DI LAUREA LM56

sustainabilityofpolymers,andingeneral,culturalissuesrelatedtoothersimilarareas.Theyshouldbeabletodevelopandapplyindependentlytheknowledgeandmethodslearntwithaviewtopossiblecontinuationofstudiesathigher(doctoral)levelorinthebroaderperspectiveofculturalandprofessionalself-improvementoflifelonglearning.Therefore,studentsshouldbeabletoswitchtoexhibitionformsotherthanthesourcetextsinordertomemorize,summarizeforthemselvesandforothers,anddisseminatescientificknowledge.

Metodididattici

Thecourseconsistsoftheorylessons,seminars,laboratoryexperiences,exercitations,visitstoindustrialplantsand/orresearchlaboratories.Thetheorylessons,carriedoutbyusingslidesofotherdidacticmaterialmadeavailabletostudents,alwaysthedaybefore(atleast)ofthelesson,areaimedatimprovingtheirknowledgeandunderstandingthroughtheillustrationofdefinitions,assumptions,modelsandmethods;studentsareinvitedtakeparttothelessonwithautonomyofjudgment,byaskingquestionsandpresentingexamples.Theseminarsareaimedatgivinganinsightonsomeselected(updatedeveryyear)topicsonscienceandtechnologyofpolymersandonissuesrelatedtosustainabilityandenvironmentalimpactofwasteplastics.Thelaboratoryexperiencesareaimedatillustratingthemaincharacterizationtechniques,testingmachinesandequipmentemployedtoanalyzeandcharacterizepolymericmaterials.Theexercitationsinclassroomareaimedatillustratinghowtoanalyze,reportinagraph/tableandcriticallydiscusstheresultsofanexperimentaltestperformedonapolymericmaterial.Visitstoindustrialplantsand/orresearchlaboratoriesareaimedatillustratingtheonfieldapplicationofwhatthestudentslearnduringlessons.

Modalitàd’esame

Final(oral)examThestudentisaskedtodescribeforaspecific(naturalorsynthetic)polymer,orablendofpolymers,oneormoreofthefollowing:synthesis,appropriateprocessingtechniques,mainpropertiesandcharacteristics,characterizationmeasurementsandtechniquesanddiscussionofrelativeresults,durabilityfeature,biodegradationpaths,LCAandenvironmentalimpact,recyclingalternativemethodologies.Thestudentisalsoaskedtosupplyalternativesforapolymericmaterial,foracharacterizationtechniqueorforatechnologicalmethodtakingintoaccountaspecificgoal(application,characterization,recycling).Intheevaluationoftheexam,thefollowingelementswillbetakenintoconsideration:thelogicalroutefollowedbythestudentinsolvingtheproposedissue;thecorrectnessoftheprocedureusedtoaddressthequestionandprovideasolution;theadequacyoftheproposedsolutioninrelationtothecompetenciesthatthestudentissupposedtohaveacquired;thecapacitytomakeconnectionsamongthedifferenttopicscoveredinthecourse;theuseofanappropriatetechnicallanguage.

Programma TheoryLessons:1)Polymer'sChemistry.MolecularStructureofpolymers.Polymericsolutions:rulesforpolymersolubilityinsolvents.Molecularweightandmeasurements.GelPermeationChromatography.Polymerizationreactions.Step-growthpolymerization.Chainpolymerization.

Page 18: CORSO DI LAUREA LM56

2)Polymer'sphysics.Classificationofpolymerswithexamples.Glassystateofpolymers.Characteristictemperaturesforpolymers.Glasstransitiontemperature.Crystallinestateofpolymers.3)Thermalcharacterizationofpolymers.Instrumentsandtechniquesforthermalanalysisofpolymers.Propertiesmeasuredwiththermalanalysis.4)Rheologyandrheologicalanalysisforpolymercharacterization.Classificationoffluidsonthebasisoftheirrheologicalproperties.Viscositymeasurementsandrelativeinstruments.Rheologicalinstrumentsemployedforcharacterizationofpolymers.5)MechanicalPropertiesofpolymers.Standardtestsandinstrumentsforthecharacterizationofthemechanicalpropertiesofpolymers.Dynamic-mechanicalproperties.6)Processingofpolymers.Mainindustrialtechniquesandinstrumentsfortheprocessingofpolymers.Characteristicsoffinalproducts.7)Durabilityandenvironmentalagingofpolymers.ChemicalAging.PhysicalAging.Weathering.Naturalandacceleratedaging.Casestudies.8)DegradationandBiodegradationprocesses:conditionsandenvironments,mechanisms.Biodegradablepolymers.9)Naturalpolymer(composite):Wood.Definitions,characteristicsandpropertiesofcompositeandnanocompositematerials.Woodstructureatdifferentlevelsofmagnitude.Influenceofwater/moisturecontentonwoodproperties.Mechanicalpropertiesofwood:standardtests,specimens,instrumentsandresults.Durabilityofwood.10)Circulareconomyconceptsappliedtopolymers.Bio-basedpolymersandbio-composites:production,properties,applications.Casestudies.11)LCA(LyfeCycleAssessment)techniquesappliedtopolymericmaterials.Issuesrelatedtosustainabilityofpolymers,impactofwasteplasticonthe(ground/marine)environment.Casestudies.12)Recyclingmethodologiesforpolymers.Advantagesandtechnologicallimitsforeachrecyclingmethod.Casestudiesforrecyclingofthermoplastic,thermosettingandelastomericpolymers.13)Casestudiesofpolymersemployedtoaidtheenvironment.LaboratoryExperiences:Thermal,Mechanicalcharacterizationofpolymers.ScanningElectricMicroscopy(SEM)toanalyzePolymersandWood.Exercitations:analysisanddiscussionoftheresultsfrom(thermal,mechanical)testsperformedondifferentpolymers.Seminarsheldbyexperts.Visitstoindustrialplantsand/orresearchlaboratories(whenpossible).

Testidiriferimento

L.H.Sperling,'IntroductiontoPhysicalPolymerScience',JohnWiley,2006.F.W.Billmeyer,'TextbookofPolymerScience',JohnWiley&SonsInc.,1984.S.Bruckner,G.Allegra,M.Pegoraro,F.LaMantia,“ScienzaeTecnologiadeiMaterialiPolimerici”,Edises,2007.U.W.Gedde,'PolymerPhysics',Chapman&Hall,1996.F.Rodriquez,'PrinciplesofPolymerSystems',McGrawHill,1989.A.W.Birley,B.Haworth,J.Batchelor,'PhysicsofPlastics',HanserPublishers,1992.J.Mark,K.Ngai,W.Graessley,L.Mandelkern,E.Samulski,J.Koenig,G.Wignall,“PhysicalPropertiesofPolymers”,CambridgeUniversityPress.Slidesandotherdidacticmaterialprovidedbytheteacher.

Page 19: CORSO DI LAUREA LM56

Altreinformazioniutili

Prof.Frigionereceivesstudentsuponappointment.Contactherattheendofeachlessonorbye-mail:mariaenrica.frigione@unisalento.it.ThestudentscanapplyfortheexamonWeb-VOLsystem.

Page 20: CORSO DI LAUREA LM56

SCHEDAINSEGNAMENTO

TransportphenomenaIICorsodistudiodiriferimento LM56-CdLMagistraleinMaterialsEngineeringand

NanotechnologyDipartimentodiriferimento DipartimentodiIngegneriadell'InnovazioneSettoreScientificoDisciplinare ING-IND24Docente CarolaEspositoCorcioneCreditiFormativiUniversitari 6Orediattivitàfrontale 54Oredistudioindividuale 96Annodicorso IannoSemestre IILinguadierogazione InglesePercorso PERCORSOCOMUNEPrerequisiti Sufficiencyincalculus,linearalgebraContenuti Thecourseisfocusedonthestudyofthetransportphenomenaoccurringin

fluid/solidmaterials:mass,heatandmomentumtransfer.Thesephenomenagreatlyregulateandcontrolalltheprocesses(transformation,production,manufacture,etc.)involvingmaterialsintheirwholelifecycle.Thecoursewillillustratetheuseof:balances(ofmass,energyandmomentum),bothinmicroscopicanchemacroscopicscalesinturbulentflow;transportcoefficients(friction,heatandmass)betweendifferentphases;empiricalcorrelationsforturbulentflow.Severalcasestudieswillbepresentedinthecourse,inordertoillustratethepracticaluseofthemathematicalequationsintroducedinthelessons.

Obiettiviformativi

KnowledgeandunderstandingThecourseisfocusedonthestudyoftheThesephenomenagreatlyregulateandcontrolalltheprocesses(transformation,production,manufacture,etc.)involvingmaterialsintheirwholelifecycle.Thecoursewillillustratetheuseof:balances(ofmass,energyandmomentum),bothinmicroscopicandmacroscopicscalesinturbulentflow;transportcoefficients(friction,heatandmass)betweendifferentphases;empiricalcorrelationsforturbulentflow.Severalcasestudieswillbepresentedinthecourse,inordertoillustratethepracticaluseofthemathematicalequationsintroducedinthelessons.Applyingknowledgeandunderstanding:Thecourseprovidesabilitiesintransportphenomenaproblemsolvingappliedinmaterialsengineeringfield.Makingjudgements:Thecoursegivestheabilitytointegrateknowledgeandhandlecomplexity,andtosolvetransportphenomenaproblemsoccurringinfluid/solidmaterials:mass,heatandmomentumtransfer.

Page 21: CORSO DI LAUREA LM56

CommunicationStudentshavetobeabletocommunicatetheirconclusionsandrationaletospecialist,byusingatechnicallanguagebasedonformulasandtheorems,andnon-specialistaudiencesbyusinganarrativelanguagebasedonelementaryconcepts.Learningskills

Studentsaretrainedtodevelopcreativethinking,criticalspirit,andautonomy,byusingasaknowledgetechniqueexamplesandcounter-examples.Thetheoreticalapproachofthecourseisagoodtooltoimprovetheirabilityofabstraction

Metodididattici

Theoreticalandpracticelessons

Modalitàd’esame

writtenexam

Programma Theoreticallessons:MomentTransferinlaminarandturbolentflow.Dimensionalanalysisoftheconservationequations.Dimensionlessgroups:definitionsandphysicalmeant.Casestudy:flowpastimmersedsphere.Distributionofvelocityinturbulentflow.Mediatedexpressionsforthemomentconservationequations.HeatTransferinlaminarandturbolentflow.Casestudies:heatconductioninacoolingwing,naturalheatconvection.Dimensionalanalysisoftheconservationequations.Dimensionlessgroups:definitionsandphysicalmeant.Distributionoftemperatureinturbulentflow.Mediatedexpressionsfortheheatconservationequations.Dimensionalanalysistechnique.Transportcoefficientforisothermalsystems.Coefficientformomenttransfer:frictionfactor.Transportinpipesandpastimmersedobjects.Correlationsbetweendimensionlessgroupsofthemomenttransport.Transportcoefficientfornonisothermalsystems.Heattransfercoefficient.Transportinpipesandpastimmersedobjects.Dimensionlessgroupsfornaturalandforcedheatconvection.Correlationsbetweendimensionlessgroupsoftheheattransport.Transportcoefficientformulti-componentssystems.Masstransfercoefficient.Transportinpipesandpastimmersedobjects.Dimensionlessgroupsfornaturalandforcedmassconvection.Correlationsbetweendimensionlessgroupsofthemasstransport.MacroscopicbalancesMacroscopicbalancesforisothermalandnonisothermalsystemswithoneoremorecomponents.Massmacroscopicandmomentbalance.Macroscopicbalanceofenergyandmechanicenergy(Bernoulliequation).Practice:Transportproblemsinsteadyandnonsteadystate.Solutionofbalanceandtransportequationsforproblemsinsteadyandisothermalstatewithoneormorecomponents.

Page 22: CORSO DI LAUREA LM56

Solutionoftheconservationequationsforthenonsteadystate.Solutionofthetransportproblemsforisothermalandnonisothermalsystemswithoneormorecomponents.Solutionofsteadyandnonsteadystateproblems,usingmacroscopicbalanceforMacroscopicbalances

Testidiriferimento

R.B.Bird,W.E.Stewart,E.N.Lightfoot,Transportphenomena,CasaEditriceAmbrosiana.L.Theodore,transportphenomenaforengineers,InternationalTextbookCompany,U.S.A.S.Foust,L.A.Wenzel,C.W.Clump,L.Maus,L.B.Andersen,Iprincipidelleoperazioniunitarie,EditriceAmbrosiona,Milano.

Altreinformazioniutili

Page 23: CORSO DI LAUREA LM56

OBIETTIVI FORMATIVI E PROGRAMMI DI MASSIMA DEGLI INSEGNAMENTI DI II E III ANNO LM56 - CdL Magistrale in Materials Engineering and Nanotechnology - II anno BIOMATERIALS Obiettivi formativi This course aims to highlight the properties of biomaterials affecting their performance as medical implants, scaffolds for tissue engineering and drug delivery devices. At the end of the course, students are expected to: - understand the physiological response to medical implants; - know the principles of scaffold design and related manufacturing technologies; - know the principles of drug delivery design; - identify the most suitable biomaterial(s) for given applications; - know the methods for bulk and surface characterization of biomaterials. Programma di massima The aim of the course is to provide students with basic knowledge on the design of medical devices for given applications, from biomaterial choice to manufacturing technologies. Particular attention is given to the development of the following devices: a) artificial prostheses; b) scaffolds for regenerative medicine and tissue engineering; c) devices for controlled drug release.

Page 24: CORSO DI LAUREA LM56

OBIETTIVI FORMATIVI E PROGRAMMI DI MASSIMA DEGLI INSEGNAMENTI DI II E III ANNO LM56 - CdL Magistrale in Materials Engineering and Nanotechnology - II anno CELL TISSUES INTERACTION Obiettivi formativi Conoscenze e comprensione . Al termine del corso, gli studenti devono possedere un ampio spettro di conoscenze di base relative all'interazione fra le cellule ed i tessuti biologici. In particolare: - devono possedere solide conoscenze relative alla relazione fra struttura cellulare e funzione; - devono possedere gli strumenti cognitivi di base necessari alla comprensione dei meccanismi di base dei processi di rigenerazione dei tessuti. Capacità di applicare conoscenze e comprensione. Alla fine del corso lo studente dovrebbe essere in grado di: - Individuare la correlazione esistente tra funzioni cellulari, componenti della cellula e meccanismi di rigenerazione; - Dimostrare di avere acquisito competenze e capacità di valutazione adeguate per la risoluzione in autonomia di problemi concreti inerenti l'interazione fra materiali e tessuti. Autonomia di giudizio. Gli studenti sono stimolati ad individuare le proprietà dei materiali più importanti per determinate applicazioni in campo biomedicale e a pervenire a giudizi originali ed autonomi su possibili soluzioni a problemi concreti. Abilità comunicative. Ci si aspetta che gli studenti acquisiscano la capacità di relazionare su tematiche di interazione fra cellule e tessuti biologici con un pubblico vario e composito, in modo chiaro, logico, sintetico ed efficace, utilizzando le conoscenze scientifiche acquisite ed in particolar modo il lessico di specialità. Capacità di apprendimento. Gli studenti devono acquisire la capacità critica di rapportarsi, con originalità e autonomia, alle problematiche tipiche delle funzioni cellulari in relazione alla loro capatità di mettere in atto processi di rigenerazione. Programma di massima l corso fornisce le conoscenze di base sulle interazioni fra le cellule ed i tessuti biologici, con particolare riferimento allo studio delle proprietà rigenerative, introducendo nozioni fondamentali sulla tecniche di ingegneria tissutale. Il corso fornisce inoltre una panoramica sulle problematiche connesse alle tecniche di rigenerazione di tessuti ed organi.

Page 25: CORSO DI LAUREA LM56

OBIETTIVI FORMATIVI E PROGRAMMI DI MASSIMA DEGLI INSEGNAMENTI DI II E III ANNO LM56 - CdL Magistrale in Materials Engineering and Nanotechnology - II anno Ceramics materials Obiettivi formativi The course should enable the students to: * Identify the role of ceramic materials in technological devices and in everyday life. * Identify the functional and structural properties of ceramic materials and learn how to recognize their properties starting from sensory perceptions ending up to analytical testing. * Quantify the engineering performance of ceramics: strength, stiffness, toughness, transparency, opacity, refractoriness, thermal and electrical conductivity and certify their suitability for specific uses. * Acquire a working method for the identification of the material and combination of materials capable of offering the best engineering solution Programma di massima The course provides a thorough understanding of ceramic and glassy materials. The student will be able to assess whether, when and how to suggest the use of ceramic materials in different application contexts. The criteria for the engineering design and affidabilistic approach on ceramic materials will be disclosed.

Page 26: CORSO DI LAUREA LM56

OBIETTIVI FORMATIVI E PROGRAMMI DI MASSIMA DEGLI INSEGNAMENTI DI II E III ANNO LM56 - CdL Magistrale in Materials Engineering and Nanotechnology - II anno COMPOSITE AND NANOCOMPOSITE MATERIALS Obiettivi formativi Knowledge and understanding: The course provides the basis of knowledge to understand and solve complex new problems in design and processing of composite materials accounting for anisotropy and reactive processing Applying knowledge and understanding The student will be able to apply the basic knowledge on mechanics of anisotropic materials to the design of simple structural elements. A multidisciplinary approach is presented accounting for chemical, materials and mechanical engineering aspects. Making judgements Simplification and synthesis of complex problems is presented in order to promote the judgement and evaluation capabilities of the students Communication The course promotes the development of the following skills of the student: ability to expose in precise and formal terms an abstract model of concrete problems, identifying the salient characteristics of them and discarding the inessential characteristics; ability to describe and analyze an efficient solution for the problem under consideration. A seminar on composite properties is assigned to students Learning skills Autonomous learning is promoted thanks to the use of: different books and slides, numerical methods, homework exercise to be solved in groups of two. Programma di massima This course is aimed at providing the basics of composites and nanocomposites materials in view of their application in different engineering fields, using a strong interdisciplinary approach. Competences on polymer matrices and reinforcements, mechanics of anisotropic materials, fabrication technologies of thermoplastic and thermosetting matrix composites are provided.

Page 27: CORSO DI LAUREA LM56

OBIETTIVI FORMATIVI E PROGRAMMI DI MASSIMA DEGLI INSEGNAMENTI DI II E III ANNO LM56 - CdL Magistrale in Materials Engineering and Nanotechnology - II anno HEAT AND MASS TRANSFER PHENOMENA IN COMPOSITES AND POLYMERS Obiettivi formativi Knowledge and understanding: The course provides the basis of knowledge to understand and solve complex new problems in materials processing and in mass and heat diffusion, applying ideas often in a research context Applying knowledge and understanding The student will be able to solve heat and mass balances, applied to materials processing, using approximate solution or numerical methods. A multidisciplinary approach is presented accounting for chemical, materials and mechanical engineering aspects. Making judgements Dimensionless and approximate methods are presented in order to promote the judgement and evaluation capabilities of the students Communication The course promotes the development of the following skills of the student: ability to expose in precise and formal terms an abstract model of concrete problems, identifying the salient characteristics of them and discarding the inessential characteristics; ability to describe and analyze an efficient solution for the problem under consideration. Learning skills Autonomous learning is promoted thanks to the use of: different books and slides, numerical methods, homework exercise to be solved in groups of two Programma di massima This course is aimed to apply the basic knowledge of transport phenomena to the mathematical modeling of processing of composite materials. Competences on thermosetting polymer matrices, their reactivity and the kinetics of curing are also provided. Basic elements of finite element (FE) numerical solution of heat balance equations is provided. The optimization of composite processing is performed adopting a FE tool. In the last part of the course sorption and mass diffusion in polymrs is analyzed as an application of the basic knowledge of transport phenomena

Page 28: CORSO DI LAUREA LM56

OBIETTIVI FORMATIVI E PROGRAMMI DI MASSIMA DEGLI INSEGNAMENTI DI II E III ANNO LM56 - CdL Magistrale in Materials Engineering and Nanotechnology - II anno NANOTECHNOLOGIES FOR ELECTRONICS Obiettivi formativi Knowledge and understanding. Students must have a background in semiconductor crystals and devices and basic background in material science: - the students must have the basic cognitive tools to understand semiconductor crystals and their technology; - they must have knowledge of the electromagnetic waves and how they are applied to microscopy and technology; - they must be able to understand the chemistry behind micro and nanotechnologies; Applying knowledge and understanding . After the course the student should be able to: - understand how a micro and nanodevice is designed, fabricated and tested; - how micro and nano fabrication, characterization and packaging tools work; - use simulation software tools to design and predict the operation of an electronic, photonic and microelectromechanical devices and systems; Making judgements. Students are guided to learn critically everything that is explained to them in class, to understand the behavior of the state of the art technologies for electronic and photonic and MEMS devices, and to design new devices. Communication. The students will be stimulated to be able to communicate with a varied and composite audience, not culturally homogeneous, in a clear, logical and effective way, using the methodological tools acquired and their scientific knowledge and, in particular, with and professional and scientific vocabulary. In particular they will be asked to select a state of the art technology, recently proposed in high impact journals, and to make a presentation about it to the classroom. Learning skills Students must acquire the critical ability to understand the behavior of devices at the micro and nanoscale. They should be able to develop and apply independently the knowledge and methods learnt with a view to possible continuation of studies at higher (doctoral) level or in the broader perspective of cultural and professional self-improvement of lifelong learning. Programma di massima The course deals with the most advanced technologies at the nanometer and micrometer scale for the fabrication and characterization of electronic, photonic and micro- and nano-electromechanical MEMS/NEMS systems and devices. It describes how micro and nanotechnologies impact different fields and applications such as Information and Communication Technologies (ICT), Energy, Lifescience and Medicine and it shows how the most advanced devices, often employed in our portable and home electronics, such as nanoscale transistors, smart sensors and microelectromechanical systems, are fabricated and tested. During the course several visits to the nanotechnology laboratory of the Center for Biomolecular Nanotechnologies of the Istituto Italiano di Tecnologia, with demonstrations of the available state of the art equipment for front-end (material and device fabrication) and back-end (device packaging, characterization, test) tools, will be done. The course also includes a training on multiphysics finite element method softwares for electronic, photonic and MEMS device design and simulation.

Page 29: CORSO DI LAUREA LM56

OBIETTIVI FORMATIVI E PROGRAMMI DI MASSIMA DEGLI INSEGNAMENTI DI II E III ANNO LM56 - CdL Magistrale in Materials Engineering and Nanotechnology - II anno NON-FERROUS METALLURGY Obiettivi formativi Dopo il corso lo studente dovrebbe essere in grado di: 1) Identificare le proprietà, le applicazioni e i limiti delle principali leghe non ferrose; 2) Riconoscere le principali caratteristiche microstrutturali e meccaniche indotte da processi di fusione, deformazione plastica e metodi di giunzione; 3) Identificare il ruolo dei parametri di processo (saldatura, fusione, deformazione plastica, stampa 3D) sull'evoluzione e le proprietà microstrutturali; 4) Applicare metodi di rafforzamento e trattamenti termici; 5) Riconoscere il ruolo dei cicli termici di processo sull'evoluzione della microstruttura. 6) Orientarsi nella scelta progettuale delle più utilizzate leghe non ferrose per applicazioni a bassa e alta temperatura. Programma di massima Il corso sviluppa contenuti relativi alla microstruttura, proprietà meccaniche, processo, metallurgia fisica e applicazioni ingegneristiche delle leghe non ferrose. Particolare attenzione è dedicata alle relazioni microstruttura / proprietà, processo/ proprietà e al ruolo dei trattamenti termici sull'evoluzione della microstruttura.

Page 30: CORSO DI LAUREA LM56

OBIETTIVI FORMATIVI E PROGRAMMI DI MASSIMA DEGLI INSEGNAMENTI DI II E III ANNO LM56 - CdL Magistrale in Materials Engineering and Nanotechnology - II anno SEMICONDUCTOR PHYSICS AND TECHNOLOGY Obiettivi formativi - Programma di massima Introduction to Semiconductors and their Applications, Crystallography of elemental and compound semiconductors, Electrons band structure of semiconductors, Point defects in semiconductors, Line and plane defects in semiconductors, Phase diagrams of semiconductor compounds, Production of Electronic Grade poly-Silicon, Bulk crystal growth technologies of c-Silicon, Bulk crystal growth technologies of III-V compound semiconductors, Fabrication of Semiconductor Wafers, Epitaxy and epitaxial heterostructures, Liquid Phase Epitaxy, Principles of VPE technology, VPE-chlorides and VPE-hydrides of Si and III-V compounds, VPE-hydrides of II-VI compounds, MOVPE technology of compound semiconductors, Laboratory I: VPE/MOVPE, MBE technology of compound semiconductors, Laboratory II: MBE.