21
University of Groningen Counterregulation to acute and recurrent hypoglycemia in rats Bouman, Stephan Daniël IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2009 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Bouman, S. D. (2009). Counterregulation to acute and recurrent hypoglycemia in rats. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 16-03-2020

Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

University of Groningen

Counterregulation to acute and recurrent hypoglycemia in ratsBouman, Stephan Daniël

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Bouman, S. D. (2009). Counterregulation to acute and recurrent hypoglycemia in rats. s.n.

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 16-03-2020

Page 2: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

 

                  

Chapter 2  

Insulin levels and fasting independently co‐determine the counterregulatory responses to 

hypoglycemia   

  15

Page 3: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

 

 

  16

Page 4: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

Chapter 2 Insulin levels and fasting independently co‐determine the counterregulatory responses to hypoglycemia  

These studies were presented at the 1997 IDF Meeting in Helsinki, Finland Diabetologia (1997) volume 40 (Suppl. 1), page A237 

 Insulin‐induced  hypoglycemia  elicits  a  number  of  counterregulatory  responses,  including  activation  of  the autonomic nervous system and secretion of hormones.  It has been suggested  that  these  responses depend not only on glucose  levels but also on  insulin  levels. The nutritional state of  the body may also play a role.  In  the present study, the hormonal responses to hypoglycemia were studied at different insulin levels and in different nutritional  states.  Hypoglycemia was  induced  in  normally  fed  and  48h  food  deprived  rats  by  intravenous infusion of different  insulin doses, ranging  from 5.5  to 120  (fed rats) and 0.44  to 22 mU.kg‐1.min‐1  (fasted rats). Blood  samples  were  frequently  withdrawn  for  determination  of  glucose,  insulin,  glucagon,  adrenaline, noradrenaline  and  corticosterone.  In  normally  fed  rats  receiving  insulin,  the  reduction  in  glucose  levels was similar  for  almost  all  insulin  doses.  In  contrast,  the  counterregulatory  responses were  different  between  the insulin  doses.  Low  doses  of  insulin  increased  only  glucagon,  higher  insulin  loads  led  to  dose‐dependent increases in both glucagon and adrenaline levels, and the highest insulin dose was accompanied by increases in glucagon, adrenaline as well as corticosterone. In 48h fasted rats, a similar pattern was observed. Different doses of  insulin  resulted  in  similar  glucose  nadir  levels  and  dose‐dependent  responses  in  glucagon,  adrenaline, noradrenaline and corticosterone. However, when compared with normally fed rats, the nadir for glucose was lower and the magnitude of the counterregulatory responses was higher in the fasted rats. Together, these data provide  evidence  for  a  tight  control  of  glucose  levels  during  hypoglycemia,  and  a  strong  and  complex coordination of  the different hormonal  counterregulatory  responses, partly dependent on  the ambient  insulin levels and the nutritional state.  

Introduction    Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to restore euglycemia. The counterregulatory responses to insulin‐induced hypoglycemia have been described in humans (5, 7, 8, 19) and in animals such as rats (2, 20, 39) and dogs (13, 15). Several types of counterregulatory responses can be identified: local responses (most notably the immediate changes in glucose production by hepatic autoregulation), endocrine responses (changes in secretion of a range of hormones), and behavioral responses (initiation of food intake). Hierarchical relations have been proposed for the hormonal responses, generally posing that hypoglycemia is initially counteracted by an increase in glucagon secretion, then by activation of the adrenal medulla leading to adrenaline secretion, and finally followed by the release of other counterregulatory hormones such as glucocorticoids and growth hormone (4, 19, 21, 25).   There are several factors that may influence the counterregulatory response to hypoglycemia. It may be obvious that the circulating glucose level (i.e. the depth of hypoglycemia) is the primary factor that determines the magnitude of the counterregulatory responses (6, 27). But insulin by itself also seems to have an effect on the counterregulatory responses both in normal subjects (9) and in type 1 diabetes patients (10, 24), although there are some conflicting data (12). Less is known about the influence of the nutritional state of the body on the counterregulatory responses to hypoglycemia. Especially fasting can be of importance, since fasting is associated with many metabolic changes all aiming to spare 

  17

Page 5: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

glucose for the brain (23, 33). Insulin levels go down, insulin sensitivity increases, and glucose levels decrease. Hepatic glycogen stores will become depleted and gluconeogenesis will become increasingly important in the maintenance of blood glucose levels. These changes may significantly aggravate the threat induced by insulin and at the same time impede the increased endogenous glucose production needed to restore normoglycemia. It might also increase the importance of the level of insulinemia for the counterregulatory responses.   The current study was designed to investigate the importance of insulin and of fasting in the counterregulatory responses to hypoglycemia. Therefore, we studied the onset, duration, and magnitude of different counterregulatory responses to insulin‐induced hypoglycemia in rats by varying the ambient insulin levels as well as the nutritional state.  

Methods 

Animals and surgery    Male Wistar rats were used, weighing 300‐330 grams at the beginning of the experiments. They were individually housed in 25*25*30 cm cages with wood shavings bedding. Room temperature was 21 ± 1 °C and the lights were on from 08:00 until 20:00. Food (standard RMH chow, Hope Farms, Woerden, The Netherlands) and water were available ad lib unless otherwise stated. The animals were frequently handled and weighed.   Under halothane/N2O inhalation anesthesia, all rats were fitted with two permanent silicone catheters (Medica BV, Den Bosch, The Netherlands), one for i.v. infusions and the other for stress‐free blood sampling. Both catheters were inserted via the jugular vein, according to the principle described by Steffens (31, 37), with the catheter tips ending in the superior vena cava just before the right atrium. In one group of rats, only the catheter for infusions was inserted via the jugular vein; the blood sampling catheter was inserted into the hepatic portal vein, according to the method described by Strubbe et al. (32). The catheter tip ends just downstream of the junction with the pancreatoduodenal vein, so that glucagon secretion dynamics can be studied without the confounding effects of hepatic extraction.    The animals were allowed two weeks to recover after the surgery. During the recovery period, they were habituated to the experimental setup conditions (attachment of sampling and infusion tubes, etc.), so that the experiments could be performed with undisturbed freely‐moving animals.   The experimental procedures were approved by the Animal Experiments Committee of the University of Groningen.  

Experimental design    Experiment 1 was designed to study the effects of insulin on the counterregulatory responses in the fed state. In Experiment 1a, hypoglycemia was induced by a 90‐minute intravenous infusion of insulin, at doses of 0, 5.5, 11, 22, 44, 88 or 120 mU.kg‐1.min‐1 (n=5‐8 per group). Blood samples were withdrawn from the jugular vein catheter to determine glucose, insulin, glucagon, adrenaline, noradrenaline, and corticosterone levels. Experiment 

  18

Page 6: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

1b was similar to Experiment 1a, but the blood samples were now withdrawn from the portal vein to determine glucose, insulin, and glucagon levels. In this experiment only two doses of insulin (11 and 22 mU.kg‐1.min‐1) were used (n=7 in each group).   Experiment 2 was designed to study the effects of insulin on the counterregulatory responses in the fasted state. In this experiment, rats were fasted for 48 hours prior to being subjected to hypoglycemia. Hypoglycemia was induced by a 90‐minute intravenous infusion of insulin, at doses of 0.44, 2.2, 5.5, 11 or 22 mU.kg‐1.min‐1 (n=4‐6 per group). Again, blood samples were withdrawn from the jugular vein catheter to determine glucose, insulin, glucagon, adrenaline, noradrenaline, and corticosterone levels.    All experiments were performed between 10:00 and 14:00. Food was removed 2 hours (fed state, Experiment 1) or 48 hours (fasted state, Experiment 2) earlier. The rats’ sampling and infusion catheters were connected to polyethylene tubings at least one hour prior to the experiment, to minimize adverse effects due to handling stress.   Two blood samples were then taken with a 10‐minute interval, to serve as baseline values. At time point t=0, the 90‐minute infusion of insulin (Velosulin, Novo Nordisk Farma, Alphen a/d Rijn, The Netherlands) or vehicle (0.9% NaCl) was started through the jugular infusion catheter, at an infusion speed of 3.2 ml.kg‐1.min‐1. During the infusion, blood was sampled at time points 2.5, 5, 7.5, 10, 15, 20, 30, 45, 60, 75, and 90 minutes. Immediately after the t=90 sample the infusion was stopped, and a last blood sample was taken another 30 minutes later. Loss of blood volume was compensated by transfusing the same amount of heparinized blood from a donor rat after each blood sample.  

Analysis    Blood samples were kept chilled at 0 °C during the experiment, in tubes with EDTA and aprotinin (Trasylol). Afterwards 50 μl blood was removed for glucose determination (Hoffmannʹs ferricyanide method (22)), the rest was centrifuged for 15 minutes at 2600 G and 5 °C. Plasma portions were stored at ‐80 °C for determination of glucagon (Glucagon RIA Kit, Linco Research Inc, St. Charles, MO, USA) and catecholamines (HPLC with electrochemical detection (30)), and at ‐20 °C for determination of insulin (Rat Insulin RIA Kit, Linco Research Inc) and corticosterone (HPLC with UV detection (11)).   Results are reported as average ± SEM (standard error of the mean). Statistical differences were determined with ANOVA or t‐test (paired where relevant). The significance level was set to p<0.05.  

Results 

Experiment 1 – Insulin‐induced hypoglycemia in fed rats    Figure 1 depicts the blood components that were measured before, during and after infusion of various doses of insulin in normally fed rats.   Infusion of different doses of insulin led to a dose‐dependent elevation of plasma insulin during the whole infusion period (t=90 levels p<0.0001). Blood glucose levels decreased in all insulin‐infused groups during the infusion, resulting in a nadir level of 4.2 ± 

  19

Page 7: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

0.1 mM for the lowest insulin dose, but similar nadir levels of 3.1‐3.4 mM for all other insulin doses (at t=90, there were only significant differences between the 0 dose vs all other doses, and between the lowest insulin dose vs all others). Plasma glucagon responded rapidly and in a dose‐dependent manner to the insulin dose, especially in the first 20 minutes where the rise in glucagon levels was dose‐dependent for the insulin dose (t=20 peak response p<0.0001). During the second part of the infusion period, the glucagon levels were still elevated over baseline, but to the same extent for most insulin doses (t=90 average levels were 96‐109 pg/ml, p=0.733), again except the lowest insulin dose (77 ± 6 pg/ml). 

0 30 60 90 120

time (min)

0

10

20

30

40

50

corti

cost

eron

e (µ

g/dl

)

0 30 60 90 120

time (min)

0

50

100

150

200

gluc

agon

(pg/

ml)

0 30 60 90 1200

500

1000

1500

nora

dren

alin

e (p

g/m

l)

0 30 60 90 1200

2

4

6

8

gluc

ose

(mM

)

0 30 60 90 1200

500

1000

1500

2000

2500

3000

adre

nalin

e (p

g/m

l)

0 30 60 90 1200.01

0.1

1

10

100

1000

insu

lin (n

g/m

l)

 

 

  Figure 1. Circulating insulin, glucose, glucagon, adrenaline, noradrenaline, and corticosterone levels during 90‐minute infusion of insulin in normally fed rats (Experiment 1). Insulin doses were 0 (vehicle, ○), 5.5 (●), 11 (□), 22 (■), 44 (∆), 88 (▲) and 120 ( ) mU.kg‐1.min‐1. 

  20

Page 8: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

 Plasma adrenaline did not change significantly during the insulin infusion period in the rats receiving the two lowest insulin doses (5.5 and 11 mU.kg‐1.min‐1). After t=60, the two highest insulin administrations (88 and 120 mU.kg‐1.min‐1) resulted in significant adrenaline responses (p=0.013 and 0.029 compared to baseline). At t=120 these responses reached their highest levels, and here the two medium insulin infusions (22 and 44 mU.kg‐1.min‐1) also showed an adrenaline response. Plasma noradrenaline levels increased slightly with all insulin doses except the lowest, with t=90 levels being significantly elevated over baseline (p values <0.05 for the 11‐120 mU.kg‐1.min‐1 doses). Corticosterone levels increased significantly only after administration of higher insulin doses (p<0.05 for 22, 88 and 120 mU.kg‐1.min‐1).    To study glucagon dynamics more accurately, a group of animals with portal vein catheters had been infused with 11 or 22 mU.kg‐1.min‐1 insulin (doses which as mentioned above did not display a peak in the glucagon response in the general circulation). Glucose, insulin and glucagon measurements in blood samples from the hepatic portal vein during  the first 30 minutes of the insulin infusion are depicted in Figure 2, together with the corresponding measurements from the samples from the jugular vein catheter.    Insulin and glucose levels in the portal vein were similar to those in the general circulation, but glucagon levels were significantly higher in the portal vein, both in the baseline situation (average baseline level in the general circulation 60 ± 3 vs in the portal vein 89 ± 6 pg/ml, p<0.0001) and during the responses (for the two doses used, t=20 levels in the portal vein were 203 ± 18 and 231 ± 18 pg/ml, whilst in the general circulation 83 ± 6 and 97 ± 8 pg/ml).   Glucagon secretion, as indicated by the portal vein samples, started increasing as soon as 5‐10 minutes after the start of the insulin infusion (in both doses, t=7.5 was the first time point to be significantly higher than baseline), and not after 10‐15 minutes as suggested by the data sampled from the jugular vein catheter (for these measurements, the first time points to be significantly different from baseline were t=15 for 11 mU.kg‐1.min‐1, and t=10 for 22 mU.kg‐1.min‐1. This rise within 7.5 minutes in portal glucagon levels occurred when glucose levels were still in the normal range (at t=7.5 still between 5.4 ± 0.2 and 5.6 ± 0.2 mM, both in the general circulation and in the portal vein).   Furthermore, the portal venous glucagon response did indeed show a peak response at t=20, followed by a decline; similarly to the response shape seen in the general circulation with the higher insulin doses.   

  21

Page 9: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

 

0 30 60 90 120

time (min)

0

100

200

300

gluc

agon

(pg/

ml)

0 30 60 90 1200

2

4

6

8

gluc

ose

(mM

)

0 30 60 90 1200.01

0.1

1

10

100

1000

insu

lin (n

g/m

l)

 

  Figure 2. Insulin, glucose, and glucagon levels in the general circulation (squares □■) and in the portal vein (triangles ∆▲) during 90‐minute intravenous infusion of insulin in normally fed rats (Experiment 1). Insulin doses were 11 (open symbols □∆) and 22 (solid symbols ■▲) mU.kg‐1.min‐1. Portal vein samples were taken up until t=30.     In summary, different doses of insulin resulted in similar decreases in glucose levels. The lowest two doses of insulin only affected glucagon release. Higher doses of insulin increased both glucagon and adrenaline levels, and the highest two doses led to increases in glucagon and adrenaline as well as corticosterone.  

  22

Page 10: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

Experiment 2 – Insulin‐induced hypoglycemia in fasted rats    Figure 3 depicts the levels of the blood components that were measured before, during and after infusion of various doses of insulin in 48h food deprived rats.    Baseline levels of glucose and insulin were significantly lower than in the normally fed rats (glucose: fed rats overall average 6.14 ± 0.04 mM, fasted rats 4.43 ± 0.09 mM, p<0.0001; insulin: fed rats overall average 2.90 ± 0.20 ng/ml, fasted rats 0.21 ± 0.05 ng/ml, p<0.0001).   After the start of the insulin infusions at t=0, plasma insulin levels with the lowest insulin dose (0.44 mU.kg‐1.min‐1) did not change from baseline. In the other groups, plasma insulin reached significantly different steady state levels (p<0.0001) related to the infused amount of insulin. At the two doses which were used in both fed and fasted rats (5.5 and 11 mU.kg‐1.min‐1), the reached plasma insulin levels were comparable to those in the fed state (Figure 1). Blood glucose levels decreased with all insulin doses except the lowest (0.44 mU.kg‐1.min‐1). In the 2.2 mU.kg‐1.min‐1 dose, the response in glucose levels was smaller compared to the other three groups (with 2.2 mU.kg‐1.min‐1 the t=90 nadir level was 3.2 ± 0.2 mM, the nadir levels of the three higher doses were 2.6, 2.3 and 2.8 mM). No detectable plasma glucagon responses occurred with the lowest doses, but there were strong increases in the other groups (at t=30 p=0.047 and 0.010 for 11 and 22 mU.kg‐1.min‐1) which were positively correlated to the insulin dose, throughout the whole infusion period. The same effect was observed for plasma adrenaline, which did not change with the lowest insulin doses, but already after 30 minutes strongly responded in a dose‐dependent manner with the higher doses (t=90 p=0.023 and 0.004 for 11 and 22 mU.kg‐1.min‐1). Plasma noradrenaline levels were also elevated over baseline in the highest insulin doses (t=90 p=0.012 and 0.001 for 11 and 22 mU.kg‐1.min‐1). Corticosterone showed high responses starting after 30 minutes in the three highest insulin administrations (t=90 p=0.008, 0.0004 and 0.001 for 5.5, 11 and 22 mU.kg‐1.min‐1).    In summary, in fasting rats different doses of insulin resulted in similar decreases in glucose levels. The nadir for blood glucose was much lower than in Experiment 1 (the fed animals). The two lowest doses of insulin did not result in statistically significant counterregulatory responses. The higher three doses of insulin resulted in strong responses in glucagon, corticosterone, adrenaline, and noradrenaline. When compared to the fed animals, similar insulin doses in the fasted rats led to faster onset as well as a greater magnitude of the counterregulation.  

  23

Page 11: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

0 30 60 90 120

time (min)

0

25

50

75

100

125

corti

cost

eron

e (µ

g/dl

)

0 30 60 90 120

time (min)

0

200

400

600

800

gluc

agon

(pg/

ml)

0 30 60 90 1200

500

1000

1500

nora

dren

alin

e (p

g/m

l)

0 30 60 90 1200

2

4

6

8

gluc

ose

(mM

)

0 30 60 90 1200

1000

2000

3000

4000

5000

adre

nalin

e (p

g/m

l)

0 30 60 90 1200.01

0.1

1

10

100

1000

insu

lin (n

g/m

l)

 

 

  Figure 3. Circulating insulin, glucose, glucagon, adrenaline, noradrenaline, and corticosterone levels during 90‐minute infusion of insulin in 48h fasted rats (Experiment 2). Insulin doses were 0.44 (▲), 2.2 (∆), 5.5 (●), 11 (□) and 22 (■) mU.kg‐1.min‐1.  

Discussion    The current study was undertaken to study the importance of insulin and of fasting in the counterregulatory responses to insulin‐induced hypoglycemia. It was shown that low blood glucose resulted in counterregulatory responses, that blood glucose was maintained at the same level across the different insulin levels by differential action of counterregulatory 

  24

Page 12: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

responses, and that a fasted state resulted in higher counterregulatory responses for similar insulin and glucose levels. Therefore, glucose levels, insulin levels, and the nutritional state each are important determinants of the counterregulatory responses to insulin‐induced hypoglycemia in rats.  

Glucose and insulin are independent moderators of the counterregulatory responses    One aim of this study was to investigate the counterregulatory responses to insulin‐induced hypoglycemia in rats at different insulin levels. This was done by infusing groups of rats with different amounts of insulin while monitoring their blood glucose levels and counterregulatory responses. A more than ten‐fold difference in the dose of administered insulin (between the 11 and 120 mU.kg‐1.min‐1 administrations in the normally fed rats, with a resulting more than 30‐fold difference in circulating insulin levels) did not result in differences in glucose levels. Instead there were different magnitudes in counterregulatory responses, with the highest counterregulatory responses at the higher doses of insulin.    The seemingly most obvious explanation – that insulin had reached a maximal effect already at the 11 mU.kg‐1.min‐1 dose – is unlikely, for several reasons. Insulin is well able to reduce glucose levels to below 2 mM in non‐fasted rats, for example as injections or rapid infusions – even when plasma insulin peak levels are comparable (26). Similarly, the initial drop in glucose levels did show dose‐dependency, also when plasma insulin levels were already near steady‐state levels (at t=15, see Figure 4). Most importantly, this hypothesis cannot explain the counterregulatory responses reacting differently in the different insulin dose groups.  

 

0 10 20 30

time (min)

4

5

6

gluc

ose

(mM

)

Figure 4. Blood glucose levels during infusion of insulin in normally fed rats. Insulin doses were 0 (vehicle, ○), 5.5 (●), 11 (□), 22 (■), 44 (∆), 88 (▲) and 120 ( ) mU.kg‐1.min‐1. This figure represents time frame t=0‐30 minutes from Figure 1.     Hence, the observation that the counterregulatory responses did differ between the different insulin doses implies that higher insulin doses indeed did have stronger effects on glucose disposal, but that the animals used stronger counterregulatory responses to 

  25

Page 13: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

compensate, resulting in similar glucose nadir levels independent of insulin dose. This is also suggested by the fact that the drop in glucose levels is generally stronger with bolus administrations than with infusions (where animals have more time to produce and adjust counterregulatory responses).   If this hypothesis is true, it should result in some specific findings. Glucose levels should be maintained at or above a certain level, and the counterregulatory responses should be stronger when more insulin is administered and glucose levels hence are under a stronger pressure.   It may be clear from the data presented in Figure 1 that these conditions are indeed met. Although declining slowly, glucose levels were remarkably similar between the different insulin doses. The counterregulatory responses were not only related to the glucose levels but also to the insulin dose: the more insulin, the more and stronger counterregulatory responses, with adrenaline as clear example, and glucagon as well (especially when keeping in mind that the glucagon dose‐responsivity was underestimated when measured in the general circulation, because of the buffering effect of hepatic extraction; as demonstrated in Experiment 1b; see Figure 2). Adrenaline did not respond at all at the lower insulin doses, even though blood glucose went down to the same level as where adrenaline started responding in the animals receiving the highest insulin doses.   The insulin dose cannot be the sole determinant of the counterregulatory responses; otherwise it would be impossible to explain why the adrenaline response did not occur until after 60‐75 minutes, while plasma insulin levels were already in steady state from around t=15‐30. The adrenaline response is therefore determined by at least both blood glucose level and insulin dose, for example by insulin affecting the glucose threshold level for adrenaline secretion.   This principle of the counterregulatory responses depending both on glucose and on insulin is further illustrated in Figure 5 where the response levels of glucose, insulin, and counterregulatory responses at the end of the infusion period (t=90) are plotted against the administered insulin dose (on the x‐axis). It can clearly be seen that the doses of 11 and 22 mU.kg‐1.min‐1 already reached 90% of the maximal effect on glucose levels (reducing them to 3.4 mM), with the maximal effect (3.1 mM) equally seen at 44, 88 and 120 mU.kg‐1.min‐1 insulin. In contrast to these similar glucose levels, the t=90 response levels of adrenaline and corticosterone kept increasing with increasing insulin doses.    This dual effect of both glucose level and insulin dose results in blood glucose levels being maintained at a similar level, independent of the administered insulin dose. Furthermore, an increase in insulin dose seems to enhance the counterregulatory response magnitude by the appropriate amount to compensate for the increased glucose‐lowering effect, thus maintaining blood glucose at the same level regardless of insulin dose. This suggests that the body might be able to perceive the hypoglycemic effect of the insulin dose, and adjust the counterregulatory responses accordingly – independent of the actual blood glucose level.  

  26

Page 14: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

 

 

 

0 25 50 75 100 125

insulin dose (mU/kg.min)

0

2

4

6

8

t=90

glu

cose

(mM

)

0

250

500

750

1000

1250

t=90

adr

enal

ine

(pg/

ml)

0 25 50 75 100 1250

2

4

6

8

t=90

glu

cose

(mM

)

0

10

20

30

40

t=90

cor

ticos

tero

ne (µ

g/dl

)

0 25 50 75 100 1250

2

4

6

8

t=90

glu

cose

(mM

)

0

50

100

150

200t=

90 g

luca

gon

(pg/

ml)

0 25 50 75 100 1250

2

4

6

8

t=90

glu

cose

(mM

)

0

250

500

750

1000

t=90

nor

adre

nalin

e (p

g/m

l)

0 25 50 75 100 1250

2

4

6

8

t=90

glu

cose

(mM

)

0

100

200

300

400

t=90

insu

lin (n

g/m

l)

Figure 5. Final levels of glucose, insulin and the counterregulatory responses in normally fed rats at the end of the infusion period (t=90), plotted against the administered insulin dose (x‐axis). Glucose levels (○) are plotted against the left y‐axis, insulin and the counter‐regulatory responses (●) to the right y‐axis.     Such a precise regulation of blood glucose independent of the insulin dose requires a fast recognition of an upcoming insulin‐induced hypoglycemia. In the current study it was demonstrated that the glucagon response was very rapid and in the appropriate magnitude to slow down the decline in glucose. It means that the body had somehow activated the counterregulatory responses appropriately already before glucose levels were significantly affected. Such a “feed‐forward” system for the tight regulation of glucose levels during insulin‐induced hypoglycemia needs another factor than blood glucose levels to determine 

  27

Page 15: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

the magnitude of the required counterregulatory responses. The obvious candidate is plasma insulin, which did reach different levels in the different groups. It has been reported earlier that, at similar glucose levels, higher insulin levels lead to higher responses (18). Also supportive of this is the finding that treatment with an insulin sensitizer increases the counterregulatory responses to hypoglycemia (17). It remains to be resolved if these graded counterregulatory responses are caused by a direct effect of insulin on the counterregulatory response‐producing organs (such as the pancreas (34) or the central nervous system (1, 3, 28)), or by an indirect effect via one of the consequences of high insulin levels (such as the changes in glucose homeostasis, the suppression of endogenous insulin secretion, or a possible sensitization of glucosensing mechanisms (16, 29, 40)). Recent findings in mice lacking brain insulin receptors seem to support the former possibility (14), presumed that peripheral insulin enters the involved brain areas.  

Fasting enhances all counterregulatory responses    The second aim of this study was to investigate the effect of the nutritional state on the counterregulatory responses to hypoglycemia. In a fasted situation, insulin‐induced hypoglycemia might pose a bigger risk to the organism because of the already decreased glucose levels, the limited glycogen reserves, and the enhanced insulin sensitivity. The role of insulinemia in the regulation of the counterregulatory responses might also be different in the fasted state than in the fed state. These questions were studied by fasting rats for 48 hours before subjecting them to insulin‐induced hypoglycemia.    Blood glucose levels were indeed significantly lower in fasted animals compared to normally fed animals. Baseline glucose levels were in the fasted rats in the range of 4‐5 mM (fed rats 6 mM), and the glucose nadir during hypoglycemia levels was around 2.0‐2.5 mM (while in the fed state around 3.5 mM). Baseline insulin levels were lower too after fasting (fasted rats 0.1‐0.4 ng/ml versus fed rats 1.9‐3.5 ng/ml). At similar insulin doses, plasma insulin levels in the fasted rats were comparable to those in the fed rats, with a tendency to being higher (at the 5.5 mU.kg‐1.min‐1 dose, fed rats reached a plasma insulin level of 4.9 ± 1.1 ng/ml while fasted rats reached 6.6 ± 1.4 ng/ml (p=0.34), at the 11 mU.kg‐1.min‐1 dose this was 10.3 ± 0.6 ng/ml versus 15.8 ± 2.8 ng/ml (p=0.07)).    The major finding is that the magnitude of the counterregulatory responses was remarkably greater in fasted rats than in fed rats, despite comparable insulin levels. An example is the glucagon response in the 5.5 mU.kg‐1.min‐1 group, where glucagon rose to a peak level of 201 ± 49 pg/ml at t=30, while in the fed rats the same dose of insulin only caused a moderate increase to maximally 76 ± 5 pg/ml at t=45.   Such enhanced counterregulatory responses in the fasted state were to be expected. Blood glucose was already decreased before the insulin infusion started and therefore there was a greater risk for glucose becoming so low that it impairs brain functioning. Furthermore insulin sensitivity is increased after fasting so that similar plasma insulin levels could result in stronger glucose disposal in the fasted rats. Glycogen supplies are also limited, therefore more glucagon and adrenaline might be needed to access the remaining glycogen, further stimulate gluconeogenesis, and inhibit glucose disposal. It has been 

  28

Page 16: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

indicated both for hypoglycemia (38) and for other metabolic challenges (35, 36) that fasting enhances the sympathoadrenal responses as well.   The counterregulatory responses started earlier, too. In the fasted rats, adrenaline and corticosterone were already markedly increased within 30 minutes after the onset of insulin‐induced hypoglycemia. This is in sharp contrast to the fed rats where there were no adrenaline or corticosterone responses in the first hour. As a steroid hormone, corticosteroneʹs secretion is not rapid but depends on synthesis of new hormone rather than release of intracellular stores. Furthermore, its production needs activation of the hypothalamo‐pituitary‐adrenal axis first. Therefore the corticosterone response most likely already started when glucose levels were still around 3‐4 mM, a level which in the fed state does not result in a high corticosterone response. Since this corticosterone response in addition also occurred with low insulin doses (which resulted in lower plasma insulin levels than in the fed rats), this implies that the counterregulatory responses to hypoglycemia are not only dependent on the blood glucose levels, or the insulin levels, but that also other factors such as the nutritional state in itself determine the regulation of counterregulatory responses.    A third important observation is that just like in the fed rats, different doses of insulin resulted in similar glucose levels, but with clear differences in secretion of e.g. glucagon and adrenaline (Figure 3). Therefore, the phenomenon of similar glucose nadir levels despite different insulin levels, but with different counterregulatory response levels, seems to apply in the fasted state as well. This is also illustrated in Figure 6, where the t=90 levels of glucose, insulin, and counterregulatory responses are plotted against the insulin dose. All counterregulatory responses depended on the dose of insulin (with corticosterone already reaching its maximal response at the dose of 5.5 mU.kg‐1.min‐1). These correlations are very similar to those in the fed state, except that the glucagon and noradrenaline t=90 response levels now kept increasing with increasing insulin dose, again suggesting that hypoglycemia in the fasted state indeed poses a bigger risk to the organism.  

Summary    In summary, it appears that both in the fed and in the fasted state blood glucose levels are defended at or above a certain level, despite large amounts of infused insulin. The counterregulatory responses are however greater with larger amounts of insulin, and it is suggested that the magnitude of the counterregulatory responses is adjusted to keep blood glucose above this certain level. From the data it appears that the activation and magnitude of the counterregulatory responses controlling glucose levels during hypoglycemia are determined by multiple factors, including at least glucose levels, insulin levels, and the nutritional state. Also the hierarchy between the counterregulatory responses, with glucagon coming first and adrenaline later and/or at higher insulin doses, might be influenced by these factors. Such a complicated regulatory system may also mean that the later responses may serve as backup for the former, and that impairing one counterregulatory response will lead to stronger activation of the others.   Combined, these findings suggest that hypoglycemia is not an absolute but a relative state, and its effects and severity depend on several separate factors, including the glucose level, the insulin level, and the availability of other energy sources. It remains to be resolved 

  29

Page 17: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

how these factors are integrated by the neuronal systems controlling the counterregulatory responses to insulin‐induced hypoglycemia.    

0 5 10 15 20 250

2

4

6

8

t=90

glu

cose

(mM

)

0

250

500

750

1000

t=90

nor

adre

nalin

(pg/

ml)

0 5 10 15 20 250

2

4

6

8

t=90

glu

cose

(mM

)

0

25

50

75

100

t=90

insu

lin (n

g/m

l)

 

0 5 10 15 20 25

insulin dose (mU/kg.min)

0

2

4

6

8

t=90

glu

cose

(mM

)

0

1000

2000

3000

4000

5000

t=90

adr

enal

ine

(pg/

ml)

0 5 10 15 20 250

2

4

6

8

t=90

glu

cose

(mM

)

0

20

40

60

80

100

t=90

cor

ticos

tero

ne (µ

g/dl

)

0 5 10 15 20 250

2

4

6

8

t=90

glu

cose

(mM

)

0

100

200

300

400

500

600

t=90

glu

cago

n (p

g/m

l)

 

 Figure 6. Final levels of glucose, insulin and the counterregulatory responses in 48h fasted rats at the end of the infusion period (t=90), plotted against the administered insulin dose (x‐axis). Glucose levels (○) are plotted against the left y‐axis, insulin and the counterregulatory responses (●) to the right y‐axis.    

  30

Page 18: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

References  1.   J.L. Beverly, M.G. De Vries, S.D. Bouman, and L.M. Arseneau; Noradrenergic and 

GABAergic systems in the medial hypothalamus are activated during hypoglycemia. American Journal of Physiology (2001) 280: R563‐R569 

2.   M.A. Borg, R.S. Sherwin, W.P. Borg, W.V. Tamborlane, and G.I. Shulman; Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. Journal of Clinical Investigation (1997) 99: 361‐365 

3.   F.T.J. Boyd, D.W. Clarke, T.F. Muther, and M.K. Raizada; Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. Journal of Biological Chemistry (1985) 260: 15880‐15884 

4.   P.J. Boyle and J. Zrebiec; Physiological and behavioral aspects of glycemic control and hypoglycemia in diabetes. Southern Medical Journal (2007) 100: 175‐182 

5.   V.J. Briscoe and S.N. Davis; Hypoglycemia in Type 1 and Type 2 diabetes: physiology, pathophysiology, and management. Clinical Diabetes (2006) 24: 115‐121 

6.   P.E. Cryer; Symptoms of hypoglycemia, thresholds for their occurrence, and hypoglycemia unawareness. Endocrinology and Metabolism Clinics of North America (1999) 28: 495‐500 

7.   P.E. Cryer; Hierarchy of physiological responses to hypoglycemia: relevance to clinical hypoglycemia in type I (insulin dependent) diabetes mellitus. Hormone and Metabolic Research (1997) 29: 92‐96 

8.   S.N. Davis and A.D. Cherrington; The hormonal and metabolic responses to prolonged hypoglycemia. Journal of Laboratory and Clinical Medicine (1993) 121: 21‐31 

9.   S.N. Davis, R.E. Goldstein, J. Jacobs, L. Price, R. Wolfe, and A.D. Cherrington; The effects of differing insulin levels on the hormonal and metabolic response to equivalent hypoglycemia in normal humans. Diabetes (1993) 42: 263‐272 

10.   S.N. Davis, R.E. Goldstein, L. Price, J. Jacobs, and A.D. Cherrington; The effects of insulin on the counterregulatory response to equivalent hypoglycemia in patients with insulin‐dependent diabetes mellitus. Journal of Clinical Endocrinology & Metabolism (1993) 77: 1300‐1307 

11.   R. Dawson Jr., P. Kontur, and A. Monjan; High‐performance liquid chromatography (HPLC) separation and quantitation of endogenous glucocorticoids after solid‐phase extraction from plasma. Hormone Research (1984) 20: 89‐94 

12.   M.P. Diamond, L. Hallarman, K. Starick‐Zych, T.W. Jones, M. Connolly‐Howard, W.V. Tamborlane, and R.S. Sherwin; Suppression of counterregulatory hormone response to hypoglycemia by insulin per se. Journal of Clinical Endocrinology & Metabolism (1991) 72: 1388‐1390 

13.   R.L. Dobbins, C.C. Connolly, D.W. Neal, L.J. Palladino, A.F. Parlow, and A.D. Cherrington; Role of glucagon in countering hypoglycemia induced by insulin infusion in dogs. American Journal of Physiology (1991) 261: E773‐E781 

14.   S.J. Fisher, J.C. Bruning, S. Lannon, and C.R. Kahn; Insulin signaling in the central nervous system is critical for the normal sympathoadrenal response to hypoglycemia. Diabetes (2005) 54: 1447‐1451 

  31

Page 19: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

15.   R.T. Frizzell, G.K. Hendrick, L.L. Brown, D.B. Lacy, E.P. Donahue, R.K. Carr, P.E. Williams, A.F. Parlow, R.W. Stevenson, and A.D. Cherrington; Stimulation of glucose production through hormone secretion and other mechanisms during insulin‐induced hypoglycemia. Diabetes (1988) 37: 1531‐1541 

16.   B. Fruehwald‐Schultes, W. Kern, J. Born, H.L. Fehm, and A. Peters; Comparison of the inhibitory effect of insulin and hypoglycemia on insulin secretion in humans. Metabolism (2000) 49: 950‐953 

17.   I. Gabriely, R. Wozniak, M. Hawkins, and H. Shamoon; Troglitazone amplifies counterregulatory responses to hypoglycemia in nondiabetic subjects. Journal of Clinical Endocrinology & Metabolism (2001) 86: 521‐528 

18.   P. Galassetti and S.N. Davis; Effects of insulin per se on neuroendocrine and metabolic counter‐regulatory responses to hypoglycaemia. Clinical Science (2000) 99: 351‐362 

19.   J.E. Gerich, J. Davis, M. Lorenzi, R. Rizza, N. Bohannon, J. Karam, S. Lewis, R. Kaplan, T. Schultz, and P.E. Cryer; Hormonal mechanisms of recovery from insulin‐induced hypoglycemia in man. American Journal of Physiology (1979) 236: E380‐E385 

20.   P.J. Havel, S.J. Parry, J.S. Stern, J.O. Akpan, R.L. Gingerich, G.J. Taborsky, and D.L. Curry; Redundant parasympathetic and sympathoadrenal mediation of increased glucagon secretion during insulin‐induced hypoglycemia in conscious rats. Metabolism (1994) 43: 860‐866 

21.   R.P. Hoffman; Sympathetic mechanisms of hypoglycemic counterregulation. Current Diabetes Reviews (2007) 3: 185‐193 

22.   W.S. Hoffmann; A rapid method for the determination of glucose in blood and urine. Journal of Biological Chemistry (1937) 120: 51‐55 

23.   K. Hojlund, M. Wildner‐Christensen, O. Eshoj, C. Skjaerbaek, J.J. Holst, O. Koldkjaer, D.M. Jensen, and H. Beck‐Nielsen; Reference intervals for glucose, beta‐cell polypeptides, and counterregulatory factors during prolonged fasting. American Journal of Physiology (2001) 280: E50‐E58 

24.   D. Kerr, M. Reza, N. Smith, and B.A. Leatherdale; Importance of insulin in subjective, cognitive, and hormonal responses to hypoglycemia in patients with IDDM. Diabetes (1991) 40: 1057‐1062 

25.   I. Lager; The insulin‐antagonistic effect of the counterregulatory hormones. Journal of Internal Medicine Supplement (1991) 735: 41‐48 

26.   B.E. Levin and A.C. Sullivan; Glucose, insulin and sympathoadrenal activation. Journal of the Autonomic Nervous System (1987) 20: 233‐242 

27.   A. Mitrakou, C. Ryan, T. Veneman, M. Mokan, T. Jenssen, I. Kiss, J. Durrant, P.E. Cryer, and J. Gerich; Hierarchy of glycemic thresholds for counterregulatory hormone secretion, symptoms, and cerebral dysfunction. American Journal of Physiology (1991) 260: E67‐E74 

28.   M.S. Muntzel, D.A. Morgan, A.L. Mark, and A.K. Johnson; Intracerebroventricular insulin produces nonuniform regional increases in sympathetic nerve activity. American Journal of Physiology (1994) 267: R1350‐R1355 

29.   N.E. Rawson, H. Blum, M.D. Osbakken, and M.I. Friedman; Hepatic phosphate trapping, decreased ATP, and increased feeding after 2,5‐anhydro‐D‐mannitol. American Journal of Physiology (1994) 266: R112‐R117 

  32

Page 20: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

30.   F. Smedes, J.C. Kraak, and H. Poppe; Simple and fast solvent extraction system for selective and quantitative isolation of adrenaline, noradrenaline and dopamine from plasma and urine. Journal of Chromatography (1982) 231: 25‐39 

31.   A.B. Steffens; A method for frequent sampling of blood and continuous infusion of fluids in the rat without disturbing the animal. Physiology & Behavior (1969) 4: 833‐836 

32.   J.H. Strubbe, J.E. Bruggink, and A.B. Steffens; Hepatic portal vein cannulation for infusion and blood sampling in freely moving rats. Physiology & Behavior (1999) 65: 885‐887 

33.   J.H. Strubbe and A.J.A. Prins; Reduced insulin secretion after short‐term food deprivation in rats plays a key role in the adaptive interaction of glucose and free fatty acid utilization. Physiology & Behavior (1986) 37: 441‐445 

34.   G.J. Taborsky, B. Ahren, and P.J. Havel; Autonomic mediation of glucagon secretion during hypoglycemia. Implications for impaired alpha‐cell responses in type 1 diabetes. Diabetes (1998) 47: 995‐1005 

35.   G. van Dijk; Central and peripheral mechanisms involved in fuel homeostasis. Febodruk, Enschede, 1995 

36.   G. van Dijk, A. Scheurink, S. Ritter, and A. Steffens; Glucose homeostasis and sympathoadrenal activity in mercaptoacetate‐treated rats. Physiology & Behavior (1995) 57: 759‐764 

37.   J.J. van Dongen, R. Remie, J.W. Rensema, and G.H.J. van Wunnik; Manual of microsurgery on the laboratory rat. Part I. Elsevier, Amsterdam, 1990 

38.   R.R. Vollmer, J.J. Balcita, A.F. Sved, and D.J. Edwards; Adrenal epinephrine and norepinephrine release to hypoglycemia measured by microdialysis in conscious rats. American Journal of Physiology (1997) 273: R1758‐R1763 

39.   W.W. Winder, P.S. MacLean, S.L. Chandler, W. Huang, and R.H. Mills; Role of epinephrine during insulin‐induced hypoglycemia in fasted rats. Journal of Applied Physiology (1994) 77: 270‐276 

40.   S.C. Woods, G.J. Taborsky, and D. Porte Jr.; Central nervous system control of nutrient homeostasis. Chapter 7, Handbook of Physiology ‐ The Nervous System IV (1984) 365‐411 

  33

Page 21: Counterregulation to acute and repeated hypoglycemia in ...Hypoglycemia is a common complication in insulin‐treated diabetes. It is counteracted by counterregulatory responses to

Chapter 2 – Insulin levels and fasting 

  

  34