14
Course contents • Chapter 1 - section 1.6 • Chapter 2 - all sections • Chapter 4 - 4.1 – 4.7, and 4.12 • Chapter 5 - 5.1-5.3, 5.6-5.7 • Chapter 6 - all sections • Chapter 7 - all sections • Chapter 8 - 8.1-8.9 1

Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Embed Size (px)

Citation preview

Page 1: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Course contents

• Chapter 1 - section 1.6• Chapter 2 - all sections• Chapter 4 - 4.1 – 4.7, and 4.12• Chapter 5 - 5.1-5.3, 5.6-5.7• Chapter 6 - all sections• Chapter 7 - all sections• Chapter 8 - 8.1-8.9

1

Page 2: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

1.6 Binary numbers

• An electronic signal in logic circuits carries one digit of information. – Each digit is allowed to take on only two possible

values, usually denoted as 0 and 1.– -> Information in logic circuits is represented as

combinations of 0 and 1 digits.

• Q: How to represent numbers (E.g., positive integers) using only binary digits 0 and 1?

2

Page 3: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Decimal (base-10) number system

• A decimal integer is expressed by an n-tuple comprising n decimal digits

D = dn-1dn-2 ∙ ∙ ∙ d1d0

which represents the value

V(D) = dn-1×10n-1 + dn-2×10n-2 + ∙ ∙ ∙ + d1×101 + d0×100

• This is referred to as the positional number representation.

3

Page 4: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Binary (base-2) number system

• Logic circuits use the binary system whose positional number representation is

B = bn-1bn-2 ∙ ∙ ∙ b1b0

bn-1 is the most significant bit (MSB),

b0 is the least significant bit (LSB),

Every bit bi can only have two values: 0 or 1.

4

Page 5: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Numbers in decimal and binary

Decimal representation

Binary representation

00 0000

01 0001

02 0010

03 0011

04 0100

05 0101

06 0110

07 0111

08 1000

Decimal representation

Binary representation

09 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

5

Page 6: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Conversion from binary to decimal

• Compute a weighted sum of every binary digit contained in the binary number

B = bn-1bn-2 ∙ ∙ ∙ b1b0

V(B) = bn-1×2n-1 + bn-2×2n-2 + ∙ ∙ ∙ + b1×21 + b0×20

E.g., (1101)2 = 1×23 + 1×22 + 0×21+1×20=(13)10

6

Page 7: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Conversion from decimal to binary

• Perform the successive division by 2 until the quotient becomes 0. Remainder

857 / 2 = 428 1 LSB

428 / 2 = 214 0

214 / 2 = 107 0

107 / 2 = 53 1

53 / 2 = 26 1

26 / 2 = 13 0

13 / 2 = 6 1

6 / 2 = 3 0

3 / 2 = 1 1

1 / 2 = 0 1 MSB7

Page 8: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Chapter 2Introduction to Logic Circuits

Page 9: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Outline

2.1 Variables and Functions

2.2 Inversion

2.3 Truth tables

2.4 Logic gates and networks

2.5 Boolean algebra

2.6 Synthesis using AND, OR and NOT gates

2.7 NAND and NOR logic networks

2.8 Design examples

9

Page 10: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Figure 2.1. A binary switch.

x 1 = x 0 =

(a) Two states of a switch

S

x

(b) Symbol for a switch

2.1 Variables

10

Page 11: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Figure 2.2. A light controlled by a switch.

(a) Simple connection to a battery

S

(b) Using a ground connection as the return path

Battery Light

Power supply

S

Light

x

x

An application

11

Page 12: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Figure 2.3. Two basic functions.

(a) The logical AND function (series connection)

S

Power supply

S

S

Power supply S

(b) The logical OR function (parallel connection)

Light

Light x1 x2

x1

x2

Functions

12

Page 13: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

S

Power supply S

Light

S

X1

X2

X3

L(x1, x2, x3) = (x1 + x2) x3

A series-parallel connection

13

Page 14: Course contents Chapter 1 - section 1.6 Chapter 2 - all sections Chapter 4 - 4.1 – 4.7, and 4.12 Chapter 5 - 5.1-5.3, 5.6-5.7 Chapter 6 - all sections

Figure 2.5. An inverting circuit.

S Light Power supply

R

x

2.2 Inversion (complement, not)

 

14