38
RR-1 RGR 4-1 June 2015 2015 CEC Cryocooler Short Course Copyright 2015 California Institute of Technology. Government sponsorship acknowledged. CL#15-2287 Cryocoolers for Space Applications #4 R.G. Ross, Jr. Jet Propulsion Laboratory California Institute of Technology Topics Space Cryocooler Historical Overview and Applications Space Cryogenic Cooling System Design and Sizing Space Cryocooler Performance and How It's Measured Cryocooler-Specific Application and Integration Example: The AIRS Instrument

Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-1RGR 4-1June 2015

2015 CEC Cryocooler Short Course

Copyright 2015 California Institute of Technology. Government sponsorship acknowledged. CL#15-2287

Cryocoolers for Space Applications #4

R.G. Ross, Jr.

Jet Propulsion LaboratoryCalifornia Institute of Technology

Topics

� Space Cryocooler Historical Overview andApplications

� Space Cryogenic Cooling System Design andSizing

� Space Cryocooler Performance and How It'sMeasured

� Cryocooler-Specific Application and IntegrationExample: The AIRS Instrument

Page 2: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-2RGR 4-2June 2015

• Overview of AIRS Instrument

• Example Application Ground Rules and Requirements

• AIRS Cryosystem Conceptual Design

• Cryosystem layout and cryo loads estimation

• Important heatsinking considerations

• Sizing the Cryocooler for the Complete Mission Life Cycle

• BOL/EOL performance margin analysis

• Temperature Stability Requirements and Control

• Cryocooler Structural Integration Considerations

• Electrical Interface Considerations

• Meeting magnetic field requirements with shields

• Meeting Inrush and reflected ripple current requirements

Session 4: Detailed ExampleThe AIRS Instrument

Topics

Page 3: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-3RGR 4-3June 2015

References

� Ross, R.G., Jr. and Green K., "AIRS Cryocooler SystemDesign and Development," Cryocoolers 9, PlenumPublishing Corp., New York, 1997, pp. 885-894.

� Ross, R.G., Jr., Johnson, D.L., Collins, S.A., Green K. andWickman, H. “AIRS PFM Pulse Tube Cooler System-levelPerformance,” Cryocoolers 10, Plenum, New York, 1999, pp.119-128.

� Ross, R.G., Jr., “AIRS Pulse Tube Cooler System LevelPerformance and In-Space Performance Comparison,”Cryocoolers 12, Kluwer Academic/Plenum Publishers, NewYork, 2003, pp. 747-754.

� Ross, R.G., Jr., “Cryocooler Load Increase due to ExternalContamination of Low-¶Ý Cryogenic Surfaces,” Cryocoolers12, Kluwer Academic/Plenum Publishers, New York , 2003,pp. 727-736.

Page 4: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-4RGR 4-4June 2015

� Ross, R.G., Jr. and Rodriguez, J.I., “Performance of the AIRSPulse Tube Coolers and Instrument—A first Year in Space,”Adv. in Cryogenic Engin., Vol 49B, Amer. Inst. of Physics, NewYork, 2004, pp. 1293-1300.

� Ross, R.G., Jr., “Active Versus Standby Redundancy forImproved Cryocooler Reliability in Space,” Cryocoolers 13,Springer Science & Business Media, New York, 2005, pp. 609-618.

� Ross, R.G., Jr., et al., “AIRS Pulse Tube Coolers PerformanceUpdate – Twelve Years in Space,” Cryocoolers 18, ICC Press,Boulder, CO, 2014, pp. 87-95.

� See the AIRS instrument web site for up-to-date descriptionsof the science returns from the AIRS instrument and itsscience team members: http://www-airs.jpl.nasa.gov/

� http://www2.jpl.nasa.gov/adv_tech/ JPL website with 103 JPLcryocooler references as PDFs (R. Ross, webmaster)

References (Con't)

Page 5: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-5RGR 4-5June 2015

AIRS (Atmospheric Infrared Sounder) is a NASA Earth Science Instrument

• AIRS is an Atmospheric Infrared Sounder

• Design: Highly stable IR spectrometerspanning visible to 15.4 ìm bands withFocal Plane cooled to 58¶K

• Launched: May 2002

• Still in orbit gathering data

• Science Output:

• Air Temperature Distributions

• Atm Gas Concentrations(CO, CO

2, CH

4, H

2O) over Planet

Water Vapor Transport

Launched on NASAAqua Spacecraft in

May 2002

Page 6: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-6RGR 4-6June 2015

AIRSInstrument

EARTH SHIELD

150K

RADIATOR

190K

RADIATOR

OPTICAL

BENCH

HEAT REJECTION

COLD PLATES

AIRS Flight Instrument

The AIRS instrument wasdesigned and built underJPL contract by BAESystems, Lexington, MA

Atmospheric Infrared Sounder(AIRS) Instrument

Page 7: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-7RGR 4-7June 2015

• Totally redundant cryocoolers—for enhanced reliability

• No heat switches—to avoid increased complexity, cost andunreliability

• Ambient heat rejection to spacecraft-supplied cold platesoperating between 10 and 25oC

• Cooler drive fixed at 44.625 Hz, synchronized to the instrumentelectronics

• Cold-end load (focalplane) mechanically mounted and alignedto the 150 K optical bench with a maximum vibration jitter onthe order of 1 �m

• Focalplane calibration (for temperature, motion, etc.) every 2.67sec (every Earth scan)

• Cooler input power goal of 100 watts (22 to 35 volts dc), andmass goal of 35 kg

• Cooler drive electronics fully isolated (dc-dc) from input powerbus; EMI consistent with MIL STD 461.

AIRS Cryosystem Ground Rulesand Requirements

Page 8: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-8RGR 4-8June 2015

Detector Technologiesand Temperatures

INTEGRAL

AIRS

HST

SIRTF

Radiation Wavelength Blackbody Detector Detector Oper.Type (microns) Temp. (K) Technology Temp. (K)

â-rays 10-5 3 ´108 K Ge Diodes 80 K

â-rays 10-4 3 ´107 K Ge Diodes 80 K

x-rays 10-3 3 ´106 K micro 0.050 K

x-rays 10-2 3 ´105 K calorimeters 0.050 K

UV 0.1 30,000 K CCD/CMOS 200-300 K

visible 1 3000 K CCD/CMOS 200-300 K

IR 2 1500 K HgCdTe 55-130 K

IR 5 600 K HgCdTe 55-120 K

LWIR 10 300 K HgCdTe 35-80 K

LWIR 15 200 K HgCdTe 35-60 K

LWIR 20 150 K Si:As 6 -10 K

LWIR 50 60 K Ge:Ga 2.0 K

LWIR/ìwaves 100 30 K Ge:Ga 1.5 K

microwaves 200 15 K Bolometers 0.100 K

microwaves 500 6 K Bolometers 0.100¶K

Page 9: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-9RGR 4-9June 2015

Operating Regions of Cryocoolersvs Detector Cooling Requirements

Page 10: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-10RGR 4-10June 2015

Candidate Stirling CryocoolerRedundancy Approaches

AIRS

Page 11: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-11RGR 4-11June 2015

AIRS Cryosystem Initial ConceptualDesign with Stirling Cryocoolers

COLDFINGER

BUMPERS

COUNTER

BALANCED

DISPLACER

Possible Issues

• Displacerheatsinking

• Displacervibration

• Displacerreliability

Page 12: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-12RGR 4-12June 2015

Hughes CSE Cryocooler Mountedin Heat Sink Assemblies

Page 13: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-13RGR 4-13June 2015

Incorporation ofInertance Tube

at TRW

Specific Power at 58 K

(TRW Coolers)

1W-35K

Rapid Development of the PulseTube Occurred Just in Time for AIRS

Page 14: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-14RGR 4-14June 2015

EOL: 160K

Possible Issues

• OpticsContamination

• Pulse TubeContamination

• Horizontal PTs

• PT/OB relativemotion

BOL: 145K

AIRS Cryosystem Conceptual Designwith Pulse Tube Coolers

Page 15: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-15RGR 4-15June 2015

Three Vacuum Level Issues: Gaseous Conduction, Cryopumpingloads, Increased Emittance from contaminant films

Typical Vacuum Levels Achieved:

10-8 torr: Exterior to spacecraft sunlit surfaces (short term)10-9 torr: Exterior to spacecraft sunlit surfaces (long term)

10-10 torr: Exterior to spacecraft shaded-side surfaces (long term)

Contamination Implications:

Vacuum Time for H2O Cryopumping

Level 1 ìm H2O Heat Transfer

10-6 torr 1.7 hours 340 mW/m2

10-8 torr 7 days 3.4 mW/m2

10-9 torr 70 days 0.34 mW/m2

10-10 torr 2 years 0.034 mW/m2

Vacuum Level Considerations forSpace Cryogenic Applications

Page 16: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-16RGR 4-16June 2015

Space Vacuum

145K <10-8 torr

160K

145K

PulseTubes

Optical Bench BOL Design: 145 K (10-8.5 torr): Contamination Likely

Optical Bench EOL Design: 160 K (10-6 torr): Looks Good

Pulse Tube Design: 55 K (10-50 torr): Contamination Very Likely

AIRS Optical BenchContamination Risk Assessment

Page 17: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-17RGR 4-17June 2015

Massive Heat Sinks Added toAIRS Pulse Tubes

Page 18: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-18RGR 4-18June 2015

••

REGENERATOR

TEMPERATURE

COMPRESSOR

TEMPERATURE COLDPLATE

TEMPERATURE

ORIFICE

TEMPERATURE

Summary of AIRS Cooler SystemThermal Gradients

Page 19: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-19RGR 4-19June 2015

AIRS Cryosystem Cold Link Designwith Pulse Tube Coolers

Page 20: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-20RGR 4-20June 2015

AIRS Cold Link Assembly

Gold PlatedSapphire Rod

Copper Flex Braid

Page 21: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-21RGR 4-21June 2015

AIRS Cold Link

Cryogenic Conductivity ofHigh Conductivity Materials

Page 22: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-22RGR 4-22June 2015

Focal plane to Sapphire rod 1.57

Conduction down Sapphire rod 0.16

Sapphire rod to moly coupling 0.34

Resistance across shrink-fit joint 0.40

Resistance across flex braid 1.35

Coldblock contact resistance 0.30

Total focal plane/pulse tube thermal resistance 4.12

Resistance(K/W)ITEM

K/W

Breakdown of AIRS ColdlinkAssembly Thermal Resistances

Page 23: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-23RGR 4-23June 2015

FOCAL PLANE: 58 K, OPTICAL BENCH: 145 K BOL, 160 K EOL

ITEMLoad (mW)

BOL EOL

Focal Plane Radiation Load from OB 73 108

Focal Plane Electrical Dissipation 193 193

Focal plane Lead Wire Conduction 98 118

Focal plane Structural Support Conduction 129 158

Radiation to Coldlink from Optical Bench 17 24

Radiation to Coldlink from Vacuum Housing 177 195

Off-state Conduction of Redundant Cryocooler 486 496

Total Cryocooler Load 1173 1292

Summary of AIRS InstrumentCryocooler Loads

Page 24: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-24RGR 4-24June 2015

AIRS Predicted CryocoolerThermal Performance

Page 25: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-25RGR 4-25June 2015

AIRS CryocoolerElectronics Efficiency

Page 26: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-26RGR 4-26June 2015

AIRS BOL/EOL PerformanceMargin Analysis

BOL 200 mW 15oC Cooler EOL PARAMETER Unit Perfor- Load Heatsink Wearout Perfor-

mance Increase Increase Degrad. mance

Focalplane Temperature K 58 58 58 58 58Total Cooler Cold-End Load W 1.07 1.27 1.07 1.07 1.27Cooler Cold-tip �T to FP (3 K/W) K 3 3.4 3 3 3.4Cooler Cold-tip Temperature (T

C) K 55 54.6 55 55 54.6

Heat Rejection Coldplate Temp K 290 290 305 290 305Expander to Coldplate �T (0.16 K/W) K 9.8 11.2 10.6 12.0 16.8Comp. to Coldplate �T (0.05 K/W) K 3.0 3.5 3.3 3.8 5.3Avg. Cooler Rejection Temp (T

R) K 296 297 312 298 316

TC Correction for T

R� 300K (0.17 K/K) K +0.7 +0.5 -2.0 +0.3 -2.7

TC Correction for Cooler Wearout K 0 0 0 -5.0 -5.0

Total Cold-tip Temp Correction K +0.7 +0.5 -2.0 -4.7 -7.7Effective 300K Cold-tip Temp (T

EC) K 55.7 55.1 53.0 50.3 46.9

Cooler Specific Power at TEC

W/W 57 55 62 72 83Cooler Compressor Power (P) W 57 67 65 75 101Total Input Power (P/0.9 + 10) W 73 84 82 93 122Compressor Stroke % 64 68 67 70 80

Page 27: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-27RGR 4-27June 2015

BOL

�EOL

1.271.07

AIRS BOL/EOL Operating StateVerification Analysis

Page 28: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-28RGR 4-28June 2015

• Meet inrush and reflected ripple current requirements

� Accommodate broad input voltage ranges as compounded byhigh ripple current of cooler

� Suppress EMI to low levels consistent with MIL-Std 461 andaccommodate MIL-Std 461 susceptibility levels

� Provide high isolation from ground loops: case isolated fromground; possible dc-dc isolation from power bus

� Provide digital data interface for communication of commandsand transmission of measured parameters & performance data

Key Cryocooler ElectricalIntegration Considerations

Page 29: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-29RGR 4-29June 2015

28V Bus

CoolerElect.Ripple

Filter

AIRS Cryocooler ElectronicsConducted Ripple Current

Page 30: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-30RGR 4-30June 2015

Prototype Magnetic Shields Usedin Magnetic Shielding Studies

Page 31: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-31RGR 4-31June 2015

AIRS Compressor AC Magnetic Fields(With and Without Mag Shields)

AIRS coolers withmag shields

Page 32: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-32RGR 4-32June 2015

AIRS FlightInstrument

Launched on NASAAqua Spacecraft in

May 2002

TRW (NGAS)AIRS

PT Coolers

AIRS Flight Pulse Tube Coolers

Page 33: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-33RGR 4-33June 2015

Cooler Drive LevelDuring First 50 Days of Mission

Page 34: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-34RGR 4-34June 2015

Cooler Drive LevelDuring First 120 Days of Mission

Page 35: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-35RGR 4-35June 2015

Cooler Load Pointfor 2-Cooler vs 1+Standby Operation

Operating Pointwith one-cooleroperation

Operating Pointwith two-cooleroperation

Page 36: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-36RGR 4-36June 2015

Cooler Drive Level Summaryfor 12 Years of Operation

Cryocooler drive level has remainedrelatively constant over past 12 years

Page 37: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-37RGR 4-37June 2015

•Operating Pointwith one-coolerin operation

A

B

%DRIVE

= BOL Operating Points with two-coolers in operation

= 12-year Operating Points with two-coolers in operation

AIRS Cooler Load PointSince Two-Cooler Operation Began

Page 38: Cryocoolers for Space Applications #4€¦ · x-rays 10-2 3 ´105 K calorimeters 0.050 K UV 0.1 30,000 K CCD/CMOS 200-300 K visible 1 3000 K CCD/CMOS 200-300 K IR 2 1500 K HgCdTe

RR-38RGR 4-38June 2015

• AIRS was the first space instrument to commit to a pulse tubecryocooler and served as a very successful example

• Cooler performance characterization

• Dealing with Heat Rejection and Coldlink design

• Achieving tolerable generated vibration and EMI levels

• During the 20 years since the AIRS conceptual design wasdeveloped, we've learned a great deal more about a number ofintegration challenges:

• Two-cooler operational redundancy trade-offs

• Space vacuum levels and contamination sensitivity

• Cryo MLI performance

• Internal ripple current suppression

• Lighter and more efficient 2-stage coolers that can accommodateboth the 150K optical bench load and the 58 K focal plane load

• Bottom Line: Space cryocoolers continue to evolve and wecontinue to learn how to improve their system performance

Summary