26
AMS-02 TIM, Dr. F. Bodendieck, CGS, Milan, March 2004 AMS-02 Cryo-Cooler TCS 1 Cryo Cryo - - Cooler Thermal Control System Cooler Thermal Control System Dr. Frank Bodendieck , Dr. Reinhard Schlitt OHB-System AG, Bremen, Germany 1. Introduction 1. Introduction 2. Description of 2. Description of Cryo Cryo - - cooler Thermal Control System cooler Thermal Control System 3. Main Features of LHP Thermal Mathematical Model 3. Main Features of LHP Thermal Mathematical Model 4. 4. Cryo Cryo - - cooler Thermal Mathematical Model cooler Thermal Mathematical Model 5. Thermal Analysis 5. Thermal Analysis 6. Conclusions 6. Conclusions

CryoCryo-Cooler Thermal Control System- Cooler Thermal ... · AMS-02 Cryo-Cooler TCS. 15. 5. Thermal Analysis! HOT CASE with 150 W: 52581 52481 52311 52411 52511 52381 52281 52211

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    1

    Cryo-Cooler Thermal Control SystemCryoCryo--Cooler Thermal Control SystemCooler Thermal Control SystemDr. Frank Bodendieck,

    Dr. Reinhard SchlittOHB-System AG, Bremen,

    Germany

    1. Introduction1. Introduction2. Description of 2. Description of CryoCryo--cooler Thermal Control Systemcooler Thermal Control System3. Main Features of LHP Thermal Mathematical Model3. Main Features of LHP Thermal Mathematical Model4. 4. CryoCryo--cooler Thermal Mathematical Modelcooler Thermal Mathematical Model5. Thermal Analysis5. Thermal Analysis6. Conclusions6. Conclusions

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    2

    1. Introduction1. Introduction!! AMS includes 4 AMS includes 4 StirlingStirling Cryogenic Cryogenic

    Coolers (Coolers (CryoCryo--Coolers), which Coolers), which extract parasitic heat from the extract parasitic heat from the thermal protection shields of the thermal protection shields of the Helium cooled AMS magnet. Helium cooled AMS magnet.

    !! Description of the performed Description of the performed thermal analysis for the AMSthermal analysis for the AMS--02 02 loop heat pipes (LHP), which are loop heat pipes (LHP), which are implemented into the AMS implemented into the AMS CryoCryo--cooler thermal control system.cooler thermal control system.

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    3

    2. Description of 2. Description of CryoCryo--cooler Thermal Control Systemcooler Thermal Control System

    !! AMS AMS CryoCryo--cooler TCS cooler TCS consists of:consists of:-- LHP evaporator, LHP evaporator, -- pipelines andpipelines and-- condenser connectedcondenser connectedto the Zenith radiatorto the Zenith radiatorpanel. panel.

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    4

    2. Description of 2. Description of CryoCryo--cooler Thermal Control Systemcooler Thermal Control System!! The LHP systems can be characterized as follows:The LHP systems can be characterized as follows:

    oo AMS contains four separate LHP systemsAMS contains four separate LHP systemsoo Each LHP system consists of:Each LHP system consists of:

    -- two two LHPsLHPs (for redundancy reasons)(for redundancy reasons)-- one radiator subone radiator sub--panelpanel

    oo The four radiator subThe four radiator sub--panels have identical configurations including identical panels have identical configurations including identical condenser lay outcondenser lay out

    oo The four LHP systems can be divided into:The four LHP systems can be divided into:-- Two identical LHP systems serving the two Two identical LHP systems serving the two CryoCryo--Coolers at the lower Coolers at the lower

    CryomagnetCryomagnet Assembly rim with longer fluid lines “Long LHP System”Assembly rim with longer fluid lines “Long LHP System”-- Two identical LHP systems serving the two Two identical LHP systems serving the two CryoCryo--Coolers at the upper Coolers at the upper

    CryomagnetCryomagnet Assembly rim with shorter fluid lines “Short LHP System”Assembly rim with shorter fluid lines “Short LHP System”

    oo Except from the different fluid line length the Long and Short LExcept from the different fluid line length the Long and Short LHP Systems HP Systems have different evaporator dimensions, especially different seizehave different evaporator dimensions, especially different seizes of the s of the compensation chamber. But all LHP Systems have identical mechanicompensation chamber. But all LHP Systems have identical mechanical cal interfaces to the interfaces to the CryoCryo--Cooler.Cooler.

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    5

    2. Description of 2. Description of CryoCryo--cooler Thermal Control Systemcooler Thermal Control System!! LHP systems (1/2):LHP systems (1/2):

    LHP evaporators

    Radiator panels

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    6

    2. Description of 2. Description of CryoCryo--cooler Thermal Control Systemcooler Thermal Control System!! LHP systems (2/2):LHP systems (2/2):

    LHP evaporator

    Cryo-cooler

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    7

    3. Main Features of LHP Thermal Mathematical Model (1/4)3. Main Features of LHP Thermal Mathematical Model (1/4)!! The developed LHP TMM is able to simulate transient operational The developed LHP TMM is able to simulate transient operational modes of modes of

    entire loop under all spectrums of variations of environmental (entire loop under all spectrums of variations of environmental (i.e. under i.e. under gravity and zerogravity and zero--g conditions) and heat load conditions, including startg conditions) and heat load conditions, including start--up and up and switchswitch--down. It has the following features.down. It has the following features.!! The model nodes unite local conjugate energy, momentum and mass The model nodes unite local conjugate energy, momentum and mass

    average balance over the node area.average balance over the node area.!! Transient pressure, mass flow and momentum balance are calculateTransient pressure, mass flow and momentum balance are calculated over d over

    entire loopentire loop!! Conductive, flow enthalpy, Conductive, flow enthalpy, radiativeradiative and convective links are calculated and convective links are calculated

    over the condenserover the condenser--radiatorradiator!! State of fluid is detected automatically by enthalpy balance at State of fluid is detected automatically by enthalpy balance at any location any location

    of entire loop: twoof entire loop: two--phase, pure saturated, subphase, pure saturated, sub--cooled liquid or supercooled liquid or super--heated vapour. heated vapour.

    !! The condensation model is based on annular flow with variable thThe condensation model is based on annular flow with variable thickness ickness of condensate film under vapourof condensate film under vapour--liquid interface stress balance.liquid interface stress balance.

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    8

    3. Main Features of LHP Thermal Mathematical Model (2/4)3. Main Features of LHP Thermal Mathematical Model (2/4)!! Gravity term is included.Gravity term is included.!! Two evaporator models can be chosen independent from the availabTwo evaporator models can be chosen independent from the availability of ility of

    design parameters of evaporator and reservoir from LHP Developerdesign parameters of evaporator and reservoir from LHP Developer. If no . If no details are available, the appropriate uncertain parameters can details are available, the appropriate uncertain parameters can be adjusted by be adjusted by results of ground test.results of ground test.

    !! The developed Interfacing Algorithm (IFA) allows LHP The developed Interfacing Algorithm (IFA) allows LHP modelingmodeling at two at two levels:levels:!! low level (LLM, i.e. detailed LHP model) and low level (LLM, i.e. detailed LHP model) and !! high level (HLM, few nodes representative of LLM at higher levelhigh level (HLM, few nodes representative of LLM at higher level). ).

    !! AMS LHP model at LLM consists of 5 nodes for evaporator zone, 17AMS LHP model at LLM consists of 5 nodes for evaporator zone, 176 6 nodes for condenser zone , 10 nodes for liquid pipeline and 10 nnodes for condenser zone , 10 nodes for liquid pipeline and 10 nodes for odes for vapour pipeline. The corresponding HLM model consists of 1 node vapour pipeline. The corresponding HLM model consists of 1 node for for evaporator zone and 10 nodes for condenser zone.evaporator zone and 10 nodes for condenser zone.

    !! IFA executes necessary exchange between LLM and HLM to guaranteeIFA executes necessary exchange between LLM and HLM to guaranteethe adequate representation of LLM model at high level.the adequate representation of LLM model at high level.

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    9

    3. Main Features of LHP Thermal Mathematical Model (3/4)3. Main Features of LHP Thermal Mathematical Model (3/4)!! Nodal layout of the evaporator at LNodal layout of the evaporator at L--levellevel ::

    !! These 5 nodes are presented by temperature:These 5 nodes are presented by temperature:!! TqTq:: Temperature of dissipating element (i.e. here Temperature of dissipating element (i.e. here CryoCryo--cooler collar)cooler collar)!! TweTwe:: Temperature of evaporator wallTemperature of evaporator wall!! TifeTife:: Temperature of vapour / liquid I/F in evaporatorTemperature of vapour / liquid I/F in evaporator!! TwrTwr:: Temperature of reservoir wallTemperature of reservoir wall!! TifrTifr:: Temperature of vapour / liquid I/F in reservoirTemperature of vapour / liquid I/F in reservoir

    !! The liquid inlet temperature The liquid inlet temperature TleTle is the last node temperature of liquid pipeline.is the last node temperature of liquid pipeline.

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    10

    3. Main Features of LHP Thermal Mathematical Model (4/4)3. Main Features of LHP Thermal Mathematical Model (4/4)!! LL--l and Hl and H--l nodal layout of the enlarged AMS l nodal layout of the enlarged AMS cryocoolercryocooler radiatorradiator

    159

    12

    34

    56

    78

    910

    1112

    1314

    1516

    1718

    1920

    21 22 2324 25 26 27 28

    29 30 31 32 33 34 3536 37 38 39 40 41 42 43 4445 46 47 48 49 50 51 52 53 54

    55 56 57 58 59 60 61 62 63 64 65 66

    67 68 69 70 71 72 73 74 75 76 77 78

    79 80 81 82 83 84 85 86 87 88 89 90

    91 92 93 94 95 96 97 98 99 100 101 102 103

    104 105 106 107 108 109 110 111 112 113 114 115 116

    117 118 119 120 121 122 123 124 125 126 127

    130 131 132 133 134 135 136 137 138 139 140141 142 143 144 145 146 147 148 149 150 151 152

    153 154 155 156 157 158 160 161 162

    165 166 167 168 169 170 171 172 173 174 175 176

    128

    16416352181

    52281

    52381

    52481

    52581

    52111 52211 52311 52411 52511

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    11

    4. 4. CryoCryo--cooler Thermal Mathematical Modelcooler Thermal Mathematical ModelMagnet B20116 bottom (reject)

    D11000 B17000

    T=-192 °C

    LHP

    Lower I/F of Cu collar D14000

    Zenith

    Cryo cooler top

    D12000

    Cryo cooler back

    D12100

    Passive balance mass

    D16000

    MLID31600

    MERATB31601

    MLI D31320

    MERAT B31321

    Torlon Cylinder D13200

    Titanium ring

    D13100

    GL1 = 0.0008 W/K

    GL6 = 0.0032 W/K GL4 = 44.0 W/K

    GL10 = f(T)

    GL** = 102.5 W/K

    GL8 = 0.0536 W/K

    GL1 = 0.027 W/K

    GL10 = 5.14 W/K

    GR = 0.05 . 0.017 m2

    GR = 0.05 . 0.096 m2

    GR = f(MERAT) GR = f(MERAT)

    GL5

    = 0

    .006

    8 W

    /K

    GL5 = 0.0068 W/K

    GL3 = 20.8 W/K

    GL5

    = 0

    .006

    8 W

    /K

    LHP TMM

    Temperature Requirements:!! Min. turnMin. turn--on and operational temperature on and operational temperature

    of the of the CryoCryo--cooler:cooler: --1010°°CC!! Max. operational temperature of the Max. operational temperature of the

    CryoCryo--cooler :cooler : +40 +40 °°CC!! Min. nonMin. non--operational and survival operational and survival

    temperature of the temperature of the CryoCryo--cooler:cooler: --40 40 °°CC!! Max. nonMax. non--operational and survival operational and survival

    temperature:temperature: +40 +40 °°CC

    !! Dissipations:Dissipations:!! Minimum:Minimum: 60 Watts / 60 Watts / cryocoolercryocooler!! Maximum:Maximum: 150 Watts / 150 Watts / cryocoolercryocooler!! Nominal:Nominal: 100 Watts / 100 Watts / cryocoolercryocooler

    !! Temperature Requirements:Cryocooler Cold tip

    evaporator radiator

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    12

    5. Thermal Analysis5. Thermal Analysis!! Environment Cases for the CRYO coolers and the Zenith RadiatorEnvironment Cases for the CRYO coolers and the Zenith Radiator::

    Meaning CGS input file: CASE: β Y P R

    IF_DATA_B_75-15_15_15_COLD.xls COLD +75 -15 +15 +15IF_DATA_B_75-15-20-15_HOT.xls HOT +75 -15 -20 -15 IFdata_B_0MPA.xls NOMINAL 0 -2 -10 +1 !! LHP and Radiator Material Properties and Main Dimensions:LHP and Radiator Material Properties and Main Dimensions:

    Name Dimensions Material ρ [kg/m³]

    cp [J/kg K]

    λ [W/m K]

    Face sheet out t = 1.6 mm Al 2800 879 155 Face sheet in t = 0.3 mm Al 2800 879 155 Radiator core t = 10 mm ROHACELL 52 1500 0.028 LHP tubing lCond ≈ 4,6 m

    llong ≈ 2.9 m lshort ≈ 1,3 m

    Al SS SS

    2800 7900 7900

    879 510 510

    155 14 14

    LHP evaporator 12 mm OD SS 7900 510 14 LHP evaporator flange

    100 x 30 x 15

    Al 2800 879 155

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    13

    5. Thermal Analysis5. Thermal Analysis!! HOT CASE with 60 W:HOT CASE with 60 W:

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 5400 10800 16200 21600 27000 32400 37800 43200 48600 54000

    Orbit time [s]

    Tem

    pera

    ture

    [°C

    ]

    Cryo bottomCryo topCryo backTitanium ringTorlon CylinderPassive massCu CollarD52111D52181D52211D52281D52311D52381D52411D52481D52511D52581

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    14

    5. Thermal Analysis5. Thermal Analysis!! HOT CASE with 100 W:HOT CASE with 100 W:

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 5400 10800 16200 21600 27000 32400 37800 43200 48600 54000

    Orbit time [s]

    Tem

    pera

    ture

    [°C

    ]

    Cryo bottomCryo topCryo backTitanium ringTorlon CylinderPassive massCu CollarD52111D52181D52211D52281D52311D52381D52411D52481D52511D52581

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    15

    5. Thermal Analysis5. Thermal Analysis!! HOT CASE with 150 W:HOT CASE with 150 W:

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

    -20-15-10-505

    10152025303540455055

    0 2700 5400 8100 10800 13500 16200 18900 21600 24300 27000

    Orbit time [s]

    Tem

    pera

    ture

    [°C

    ]

    Cryo bottomCryo topCryo backTitanium ringTorlon CylinderPassive massCu CollarD52111D52181D52211D52281D52311D52381D52411D52481D52511D52581

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    16

    5. Thermal Analysis5. Thermal Analysis!! COLD CASE with 100 W:COLD CASE with 100 W:

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

    -80-75-70-65-60-55-50-45-40-35-30-25-20-15-10-505

    10

    0 1350 2700 4050 5400 6750 8100 9450 10800

    Orbit time [s]

    Tem

    pera

    ture

    [°C

    ]

    Cryo bottomCryo topCryo backTitanium ringTorlon CylinderPassive massCu CollarD52111D52181D52211D52281D52311D52381D52411D52481D52511D52581

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    17

    5. Thermal Analysis5. Thermal Analysis!! COLD CASE with 100 W:COLD CASE with 100 W:

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    Twx (

    164)

    Twx (

    162)

    Twx (

    160)

    Twx (

    158)

    Twx (

    156)

    Twx (

    154)

    Twx (

    130)

    Twx (

    105)

    Twx (

    80)

    Twx (

    56)

    Twx (

    37)

    Twx (

    25)

    Twx (

    12)

    Twx (

    14)

    Twx (

    33)

    Twx (

    49)

    Twx (

    71)

    Twx (

    95)

    Twx (

    121)

    Twx (

    123)

    Twx (

    98)

    Twx (

    74)

    Twx (

    52)

    Twx (

    17)

    Twx (

    19)

    Twx (

    65)

    Twx (

    89)

    Twx (

    115)

    Twx (

    128)

    Fluid Nodes

    Tem

    pera

    ture

    [°C

    ]

    After 4500 secAfter 22500 sec

    Ammonia freezing

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    18

    5. Thermal Analysis5. Thermal Analysis!! COLD CASE with 150 W:COLD CASE with 150 W:

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    0 5400 10800 16200 21600 27000 32400 37800 43200 48600 54000

    Orbit time [s]

    Tem

    pera

    ture

    [°C

    ]

    Cryo bottomCryo topCryo backTitanium ringTorlon CylinderPassive massCu CollarD52111D52181D52211D52281D52311D52381D52411D52481D52511D52581

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    19

    5. Thermal Analysis5. Thermal Analysis!! COLD CASE starting with 100 W and switching to 150 W, if RadiatoCOLD CASE starting with 100 W and switching to 150 W, if Radiator r

    Node D52581 is below Node D52581 is below ––6060°°CC

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    0 2700 5400 8100 10800 13500 16200 18900 21600 24300 27000

    Orbit time [s]

    Tem

    pera

    ture

    [°C

    ]

    Cryo bottomCryo topCryo backTitanium ringTorlon CylinderPassive massCu CollarD52111D52181D52211D52281D52311D52381D52411D52481D52511D52581

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    20

    5. Thermal Analysis5. Thermal Analysis!! COLD CASE starting with 100 W and switching to 150 W, if Cu CollCOLD CASE starting with 100 W and switching to 150 W, if Cu Collar ar

    is below is below ––1010°°CC

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    0 2700 5400 8100 10800 13500 16200 18900 21600 24300 27000

    Orbit time [s]

    Tem

    pera

    ture

    [°C

    ]

    Cryo bottomCryo topCryo backTitanium ringTorlon CylinderPassive massCu CollarD52111D52181D52211D52281D52311D52381D52411D52481D52511D52581

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    21

    5. Thermal Analysis5. Thermal Analysis!! COLD CASE without Power:COLD CASE without Power:

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    0 5400 10800 16200 21600 27000 32400 37800 43200 48600 54000

    Orbit time [s]

    Tem

    pera

    ture

    [°C

    ]

    Cryo bottomCryo topCryo backTitanium ringTorlon CylinderPassive massCu CollarD52111D52181D52211D52281D52311D52381D52411D52481D52511D52581

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    22

    5. Thermal Analysis5. Thermal Analysis!! NOMINAL CASE for CRYO Cooler No. 4 with 100 WNOMINAL CASE for CRYO Cooler No. 4 with 100 W ::

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

    -60-55-50-45-40-35-30-25-20-15-10-505

    10152025

    0 2700 5400 8100 10800 13500 16200 18900 21600 24300 27000

    Orbit time [s]

    Tem

    pera

    ture

    [°C

    ]

    Cryo bottomCryo topCryo backTitanium ringTorlon CylinderPassive massCu CollarD52111D52181D52211D52281D52311D52381D52411D52481D52511D52581

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    23

    5. Thermal Analysis5. Thermal Analysis!! Substitution Heaters on the Zenith RadiatorSubstitution Heaters on the Zenith Radiator

    159

    12

    34

    56

    78

    910

    1112

    1314

    1516

    1718

    1920

    21 22 2324 25 26 27 28

    29 30 31 32 33 34 3536 37 38 39 40 41 42 43 4445 46 47 48 49 50 51 52 53 54

    55 56 57 58 59 60 61 62 63 64 65 66

    67 68 69 70 71 72 73 74 75 76 77 78

    79 80 81 82 83 84 85 86 87 88 89 90

    91 92 93 94 95 96 97 98 99 100 101 102 103

    104 105 106 107 108 109 110 111 112 113 114 115 116

    117 118 119 120 121 122 123 124 125 126 127

    130 131 132 133 134 135 136 137 138 139 140141 142 143 144 145 146 147 148 149 150 151 152

    153 154 155 156 157 158 160 161 162

    165 166 167 168 169 170 171 172 173 174 175 176

    128

    16416352181

    52281

    52381

    52481

    52581

    52111 52211 52311 52411 52511

    Heater location (TBC)

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    24

    5. Thermal Analysis5. Thermal Analysis!! Operating of the Operating of the CryoCryo--Cooler with 100 W during COLD CASE plus Cooler with 100 W during COLD CASE plus

    Thermostat Regulated Substitution Heaters of 50 W located near tThermostat Regulated Substitution Heaters of 50 W located near the he Fluid LinesFluid Lines::

    52581

    52481

    52311

    52411

    52511 52381

    52281

    52211 52181

    52111

    Outlet

    Inlet

    -60

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    0 2700 5400 8100 10800 13500 16200 18900 21600 24300 27000

    Orbit time [s]

    Tem

    pera

    ture

    [°C

    ]

    Cryo bottomCryo topCryo backTitanium ringTorlon CylinderPassive massCu CollarD52111D52181D52211D52281D52311D52381D52411D52481D52511D52581

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    25

    6. Conclusions (1/2)6. Conclusions (1/2)!! The following analysis cases were performed for the AMS The following analysis cases were performed for the AMS CryoCryo--cooler cooler

    TCS:TCS:!! Worst hot environment case with different power levels of the Worst hot environment case with different power levels of the CryoCryo--

    coolerscoolers

    !! Worst cold environment case with different power levels of the Worst cold environment case with different power levels of the CryoCryo--coolerscoolers

    !! ““TypicalTypical”” environment case with 100 W dissipation of the environment case with 100 W dissipation of the CryoCryo--coolerscoolers

    !! Heater / power regulation during worst cold environment case to Heater / power regulation during worst cold environment case to reach reach a radiator temperature above the freezing point of ammoniaa radiator temperature above the freezing point of ammonia

  • AMS-02 TIM, Dr. F. Bodendieck,CGS, Milan, March 2004

    AMS-02 Cryo-Cooler TCS

    26

    6. Conclusions (2/2)6. Conclusions (2/2)!! The temperature requirements for the The temperature requirements for the CryoCryo--cooler collar can be cooler collar can be

    fulfilled for the defined worst hot and the fulfilled for the defined worst hot and the ““typicaltypical”” environment cases environment cases with nominal (100 W) or minimum power (60 W) and with maximum with nominal (100 W) or minimum power (60 W) and with maximum power of 150 W during the worst cold case.power of 150 W during the worst cold case.

    !! The collar I/F temperature requirement for the worst cold case cThe collar I/F temperature requirement for the worst cold case can not an not be reached with the nominal power of 100W due to the freezing ofbe reached with the nominal power of 100W due to the freezing ofammonia inside the fluid lines of the LHP system. ammonia inside the fluid lines of the LHP system.

    !! To avoid the freezing of the ammonia additional power of about 5To avoid the freezing of the ammonia additional power of about 50 W 0 W is necessary, which can be supplied due to additional dissipatiois necessary, which can be supplied due to additional dissipation of n of the the CryoCryo--coolers (switch from 100 W to 150 W), or due to the coolers (switch from 100 W to 150 W), or due to the substitution (startsubstitution (start--up) heaters on the LHP evaporator flanges, or due up) heaters on the LHP evaporator flanges, or due to additional substitution heaters on the Zenith radiator (locatto additional substitution heaters on the Zenith radiator (located ed between the fluid lines). between the fluid lines).

    !! The substitution heaters (P = TBD) on the radiator are also needThe substitution heaters (P = TBD) on the radiator are also needed to ed to warmwarm--up the radiator after AMSup the radiator after AMS--02 power off conditions.02 power off conditions.