37
Institute of Solid State Physics Technische Universität Graz Crystal structures

Crystal structures - lampx.tugraz.at

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Crystal structures - lampx.tugraz.at

Institute of Solid State PhysicsTechnische Universität Graz

Crystal structures

Page 2: Crystal structures - lampx.tugraz.at

Atoms are arranged in a periodic pattern in a crystal.

The atomic arrangement affects the macroscopic properties of a material.

Many important materials (silicon, steel) are crystals

Crystal Structure

Insulin crystalsGallium crystals quartz

Page 3: Crystal structures - lampx.tugraz.at

Crystal Structure

face centered cubic, fcc

body centered cubic, bcc

simple cubic

basis

Bravais lattice Crystal

= +

Page 4: Crystal structures - lampx.tugraz.at

Crystal planes and directions: Miller indices

MOSFETs are made on <100> wafers

[ ] specific direction< > family of equivalent directions( ) specific plane{ } family of equivalent planes

A plane with the intercepts 1/h, 1/k, 1/l is the (h,k,l) plane.

Page 5: Crystal structures - lampx.tugraz.at

http://lampx.tugraz.at/~hadley/memm/materials/silicon/silicon.php

silicon

Page 6: Crystal structures - lampx.tugraz.at

Silicon surfaces

(Source: Sandia Nat.Labs.)

Si(100)

Si(111)

Page 7: Crystal structures - lampx.tugraz.at

KOH etches Si {110} > {100} > {111}, producing a characteristic anisotropic V-etch, with sidewalls that form a 54.7° angle with the surface (35.3° from the normal).

http://www.ece.uncc.edu/research/clean_room/fabprocesses/KOH-EtchingAndDecon.pdf

KOH etching of silicon

Page 8: Crystal structures - lampx.tugraz.at

Crystal structures

Page 9: Crystal structures - lampx.tugraz.at

Structural phase transitions

GaAs, ZincblendeGaAs, Wurtzite

3C - SiC

SiC has about 100 polytypes

4H - SiC 6H - SiC

Page 10: Crystal structures - lampx.tugraz.at

Institute of Solid State PhysicsTechnische Universität Graz

Electrons in Crystals

Page 11: Crystal structures - lampx.tugraz.at

Electrons

Charge = -1.6022 x 10-19 CMass = 9.11 x 10-31 kgRadius = ?

0.15 nm

Page 12: Crystal structures - lampx.tugraz.at

Everything moves like a wave but exchanges energy and momentum like a particle.

Quantum Mechanics

ww

w.alm

aden.ibm.com

/vis/stm/atom

o.html

Page 13: Crystal structures - lampx.tugraz.at

Everything moves like a wave but exchanges energy and momentum like a particle.

Page 14: Crystal structures - lampx.tugraz.at

Fluorescent lamp

Page 15: Crystal structures - lampx.tugraz.at

Molecular energy levels

Page 16: Crystal structures - lampx.tugraz.at

Semiconductors

valence band conduction bandband gap

molecular orbitals are plane waves

Page 17: Crystal structures - lampx.tugraz.at

wave vector k

p k

2k

A k-vector points in the direction a wave is propagating.

wavelength:

momentum:

Page 18: Crystal structures - lampx.tugraz.at

Absorption and emission of photons

semiconductor

hf < Eg no absorption

absorption

emission

Page 19: Crystal structures - lampx.tugraz.at

What color light does a GaAs LED emit?

191.6022 10 1.43 J hcE hf

867 nm infrared

Page 20: Crystal structures - lampx.tugraz.at

direct bandgap:k = 0

photons can be emitted

indirect bandgap:k = 0

phonons are emitted

Direct and indirect band gaps

Momentum must be conserved when photons are absorbed or emitted.

Page 21: Crystal structures - lampx.tugraz.at

Silicon band structure

k=0

Ec = bottom of the conduction band

Ev = top of the valence band

Eg = Ec - Ev

k=0

Electrons with energies in the gap are reflected out of the crystal.

Page 22: Crystal structures - lampx.tugraz.at

Light emitting diodes

Page 23: Crystal structures - lampx.tugraz.at

Metals, semiconductors, insulators

Metal

Semiconductor or insulator

Eg < 3eV = SemiconductorEg > 3eV = Insulator

Eg

from: Singh

Page 24: Crystal structures - lampx.tugraz.at

Copper dispersion relation and density of states

from Ibach & Lueth

4

4

3

Page 25: Crystal structures - lampx.tugraz.at

from Ibach & Lueth

Germanium

Page 26: Crystal structures - lampx.tugraz.at

Band gap

Electrons with energies in the gap are reflected out of the crystal.

Page 27: Crystal structures - lampx.tugraz.at

Density of states

Silicon

filled states empty states

Aluminum

filled states empty states

D(E)

Page 28: Crystal structures - lampx.tugraz.at

metal Sn Sn

Structural phase transition in Sn

-Sn, gray tin, diamond structure

-Sn, white tin, tetragonal

transition at 13 C

Page 29: Crystal structures - lampx.tugraz.at

Structural phase transitions

Si, diamond structure

Si II, -Sn, tetragonal

silicon makes a diamond to -Sn transition under pressure

Page 30: Crystal structures - lampx.tugraz.at

Fermi function

1( )1 exp F

B

f EE E

k T

f(E) is the probability that a state at energy E is occupied.

Page 31: Crystal structures - lampx.tugraz.at

Silicon density of states

T = 300 K

1012

electrons in the conduction band

T = 300 K

Page 32: Crystal structures - lampx.tugraz.at

Fermi energy

( ) ( )n D E f E dE

The Fermi energy is implicitly defined as the energy that solves the following equation.

Here n is the electron density.

The density of states, the total number of electrons and the temperature are given. To find the Fermi energy, guess one and evaluate the integral. If nturns out too low, guess a higher EF and if n turns out too high, guess a lower EF.

Page 33: Crystal structures - lampx.tugraz.at

1 2 3 4 5 6 7 E [10-19 J]

( ) ( )n D E f E dE

n = 31028 m-3

1047

Page 34: Crystal structures - lampx.tugraz.at

free electrons (simple model for a metal)

2 2

2 2 2 212( )

2 2x y zpE k k k k mv

m m

3-d density of states

E

kx

dispersion relation 3/2

2 3

0 for 0( ) 2

for 02

ED E m

E E

ky

Page 35: Crystal structures - lampx.tugraz.at

Silicon band structure

Near the bottom of the conduction band, the band structure looks like a parabola.

k=0 [100]

Ec = bottom of the conduction band

Ev = top of the valence band

Eg = Ec - Ev

E

kxky

[111]

Page 36: Crystal structures - lampx.tugraz.at

This effective mass is used to describe the response of electrons to external forces in the particle picture.

Effective mass

2 2

2 2 2 212( )

2 2x y zpE k k k k mv

m m

2( ) x

x

kdE kdk m

2*

2

2( )x

x

md E k

dk

2 2

2

( )

x

d E kdk m

Effective mass

*F eE m a

E

kx

Page 37: Crystal structures - lampx.tugraz.at

GaN