47
Database Selection for Ferrous Applications 1 DATABASE SELECTION FOR FERROUS APPLICATIONS

DATABASE SELECTION FOR FERROUS APPLICATIONS

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 1

DATABASE SELECTION FOR

FERROUS APPLICATIONS

Page 2: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 2

Contents

Topics Slide #

FactSage databases for steelmaking:

History and important solution phases

3

Steelmaking chemistry and availability of database 10

Important phase diagrams for steelmaking processes 12

Modified Quasichemical Model 37

Slag viscosity database 43

Page 3: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 3

FactSage databases for steelmaking applications

Brief History of Database Development

Important Solution Phases for Steelmaking Applications

I.-H. Jung, “Overview of the applications of thermodynamic databases to steelmaking processes”, Calphad,

2010, vol. 34, pp. 332-362.

In-Ho Jung and Marie-Aline Van Ende, “Computational Thermodynamic Calculations: FactSage from

CALPHAD Thermodynamic Database to Virtual Process Simulation”, Metall. Mater. Trans. B, 2020, vol. 51,

pp. 1851–1874. (Matall. Mater. Trans. 50th anniversary collection – invited paper)

Page 4: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 4

Databases in FactSage

Brief History of FactSage Database Development

1976~2001: FACT → 2001~present: FactSage (a fusion of FACT + ChemSage)

< 1998 : FACT database (before 1998)

1999~2003 : FACT53 database

2000~2004 : FACT Consortium project (2000~2004): 16 companies

pyrometallurgy (ferrous, non-ferrous), hydrometallurgy-corrosion, glassmaking

- FACT53 database → FToxid, FTmisc, FThall, FTsalt, FThelg,..

- New alloy databases: FSstel, FSlite, FScopp, SGTE, ….

2004~2010 : Mini-consortiums

- Al consortium (Alcoa, Alcan, and Norsk-Hydro)

- Glass consortium (Corning, Schott, and Saint-Gobain)

- Light alloy (Al, Mg) consortium (Al consortium, GM, MagNET): FTlite

2009~present : Mini-consortiums

- Al consortium (3 companies), Glass consortium (3 companies)

- Steelmaking consortium: 11 companies → Consortium database (‘CON3’)

Page 5: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 5

Databases in FactSage for Steelmaking Applications

FactPS (pure substances database): All gaseous species, stoichiometric solid and

liquid species (organic, inorganic) → Similar to thermodynamic tables like JANAF,

Barin-Kubaschewski. (When you need a “Gas” phase you always have to select this

database).

FToxid: Frequently updated oxide database containing

- many solution phases (slag, spinel, monoxide, olivine, etc.)

- pure solid and liquid oxides, no gas phase

FTmisc: FeLq solution

- most reliable liquid steel database for steelmaking calculations

(slags/refractories/gases/molten iron)

FSstel: solid and liquid steel phases

(also includes a small number of gases, oxides, sulfides, nitrides, etc.)

- for steel solidification and alloy design.

- liquid steel: reasonable calculations for steelmaking applications

→ For steelmaking calculations:

priority: FToxid > FeLq > FactPS

(In the FactSage 6.4 and later versions, the best selections of compounds among

multiple compound databases are provided automatically. But solutions must be

selected carefully.)

Page 6: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 6

FToxid databaseMain solution phases when T > 1550oC (steelmaking)

▪ Slag (I option): CaO-MgO-Al2O3-SiO2-FeO-Fe2O3-MnO-Mn2O3-Ti2O3-TiO2…Na2O-K2O-Li2O-BaO-

SrO-

+ Gas solubility such as S (SO2), P, H (OH), N, C, F, …

- All oxide components + sulfides: valid for liquid oxy-sulfide solution over a wide range

- All oxide components + fluorides: mostly valid for (Ca,Al,Mg,Si,Na,K,Li//O,F): up to ~ 50% fluoride.

8.1 version: V oxide (V2+, 3+, 4+, 5+) in the CaO-MgO-Al2O3-SiO2-FeO-Fe2O3-Na2O slag for LV

calculation

▪ Spinel (I option) (SPIN): (Mg,Fe,Mn,Co,Ni,Zn)(Al,Fe,Cr,Co,Mn,Va)2O4, extensive solid solution

containing MgAl2O4, MgCr2O4, MgFe2O4, FeCr2O4, Fe3O4, FeAl2O4, Cr3O4, MnAl2O4, MnCr2O4,

MnFe2O4, etc.

▪ a-, a’-Ca2SiO4 (aC2S, bC2S): Ca2SiO4 (C2S)-rich solution with limited solubility of Mg2SiO4,

Fe2SiO4, Mn2SiO4,etc.

▪ Olivine (Oliv): Mg2SiO4, Fe2SiO4, etc. (Mg,Fe,Ca,Mn,Ni,Zn,Co,Cr,etc.)2SiO4, covering forsterite

(Mg2SiO4), fayalite (Fe2SiO4), -Ca2SiO4, monticellite CaMgSiO4, tephroite Mn2SiO4.

▪ Corundum (CORU): (Al,Cr,Fe,Mn)2O3 solution, the solution of Al2O3, Cr2O3, Mn2O3 and Fe2O3. Solid

miscibility gaps exist between the constituents.

▪ Monoxide (halite) (MeO_): solution of CaO-MgO-FeO-MnO-NiO-Fe2O3-Al2O3-Cr2O3 etc. Major

constituents: lime (CaO), periclase (MgO) and wustite (FeO).

The four character in red

give the name of each

solution phase

Page 7: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 7

▪ Mn/Ti oxides:

i) ilmenite (ILME): (FeTiO3(ilmenite)–Ti2O3–MgTiO3–MnTiO3 + Al2O3),

ii) pseudo-brookite (PSEU): (Ti3O5–FeTi2O5-MgTi2O5–MnTi2O5 ),

iii) Ti-spinel (TiSp): (Mg,Fe,Mn)[Mg,Fe,Mn,Ti,Al]2O4

iv) Rutile (TiO2):TiO2 + Ti2O3-ZrO2 solid solution

▪ Mullite (Mull): non-stoichiometric Al6Si2O13 with possible solubility of B and Fe oxide.

▪ Melilite (Mel_): Ca2[Mg,Fe2+,Fe3+,Al](Fe3+,Al,Si)2O7. Akermanite Ca2MgSi2O7 and gehlenite

Ca2Al2SiO7 form the melilite solid solution stable below 1590 °C.

Main additional solution phases when T < 1550oC (solidification of slag):

(Including all above phases + additional phases below)

▪ Wollastonite (Woll): (Ca,Mg,Mn)SiO3, which is a CaSiO3-rich phase stable below 1300 °C.

Pseudo-wollastonite is stoichiometric CaSiO3 stable below 1550 °C.

▪ Pyroxene (pPyr, oPyr, cPyr): (Mg,Ca,Fe)[Mg,Fe]Si2O6, which is a MgSiO3-rich phase stable

below 1560 °C. Proto-, ortho-, low-clino-pyroxene exist. Clino-pyroxene is a CaMg2SiO6-rich

phase, which is stable below 1390 °C.

▪ Rhodonite (Rhod): (Mn,Ca)SiO3, a MnSiO3-rich solid stable below 1300 °C.

FToxid database

Page 8: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 8

Main additional solution phases in the CaO-Al2O3-SiO2-FetO system at high PO2

(air)

CAFS Ca2(Al,Fe)8SiO16, CAF6 Ca(Al, Fe)12O19, CAF3 Ca(Al,Fe)6O10, CAF2 Ca(Al,Fe)4O7

CAF1 Ca(Al,Fe)2O4, C2AF Ca2(Al,Fe)2O5, C3AF Ca3(Al,Fe)2O6

Main additional solution phases when T < 1550oC (mold flux, Na2O-containing

systems)

▪ Nepheline (Neph): NaAlSiO4 with excess SiO2.

▪ Carnegeite (Carn): NaAlSiO4 with excess SiO2.

▪ NaAlO2 (NASl): low temperature - NaAlO2 with excess NaAlSiO4

▪ NaAlO2 (NASh): high temperature - NaAlO2 with excess NaAlSiO4

▪ Combeite (NCSO): Na4CaSi3O9 (bombeite) – Na2Ca2Si3O9 solid solution

▪ Feldspar (Feld): complete solution between Anorthite(CaAl2Si2O8)-Albite(NaAlSi3O8)

▪ NCA2: (Na2,Ca)O·Na2O·2Al2O3 solid solution

▪ C3A1: Ca3Al2O6 dissolving Na2O, (Ca,Na2)1Ca8Al6O18 solution

▪ Many other Na, K, Li silicate solid solutions.

FToxid database

Page 9: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 9

FTmisc (FeLq) and FSstel

FeLqLiquid Fe containing Ag,Al,B,Ba,C,Ca,Ce,Co,Cr,Cu,H,Hf,La,Mg,Mn,Mo,N,Nb,Nd,Ni,O,P,Pb,Pd,S,Si,

Sn,Ta,Th,Ti,U,V,W,Zr. This phase is better suited for calculations involving iron and steelmaking

processes (optimized for iron-rich solutions only).

→ Based on the Unified Interaction Parameter Formalism (more advanced than classical Wagner

Interaction Parameter Formalism) with associate model for deoxidation. Many interaction

parameters between metallic elements are taken from JSPS (Japanese compilation)

→ Ca and Mg deoxidation were adjusted a bit (lower solubility limit of Ca and Mg) in FactSage 7.3.

FSstel database▪ FCC/BCC: Fe / Carbide / Nitride are all treated as FCC phases

→ Fe with N and C : use J option (possible 3-phase immiscibility) default option.

→ Fe with N or C : use I option (possible 2-phase immiscibility).

→ Also recommend to use I option for BCC phase. default option.See Fe-Ti-Nb-C-N example.

▪ Liquid: O, S, N, P are all described by MQM. Many binary and ternary liquid system are modeled

by MQM.

▪ FCC ordered phase (FCC_L12), BCC ordered phase (BCC_B2) slow down the calculations

significantly. If not really interested in order/disorder transitions, do not select these phases.

Carbon: when C content is lower than ~ 1%, Fe3C (metastable) phase is normally formed instead

of C (stable). So, in the selection of solid phases, “deselect” C solid.

Page 10: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 10

The important chemical systems of non-metallic phases for steelmaking processes

can be summarized as follows. All of these are modeled in the FactSage

databases.

Database availability for general steelmaking processes:Green: available in 7.0; Red: available 8.0; blue: available in 8.1

1) Molten slag for refining processes

a) CaO-FeO-Fe2O3-SiO2-MgO-MnO-P2O5 system: BOF process

b) CaO-MgO-Al2O3-SiO2-FeO-Fe2O3 system: ladle refining process

c) CaO-MgO-SiO2-CaF2 system: stainless steel refining

d) CaO-CrO-Cr2O3-MgO-SiO2 system: AOD and VOD process for stainless steel

e) CaO-MgO-SiO2-MnO-CrO-Cr2O3 system: high-Mn stainless steel

f) CaO-MgO-SiO2-Al2O3-FeO-Fe2O3-V oxide system: V containing steel & Fe-V

smelting process

2) Mold flux for casting processes

a) CaO-MgO-Al2O3-SiO2-Na2O-K2O-Li2O-F system: conventional process

b) BaO-SrO-CaO-MgO-Al2O3-SiO2-Na2O-B2O3 system: new candidate.

Steelmaking Chemistry and Availability of Databases

Page 11: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 11

3) Non-metallic inclusions

a) CaO-Al2O3-MgO-CaS: conventional low carbon steels

b) MnO-SiO2-Al2O3-CaO-MnS: wire steels and free cutting steels

c) MnO-SiO2-Ti2O3-TiO2-Al2O3: high strength steels

d) Al2O3-Ti2O3-TiO2: interstitial-free (IF) steels

e) Ti-Nb-C-N: high-strength low-alloy (HSLA) steels containing Ti and Nb

4) Refractories

a) MgO-C: BOF and RH vessel refractories, ladle slag line

b) MgO-Al2O3: ladle castable

c) MgO-Cr2O3-FeO-Fe2O3-Al2O3: VOD and AOD refractories

d) Al2O3-ZrO2-SiO2-C: nozzle refractories and tundish plugs

Page 12: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 12

Most common phase diagrams for

steelmaking applications

CaO-MgO-SiO2-Al2O3-FeO-Fe2O3-MnO

Na2O-CaO-Al2O3-SiO2

MnO-Ti2O3-TiO2

Page 13: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 13

Important phases and phase diagrams

Fe(liquid)+MW+Slag

Schenck and Pfaff[54]

Gokcen[69]

Fischer and Ende[72]

Taylor and Chipman[70]

Shim and Ban-Ya[74]

Fe(liquid)+MW

Fe(bcc) + MW

Fe(fcc) + MW

Fe(liquid)+Slag

Scheel et al.[73]

Fetters and Chipman[71]

molar ratio FeO/(MgO+FeO)

Tem

per

atu

re,

oC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Slag

Lime

Wustite

Ca2Fe2O5 + WustiteLime + Ca2Fe2O5

Lime+Wustite

Lime + Slag

Zhao et al.[45]

Abbatista[20]

Allen and Snow[17]

Larson[21]

Takeda[22]

Timucin[23]

Ca

2F

e2O

5

1059oC

1125oC

1371oC

0.760.16

0.13

0.67

0.72

mass FeO/(CaO+FeO)

Tem

pera

ture, oC

0 0.2 0.4 0.6 0.8 1

800

1000

1200

1400

1600

1800

Monoxide; halite solution (MeO_)

Page 14: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 14

MnO

Liquid

2 Liquids

SiO2(Crist)

SiO2(Trid)

MnSiO3Mn2SiO4

1842oC

1328oC

1251oC

1347oC

1293oC

1465oC

1702oC

0.59 0.992

0.490.43

0.29

mole fraction MnO

Tem

pera

ture

(oC

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1200

1300

1400

1500

1600

1700

1800

1900

Olivine: M2SiO4

MgSiO3-rich: pyroxene

MnSiO3-rich: rhodonite

Important phases and phase diagrams

Page 15: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 15

Liquid

Mullite(Al6Si2O13)

Al2O3

SiO2(Trid)

SiO2(Crist)

1890oC 1890

oC

1465oC

1596oC 0.96

0.334

2054oC

1723oC

mole fraction SiO2

Tem

pera

ture

(oC

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2504oC

1769oC

1527oC 0.77

0.55

1842oC

MnO

Mn

Al 2

O4

Al2O3

Jacob[16]

Olsen & Heynert[17]

mole fraction MnO

Tem

pera

ture

(oC

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

Al 2

O3

Spinel

Alper et al[22]

Viechnicki et al[23]

Saalfeld and Jagodzinski[32]

Viertel and Seifert[30]

Mori[24]

Stubican and Roy[25]

Henriksen and Kingery[27]

Whitney and Stubican[28]

Rankin and Merwin[21]

2122

(1994, 0.79)

2054

2825

0.07

Frenkel et al[26]

Roy et al[31]

Shirasuka and Yamaguchi[29]

Lejus[33]

(1985, 0.36)

(2008, 0.92)

Liquid

Mo

no

xid

e 0.90

MgO mole fraction Al2O3

Tem

pera

ture,

oC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Slag

MW+Slag

SpinelMW

Slag

Spinel

Spinel + Fe2O3

MW + Spinel

MW + Slag

Roberts and Merwin[66]: phase boundaries

Willshee and White[65]: invariant points

Slag+Solid

Woodhouse and White[39]: monoxide boundary

MW+Spinel

MW

1711

Schurmann and Kolm[68]: Slag

Phillips et al.[67]

molar ratio Fe2O3/(MgO+Fe2O3)

Tem

per

atu

re,

oC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000Spinel: A2+(B3+)2O4

Mullite

Important phases and phase diagrams

Page 16: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 16

Important phases and phase diagrams

Page 17: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 17

AOlivine

Fe(liq)

Fe(s)

Fe(s2)

ASlag-liq + AOlivine

Fe(s)

ASlag-liq

Mg2SiO4 - Fe2SiO4 - Fe

Fe/(Mg2SiO

4+Fe

2SiO

4) (mol/mol) = 0.001

Fe2SiO4/(Mg2SiO4+Fe2SiO4) (mol/mol)

T(C

)

0 0.2 0.4 0.6 0.8 1

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Fe saturation

Important phases and phase diagrams

Page 18: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 18

Important phases and phase diagrams

Page 19: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 19

1422

2374

1542

1349

1985

1333

1309

1597

15221344

1362

1714

1754

16902008

1778

1758

1708

1833CaO

MgO

Al2O3(2572) (2054)

(2825)

Mole fraction

2600

2400

2200

2000

1800

1600

2100

1900

1700

1500

1400

MgO

Spinel

CaO

Al2O3

CaAl12O19Ca3Al2O6

CaAl2O4

(1604)

CaAl4O7

(1765)

Ca3MgAl4O8

CaMg2Al16O27

Ca2Mg2Al28O46

1766

2122

MgO Al2O3

SiO2SiO2SiO2SiO2SiO2SiO2SiO2SiO2SiO2SiO2SiO2SiO2SiO2

1435

1465

1454

1575

weight percent

1381

1445

1361

1371

1558

1548

16451863

Tw

o-L

iquid

s

SiO2(Crist)

SiO2(Trid)

Cordierite

Sapphirine

2000

1900

1800

2600

2400

2200

2000

1700

1600

1500

1400

2000

1600

1500

MgOSpinel

Al2O3

Mullite

Mg2SiO4

MgSiO3

20081985

(Mg2Al4Si5O18)

(Mg4Al10Si2O23)

(1723)

(2825) (2054)

12391328

1769

Corundum

Galaxite

Mullite

Mn2SiO4

MnSiO3

MnO

SiO2

1293

Al6Si2O13

(1890)(1347)

MnAl2O4

(2054)(1842)

(1723)

1595

1702

1890

1465

Mn2Al4Si5O18

(Mn-Cordierite)

2000

1900

1800

1700

1600

(1180)

MnO

Al2O3

1135

1119

1156

1800

1700

1600

Mn3Al2Si3O12

(Spessartite)(1200)

2 Liq

uid

sCristobalite

Tridymite

1500

1400

1300

1200

1527

1251

1249

1144

1180

1157

1138

1143

1166

1194

weight percent

Tephroite

Rhodonite

1200

Important phases and phase diagrams

Page 20: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 20

Important phases and phase diagrams

Page 21: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 21

[41] Osborn and Schairer

Liquid

Liquid + Mel

Mel

[22] Buddington : rxn time not enough

Liquid

Liquid + rare mel

mel + rare L

Geh-Aker (melilite solution)

Liquid

(75, 1390oC)

L+Merw

System Ca2Al2SiO7 - Ca2MgSi2O7

wt% Ca2MgSi2O7/(Ca2Al2SiO7+Ca2MgSi2O7)

T(o

C)

0 10 20 30 40 50 60 70 80 90 100

1200

1300

1400

1500

1600

1700

Melilite solid solution

Spinel solution

‘Coru’ solution

Important phases and phase diagrams

Page 22: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 22

ilmeniteTi-spinel

Pseudo-brookite

Important phases and phase diagrams

Page 23: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 23

Important phases and phase diagrams

Page 24: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 24

CaO

SiO2

Al2O3

Na2O

C2ASCA

CAS2

C2S

CS

NAS2NAS6

C: CaO

A: Al2O3

N: Na2O

S: SiO2

NA

NA6

NS

Na2O-containing system: Na2O-SiO2-CaO-Al2O3

Weill et al. (1980), compliation

Feldspar

Slag

CaAl2Si2O8 - NaAlSi3O8

mole NaAlSi3O8/(CaAl2Si2O8+NaAlSi3O8)

T(C

)

0 0.2 0.4 0.6 0.8 1

1000

1400

1800

* Most recently updated version: ‘CON1’ database

Page 25: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 25

ASlag-liq

ASlag-liq + NaAlO2(s2)

NaAlO2(s2) + Na2Al12O19(s)

Na2O(s) + NaAlO2(s2)

Na2O(s2) + NaAlO2(s2)

Na2O(s3) + NaAlO2(s2)

NaAlO2(s2) + NaAl9O14(s)

ASlag-liq + NaAl9O14(s)

NaA

l 9O

14(s

) +

Al 2O

3(s

4)

Na2O - Al2O3

Al2O3/(Na2O+Al2O3) (mol/mol)

T(C

)

0 .2 .4 .6 .8 1

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

Rys (2008): DTA-TG, heating

Rys (2008): DTA-TG, cooling

Na

10S

iO7

Na

4S

iO4

Na

2S

iO3

Na

6S

i 2O

7

Na

2S

i 2O

5

Na

6S

i 8O

19

Na2O mole fraction SiO2

Tem

peratu

re (

K)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

700

900

1100

1300

1500

1700

1900

2100

Important phases and phase diagrams: Na2O-Al2O3-SiO2 system

Page 26: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 26

Important phases and phase diagrams: Na2O-Al2O3-SiO2 system

NASh

Carg

Neph

NASl

Page 27: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 27

Moir and Glasser (1974)(1:2:3)

(1:2:3) + (2:1:3)

(1:2:3) + bCS

L + (1:2:3)

(2:1:3)

L + (2:1:3)

(2:1:3) + NS

aCS

aCS + (1:2:3)

aCS + bCS + (1:2:3)

L + aCS

bCS + (1:2:3)

aCS + bCS

L

L + NS

(1:2:3)' - maybe (1:1:2)

(1:2:3)' + NS

(1:2:3) + (2:1:3) + NS

Slag

1:2:3

1:2:3 + Na2SiO3(s)

Na2SiO3(s) + Na4CaSi3O9(s)

1:2:3 + CaSiO3(s)

1:2:3 + CaSiO3(s2)

Slag + CaSiO3(s2)

CaSiO3 - Na2SiO3

mole CaSiO3/(CaSiO3+Na2SiO3)

T(C

)

0 0.2 0.4 0.6 0.8 1

0

300

600

900

1200

1500

1800

0.2

0.4

0.6

0.8

0.20.40.60.8

0.2

0.4

0.6

0.8

SiO2

Na2O CaOWeight %

(a:b:c) = aNa2O.bCaO.cSiO2

(2:0:1)

(3:0:2)

(1:0:1)

(1:0:2)

(0:1:1)

(0:2:1)

(0:3:2)

(0:4:1)

(5:0:1)

(1:1:5)

(1:3:6)

(2:1:3) (1:2:3)

(2:1:3)

(1:0:1)

(0:1:1)

(0:0:1) - Tr.

(0:0:1) - Cr.

(0:3:2)

Morey and Bowen (1925)

(1:2:3)

(1:3:6)

(1:0:2)

(0:0:1) - Qz.

(4:3:5)

(1:1:1)

(1:2:2)

Segnit (1953)

(1:1:1)

(2:1:3)

(1:2:3)

(1:2:2)

(4:3:5)

(1:0:1)

(0:2:1)

(0:1:1)

(3:0:8)

Shahid and Glasser (1971)

(1:1:5)

(1:0:2)

(1:2:3)

(1:3:6)

(3:0:8)

(0:0:1) - Qz.

(0:0:1) - Tr.

1200

o C11

00 o C

1000

o C 1300 o

C 1400 oC 1500 o

C

1100

o C

SiO2 - CaO - Na2O

Important phases and phase diagrams: Na2O-CaO-SiO2 system

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SiO2

Na2O CaOmole fraction

(a:b:c) = aNa2O.bCaO.cSiO2

(2:0:1)

(3:0:2)

(1:0:1)

(1:0:2)

(0:1:1)

(0:2:1)

(0:3:2)

(0:4:1)

(5:0:1)

(1:1:5)

(1:3:6)

(2:1:3) (1:2:3)

(1:2:2)

(1:1:1)

(4:3:5)

(3:0:8)

CaO-Na2O-SiO2

FactSage

?

NCSO: 1:2:3 solid solution

Page 28: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 28

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.90.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Na2O

CaO Al2O3mole fraction

(a:b:c) = aNa2O.bCaO.cAl2O3

(0:1:1) (0:1:2) (0:1:6)

(1:8:3) (1:0:9)

(1:0:6)

(0:3:1)

(1:0:1)

CaO(s)

NaAlO2(s2)

1:1:2 NaAl9O14(s)

Al2O3(s4)CaAl2O4(s)CaAl4O7(s)

Na2O - Al2O3 - CaO

Projection (Slag)

FactSage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

mole fraction

Slag

Na2O

CaO Al2O3mole fraction

N(a)C(b)A(c) = aNa2O.bCaO.cAl2O3

CA CA2 CA6

NC8A3 NA9NA6

C3A

NCA2s.s

NC3A8

NA

Verweij and Saris (1986), maximum solubility

Na2O - Al2O3 - CaO

1200oC

FactSage

Important phases and phase diagrams: Na2O-Al2O3-CaO system

NCA2: (Na2,Ca)O·Na2O·2Al2O3 solid solution

Page 29: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 29

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MELCgNe

PW

Juan (1950)Ca2Al2SiO7

CaSiO3 NaAlSiO4mass fraction

Ca2Al2SiO7

CaSiO3 NaAlSiO4mass fraction

T(min) = 1162.95 oC, T(max) = 1594.98

oC

Melilite

CaSiO3(s2)

Ca3Si2O7(s)

Nepheline

Carnegieite

10/25/2008

D:\Work\CRCT\2007_MoldFlux_POSCO\Na2O-CaO-SiO2-Al2O3\quaternary_parameter\PD_CaSiO3-Ca2Al2SiO7-NaAlSiO4.emfCaO

SiO2

Al2O3

Na2O

Important phases and phase diagrams: Na2O-Al2O3-SiO2-CaO system

Page 30: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CA2S2CgNeC3APWC2AS2b-A

Gummer (1943)CaAl2Si2O8

CaSiO3 NaAlSiO4mass fraction

CaAl2Si2O8

CaSiO3 NaAlSiO4mass fraction

T(min) = 1163.86 oC, T(max) = 1555

oC

Feldspar

CaSiO3(s2)

Melilite

Carnegieite

10/25/2008

D:\Work\CRCT\2007_MoldFlux_POSCO\Na2O-CaO-SiO2-Al2O3\quaternary_parameter\PD_CaSiO3-CaAl2Si2O8-NaAlSiO4.emfCaO

Al2O3

Na2O

SiO2

15

00

Important phases and phase diagrams: Na2O-Al2O3-SiO2-CaO system

Page 31: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 31

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1:2:32:1:3CgNePWNSW

Spivak (#1342)NaAlSiO4

CaSiO3 Na2SiO3mass fraction

NaAlSiO4

CaSiO3 Na2SiO3mass fraction

NaAlSiO4

CaSiO3 Na2SiO3mass fraction

NaAlSiO4

CaSiO3 Na2SiO3mass fraction

T(min) = 919.18 oC, T(max) = 1540.17

oC

Carnegieite

Nepheline

1:2:3

CaSiO3(s2)

2:1:3

Na2SiO3(s)

10/25/2008

D:\Work\CRCT\2007_MoldFlux_POSCO\Na2O-CaO-SiO2-Al2O3\quaternary_parameter\PD_NaAlSiO4-CaSiO3-Na2SiO3.emf

CaO

Al2O3

Na2O

SiO2

Important phases and phase diagrams: Na2O-Al2O3-SiO2-CaO system

Page 32: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 32

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9SiO2

Na2O CaOmass fractions /(SiO2+CaO+Na2O)

T(min) = 812.79 oC, T(max) = 2394.5

oC

CaO(s)

1:1:2 Ca2SiO4(s3)

Ca2SiO4(s2)Melilite

Ca3Si2O7(s)

1:2:3CaSiO3(s2)

Nepheline

Feldspar

Al6Si2O13(s)

Na2Ca3Si6O16(s)

Feldspar

NaAlO2-NaAlSiO41

NaAlO2-NaAlSiO4

NaAlO2-NaAlSiO41

SiO2 - CaO - Na2O - Al2O3

15wt% Al2O

3 section

SiO2

CaO

Al2O3

Na2O

1400

1300

1200

1100

Important phases and phase diagrams: Na2O-Al2O3-SiO2-CaO system

Page 33: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 33

SiO2 + Slag-liq

K2Si4O9 + SiO2K

2S

i 2O

5

K2S

iO3

Slag-liq

Na

2S

iO3

Na

2S

i 2O

5

Na6Si8O19 + SiO2

Na

4S

iO4

Li 8S

iO6

Li 4

SiO

4

Li 2

SiO

3

Li 2

Si 2

O5

K2O - SiO2

1 atm

wt% SiO2

Tem

per

atu

re,

oC

0 10 20 30 40 50 60 70 80 90 100

500

1000

1500

2000

Red: Li2O-SiO2 system

Black: Na2O-SiO2 system

Blue: K2O-SiO2 system

Important phases and phase diagrams: alkali-silicate system

Page 34: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 34

Important phases and phase diagrams: K2O-Al2O3-SiO2 system

Page 35: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 35

Important phases and phase diagrams: Li2O-Al2O3-SiO2 system

Page 36: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 36

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CaMgSi2O6

NaAlSiO4 KAlSi2O6

Olivine

Diopside

Leucite

Carnegieite

CaMgSi2O6

NaAlSiO4 KAlSi2O6

Nepheline

CaMgSi2O6

NaAlSiO4 KAlSi2O6

CaMgSi2O6

NaAlSiO4 KAlSi2O6

Gupta and Lidiak (1973): QM, OM, XRD

1: 1256.09 (1275)

2: 1158.37 (1194)

1

2

#: calc. (exp.) oC

Diopside

Olivine

Nepheline

Leucite

mole fraction

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9CaAl

2Si

2O

8

NaAlSi3O

8KAlSi

3O

8mole fraction

Leucite

Feldspar

1500

1450

1400

1350

1300

Franco and Schairer

12501200

(1951): QM, OM

1150

1200

1250

1300

1350

1400

1450

1500 (o

C)

1150

12.75% Na2O, 2.02% K2O, 10.75% CaO,

0.27% MgO, 2.78% Al2O3, 71.39% SiO2

Important phases and phase diagrams: Na2O-K2O-Al2O3-SiO2-CaO-MgO

Page 37: DATABASE SELECTION FOR FERROUS APPLICATIONS

High Temperature Thermochemistry Laboratory

Quasichemical Model for Short-Range Ordering

SiO2 – CaO – MgO – AlO1.5 – FeO – FeO1.5 – …

- Consider a random distribution of second-nearest-neighbor cation pairs.

- Model parameters are the Gibbs energies of the pair-exchange reactions such as:

[Ca-Ca]pair + [Si-Si]pair = 2 [Ca-Si]pair DgCaSi < 0

This is equivalent to O2- + Oo = 2O-

( )( )

2 2

0 0

0

2

, = number of moles and Gibbs energy of component i in solution

SiO SiO CaO CaO

config

mn mn

n m

i i

G n G n G

T S n g

n G

= + +

− D + D

where :

nmn = number of moles of [m-n] pairs at equilibriumDSconfig = (Ising) entropy for random distribution of pairs = function of ni and nmn

Dgmn = binary model parameters (which may be functions of composition and T)

(The equilibrium values of nmn are obtained by setting G/nmn= 0 at constant ni)

• Used for the liquid oxide solution

Page 38: DATABASE SELECTION FOR FERROUS APPLICATIONS

High Temperature Thermochemistry Laboratory

Silicate Slag: Network structure-Consideration of Second Nearest Neighbor Short-Range-Ordering-

CaO-SiO2

T = 1600oC

broken oxygen bridges

bridge

d ox

ygen

Park and Rhee, 2001free oxygenbroken oxygen bridges

bridged oxygen

free o

xyg

en

CaO mole fraction SiO2

Bon

d f

ract

ion

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CaO-SiO2

MgO-SiO2

FeO-SiO2

T = 1600oC

NiO-SiO2

PbO-SiO2

ZnO-SiO2

MO mole fraction SiO2

Bo

nd

fra

ctio

n o

f b

rok

en o

xy

gen

bri

dg

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Calculated bonding in liquid silicates

O0 + O2- = 2 O-

Page 39: DATABASE SELECTION FOR FERROUS APPLICATIONS

The University of Michigan

Structural Dynamics Laboratory

39Q-species and charge compensation effect

K+ network modifier

Non Bridging

Oxygen (NBO)

Bridging Oxygen (BO)

K+ charge compensator

Al3+

Si4+

[Le CNRS Jan2014: http://www.insu.cnrs.fr/images/9757]

Page 40: DATABASE SELECTION FOR FERROUS APPLICATIONS

The University of Michigan

Structural Dynamics Laboratory

40Calculated Q-species amount in K2O-SiO2 melt

Q4

Q3

Q2

Q4

Q3

Meneses et al. (2013): IR spectroscopy

Q3

Q4

Huang and Cormack (1991): MD

Q4

Q3

Q2

Q1

Davis et al. (2010): MAF, NMR

Q4

Q3

Q2

Q4

Q3

Q2

(MAF) (NMR)

Maehara et al. (2004): Raman spectroscopy

Q2

Q3

Q4

Q1

Q0

Sen and Youngman (2003): NMR

5/17/2015

E:\Files_presentations\ACerS GOMD-DGG 2015\Phase_diagram\Q-species_Exp_5-color.wmf

K2O mole fraction SiO

2

Frac

tion

of Q

-spe

cies

0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Page 41: DATABASE SELECTION FOR FERROUS APPLICATIONS

The University of Michigan

Structural Dynamics Laboratory

41The N2O-SiO2-Al2O3 system (N = Na, K, Li,…)

In the Model (MQM)

➢ Associate NAl4+ was introduced

➢ Replacement of Si4+ by Al3+ in quasi-lattice

sites is assisted by N+.

Closely reproduce the nature of the

aluminosilicate melt

Al

K

OO

O

O O

O

O

O

O

OO

O

SiSiSi

Si

Si Si Si

Si

Charge compensation effect:

Al3+ + N+ = NAl4+ replacing Si4+ in silicate melts

Page 42: DATABASE SELECTION FOR FERROUS APPLICATIONS

High Temperature Thermochemistry Laboratory

Application of Structural information from MQC model

Thermodynamic database(MQM)

Slag network structure

Physical properties- Viscosity- Molar volume- Electrical conductivity

Others- Diffusivity- Thermal conductivity- …..

Good physical property model:- Model parameters for binary

or ternary systems- Accurate Prediction in higher

order systems

Page 43: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 43

Modified Quasichemical Model

→Bond fraction (Silicate network structure)

→Activation energy of bond breaking reaction: Binary

parameters + Association energy for M+Al3+ replacing Si4+ in

silicate network

→Prediction of multicomponent systems (oxide and oxy-

fluoride)

→Heterogeneous (solid + liquid): Einstein-Rosco equation

Database for molten slag

CaO-MgO-SiO2-Al2O3-FeO-Fe2O3-MnO-TiO-TiO2-Na2O-K2O-

Li2O-B2O3-F (-PbO-NiO)

Database for glass (supercooled melt)

CaO-MgO-SiO2-Al2O3-Na2O-K2O-B2O3-PbO-…

Slag Viscosity: Structural Viscosity Model

Page 44: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 44

The Na2O-Al2O3-SiO2 system

1200 1400 1600°C

below liquidus

Toplis et al. 1997mole fraction SiO2 = 0.5

Riebling, 1966

1600°C

1400°C

1200°C

molar ratio Al2O3 / (Al2O3+Na2O)

ln(v

isc)

[PaS

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-5

0

5

10

15

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SiO2

Na2O Al2O3mole fraction

T = 1400°C

10

0-1-2-3

2

3

4

5

6

7

1

Riebling, 1966

Toplis et al., 1997

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Page 45: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 45

The Na2O-Al2O3-SiO2 system

1200 1400 1600°C

below liquidus

Toplis et al. 1997

Stein and Spera, 1993

mole fraction SiO2 = 0.67

Riebling, 1966

Kim and Lee, 1997

1200°C1400°C

1600°C

molar ratio Al2O3 / (Al2O3+Na2O)

ln(v

isc)

[PaS

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SiO2

Na2O Al2O3mole fraction

T = 1400°C

10

0-1-2-3

2

3

4

5

6

7

1

Riebling, 1966

Toplis et al., 1997

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Page 46: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 46

Viscosity of CaO-Al2O3-SiO2-R2O (R=K, Na, Li)

0.0 0.1 0.2 0.3-5

-4

-3

-2

-1

0

1

2006, Sukenaga et al.

Addition of K2O Na

2O Li

2O Initial Composition (wt.%)

32CaO-48SiO2-20Al

2O

3

40CaO-40SiO2-20Al

2O

3

44CaO-36SiO2-20Al

2O

3

Addition of K2O

Addition of Na2O

Addition of Li2O

ln

(P

a·s)

Mole fraction of alkali oxide R2O

T = 1600 oC

Page 47: DATABASE SELECTION FOR FERROUS APPLICATIONS

Database Selection for Ferrous Applications 47

Viscosities of various systems

-6 -4 -2 0 2 4 6 8 10 12-6

-4

-2

0

2

4

6

8

10

12

Al2O

3-SiO

2

CaO-Al2O

3

CaO-SiO2

MgO-SiO2

K2O-SiO

2

Na2O-SiO

2

ln[P

a·s],

Exp

eri

me

nta

l

ln[Pa·s], Calculated

-6 -4 -2 0 2 4 6 8 10 12 14 16 18-6

-4

-2

0

2

4

6

8

10

12

14

16

18

ln[P

a·s],

Exp

eri

me

nta

l

ln[Pa·s], Calculated

CaO-MgO-SiO2

CaO-Na2O-SiO

2

Na2O-Al

2O

3-SiO

2

CaO-Al2O

3-SiO

2

MgO-Al2O

3-SiO

2

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

ln[P

a·s],

Exp

eri

me

nta

l

ln[Pa·s], Calculated

CaO-Al2O

3-MgO-SiO

2

CaO-Al2O

3-Na

2O-MgO-SiO

2