9
Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton [email protected]

David Tarboton [email protected] Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton [email protected]

Embed Size (px)

DESCRIPTION

River Hydraulic Properties Comid H A R P T V Ab As 5781175 3 4 A table with reach hydraulic parameters as an addition to a geographic feature resource This may be derived from LIDAR using an automated tool or HEC RAS cross sections As Surface Area Wetted Bed Area Ab L V Volume T 𝐴= 𝑉 𝐿 Cross Section Area Depth h A P= 𝐴𝑏 𝐿 P Wetted Perimeter T= 𝐴𝑠 𝐿 Top Width R= 𝐴 𝑃 Hydraulic Radius

Citation preview

Page 1: David Tarboton dtarb@usu.edu Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton dtarb@usu.edu

Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties

David [email protected]

Page 2: David Tarboton dtarb@usu.edu Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton dtarb@usu.edu

Comid H A R P T V Ab As

5781175 3

5781175 4

Wetted Bed Area

River Hydraulic Properties

L

As

Ab V

T

PA

𝐴=𝑉𝐿

T

P

Cross Section Area

Wetted Perimeter

Top Width

h

Surface Area

Volume

Depth

• A table with reach hydraulic parameters as an addition to a geographic feature resource

• This may be derived from LIDAR using an automated tool or HEC RAS cross sections

R Hydraulic Radius

Page 3: David Tarboton dtarb@usu.edu Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton dtarb@usu.edu

Real-Time Water Surface Elevation: Two Methods

Each reach has a center point and a flow forecast

(1) Establish a rating curve at center point and use this to convert flow, Q, to water depth, h, and water surface elevation

(2) Use the SPRNT model to compute both flow and depth

Forecast, Q

h

QhDepth

Rating Curve

Page 4: David Tarboton dtarb@usu.edu Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton dtarb@usu.edu

DEM Based Flood Plain Mapping

• Each reach has a water depth hw (e.g. from SPRNT)• Each reach has an ID• Each grid cell has the ID of the reach it connects to and

the height above the stream hs

• Flood extent is “rapidly” mapped as If(hw(id) > hs(id))

Inundation depth = hw(id) - hs(id)

ElseInundation depth = 0

Page 5: David Tarboton dtarb@usu.edu Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton dtarb@usu.edu

Drop to Stream from TauDEM for Onion Creek

Page 6: David Tarboton dtarb@usu.edu Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton dtarb@usu.edu

Inundation for DTS < 4m

Page 7: David Tarboton dtarb@usu.edu Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton dtarb@usu.edu

Drop to stream and inundation (DTS < 2 m)

Page 8: David Tarboton dtarb@usu.edu Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton dtarb@usu.edu

0

1 0 1 2

2 1 0 1 2 3

3 1 0 0 2 2 4

3 1 0 1 1 0 1 2 5

2 1 0 1 2 1 0 1 5

2 0 1 2 2 1 0 3 4

2 0 1 3 3 2 1 0 1 4

2 2 2 3 4 3 2 1 2 4

3 3 2 3 4

Technical details

1

1 1 1 1

1 1 1 1 1 1

2 2 2 3 3 3 3

2 2 2 2 3 3 3 3 3

2 2 2 2 3 3 3 3 3

2 2 2 2 3 3 3 3 3

2 2 2 2 3 3 3 3 3 3

2 2 2 2 3 3 3 3 3 3

2 3 3 3 3

Reach and Watershed id Height above nearest stream raster hshw(1) = 1.5

hw(2) = 2.5 hw(3) = 3.5

Page 9: David Tarboton dtarb@usu.edu Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton dtarb@usu.edu

Notes

• Based on 1/3 arc sec National Elevation Dataset (pit filled)

• Drop to stream used Dinfinity average (could modify to shortest distance)

• Thresholding based on catchment not (yet) implemented