19
Decreasing a Shock Sensitivity of the HMX- based PBXs through the Morphology Modification of the HMX-Constituents 1 Igor Plaksin, 1 Ricardo Mendes, 1 Luis Rodrigues, 1 Svyatoslav Plaksin, 1 Claudia Ferreira, 1 Andre Ferreira, 1 Eduardo Fernandes, 2 Michael Herrmann, 2 Thomas Heints, and 2 Hartmut Kroeber ¹ADAI & LEDAP – Assoc. for Development of Industrial Aerodynamics & Lab of Energetic and Detonics, Dept. Mech. Engineering, * Dept. Chem. Engineering, University of Coimbra, 3030-788 Coimbra PORTUGAL ² ICT - Fraunhofer Institute of Chem. Technology, 76327 Pfinztal GERMANY 2013 INSENSITIVE MUNITIONS AND ENERGETIC MATERIALS TECHNOLOGY SYMPOSIUM Coronado Bay CA October 7th-10th, 2013 Paper #16285, [email protected] University of Coimbra, Dept. Mech. Engineering Assoc. for Development of Industrial Aerodynamics Lab of Energetic & Detonics

Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology

Modification of the HMX-Constituents 1Igor Plaksin 1Ricardo Mendes 1Luis Rodrigues 1Svyatoslav Plaksin 1Claudia

Ferreira 1Andre Ferreira 1Eduardo Fernandes

2Michael Herrmann 2Thomas Heints and 2Hartmut Kroeber

sup1ADAI amp LEDAP ndash Assoc for Development of Industrial Aerodynamics amp Lab of Energetic and Detonics Dept Mech Engineering Dept Chem Engineering University of Coimbra

3030-788 Coimbra PORTUGAL sup2 ICT - Fraunhofer Institute of Chem Technology 76327 Pfinztal GERMANY

2013 INSENSITIVE MUNITIONS AND ENERGETIC MATERIALS TECHNOLOGY SYMPOSIUM Coronado Bay CA

October 7th-10th 2013

Paper 16285 igorplaksindemucpt

University of Coimbra Dept Mech Engineering

Assoc for Development of Industrial Aerodynamics

Lab of Energetic amp Detonics

ACKNOWLEDGEMENTS

Work was supported by Office of Naval Research and ONR Global under the ONR Grants N 00014-08-1-0096 0014-12-1-0477 and ONR-G 62909-12-1-7131 with Drs Clifford Bedford and Shawn Thorne as a Program Directors

Research efforts were supported in part by the European Defense Agency amp Portuguese MoD under the RSEM-Project Arrangement No B-0993-GEM2-GP (2012)

Experimental efforts on characterization of the RS-PBXs were conducted as a part of the WEAG Research Program ERG-114009 ldquoParticles Processing and Characterizationrdquo

Prof Pedro Simoes (Dept Chemical Engineering) and Prof Amilcar Romalho (Dept Mechanical Engineering of University of Coimbra) are cordially acknowledged for help in characterization of particlesrsquo density PSD and particlesrsquo morphology

Objective amp Technical Concept

bullMajor challenge bull to find a way for improving the insensitivity characteristics of the HMX-based PBX ingredients --coarse-grained HMX particles and ldquodirty binderrdquo and then

bull to apply RS-ingredients for elaboration of the HMX-based PBXs with the shock sensitivity comparable to TATB while keeping or even improving a detonation performance in comparison with the reference HMX-based PBXs

bull Exploring novel physically justified concept for designing the high performance RS-PBXs containing the HMX-filler in total amount up to 85 wt

Variety technological aspects on fabrication of the RS-HMX components are analyzed in a context of morphological properties of β-HMX particles

Eliminating the nano-porous (defective and sensitive) layer of HMX-particles provides a way for decreasing shock reactivity amp initiation sensitivity Idea for Chemical etching amp Light-reflective coating of HMX grains

β-HMX Coarse Particles applied for PBX fabrication Morphology amp Density

ldquoRef HMX(114microm)rdquo particles HMX Class-6 military grade (Dyno Nobel) Mono-modal PSD d 50 =114408 microm ρ0 = 1881plusmn0006 gcmsup3 ldquoRC-HMX(1309microm)rdquo particles Fraunhofer ICT Re-crystallization of the ldquoRef HMX(114microm)rdquo in the propylene-carbonate solution Mono-modal PSD d50 =130925 microm ρ0 = 1892plusmn0006 gcmsup3

ldquoRef HMX(114 microm)rdquo ldquoRC-HMX(1309 microm)rdquo

bullDensity measurements standard helium and liquid pycnometry bullPSD analyzers bullMalvern Mastersizer 2000

Outer layer represent a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures Clusters are max concentrated in vertexes amp edges Surface layer the average density = 186 gcmsup3

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

rdquoF-HMX (111 microm)rdquo particles Fraunhofer ICT applied a ldquoRotor-Stator Millingrdquo technology for comminuting particles ldquoRef HMX (114microm)rdquo as a row material Mono-modal PSD d 50 = 1106 microm ρ0 = 1874plusmn0008 gcmsup3

ldquoF HMX-PCA (76 microm)rdquo particles Obtained at Fraunhofer ICT using the supercritical fluid technology for precipitation from γ-butyro-lactone solution (Compressed Fluid Anti-solvent PCA) Bi-modal PSD at median size d 50 = 76 microm

0

2

4

6

8

01 1 10 100

q3 [m

m-1

]

Particle size d [mm]

HMX-PCA

PCA-product represents agglomerations of UF-particles (d50 asymp 03 microm) with asymp10 times larger particles

β-HMX UF-Particles applied for PBX fabrication Morphology and Density

ldquoUF-HMX (16 microm)rdquo Fraunhofer ICT applied the ldquoAnnular Gap Ball-Millrdquo technology for further comminuting the water slurry of rdquoF-HMX (111 microm)rdquo particles Mono-modal PSD d50 =164 microm ρ0 = 1933plusmn0005 gcmsup3 ldquoUF-HMX (06 microm)rdquo ρ0 = 1951plusmn0005 gcmsup3

0

2

4

6

8

10

0 0 1 10 100

Vo

lum

e [

]

Particle Size d [mm]

HMX-Ball Mill

001 01 1 10 100

1) surface clusters asymp ldquoUF-HMX (06 microm)rdquo 2) ldquoUF-HMX (16 microm)rdquo particles are almost free of substructures 3) ldquoUF-HMX (06 microm)rdquo particles have a maximal density 1951 gcmsup3

ldquoUF-HMX (06 microm)rdquo particles represent themselves original clusters separated from the crystalrsquos body at commuting

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

ldquoβ-HMX (1375 microm)rdquo crystalrsquos surface structure ldquoβ-HMX UF-particle (16 microm)rdquo

bullCluster structure of the surface layer bull05-1 microm-clusters are spaced by dislocation pits cracks and fissures of 2-4 nm-size

What is a realistic max density of β-HMX ndash Wersquove found ρ0 = 1951 gcmsup3

β-HMX crystal (5075 microm ρ0 =1893plusmn0012 gcmsup3 ) was splitted in median zone of the (0-1-0)-facet

β-HMX seed has a maximum packed molecular structure ρ0 = 195 ndash 196 gcmsup3 (ICT TNO Un Coimbra ρ0 = 1951 gcmsup3 WH Rinkenbach (1951) ρ0 = 196 gcmsup3 ) Outer layer represents a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures The surface layer has the average density = 186 gcmsup3 Thickness of the outer cluster-shell in which the surface-defects are concentrated attains asymp20 of crystalrsquos cross-section or occupies roughly asymp 64 of its volume The defects-less ldquoseedrdquo has 195 gcmsup3-density and occupies asymp 36 of crystalrsquos volume

Relative volume of nanoscale-porosity υ of particles determined with respect to the voids-free

UF-HMX(06 microm)-particles υ = 100 times(1-ρ01951)

ldquoRef HMX(114 microm)rdquo

ldquoRC-HMX(1309 microm)rdquo

rdquo F-HMX (111 microm)rdquo

F-HMX PCA (76 microm)

ldquoUF-HMX (16 microm)rdquo

υ equiv 1

υ = 06 υ = 17

υ = 06 υ = 04

PBX

MFOP

shock

front

emission I0 ~ AT(t)4

transmitted radiance

Iτ = I0 - Iςα

scattering ldquoςrdquo amp

absorption ldquoαrdquo

reaction

spot

Z

-to

ES

C T

ho

mso

n

TS

N 5

06 N

Sp

ectr

al

ran

ge

450 n

m lt

λlt

850 n

m

ℓ-z(t)

SM

RS--PBAN-128

40 ns time

P(t

)-fi

eld

an

aly

zer

D(t)-analyzer

Spectral range 450 nm lt λ lt850 nm

Panoramic Multi-Channel Optical

Analyzer coupled with the ESC Thomson TSN

506 N

Multi-fiber Optical ProbePMMA-fibers Oslash250 microm

360 nm lt λ lt 850 nm

0

1

2

3

4

5

6

7

8

9

10

400 450 500 550 600 650 700 750 800 850 900

Att

en

ua

tio

n [d

Bm

]

Wave Length [nm]

Light intensity attenuation in the PG-S250-64 PMMA fibers(S-grade 250 microm-diameter)

Visible radiation 380 nm lt λ lt 760 nm

700600500400 800300

Near-infrared 760 nm lt λ lt 2500 nm

Ultra-violet 10 nm lt λ lt 400 nm

Multi-Channel Optical Analyzer MCOA-UC instrumented with optical fiber ribbon stacked optical monitor (SM) and ESC Thomson TSN 506N

Light intensity attenuation in optical fibers

Meso-scale probing of the 3D reaction zone structure temporal and spatial resolution 200 ps and 50-250 μm 96 independent registration channels Kinetic parameters time history of reaction radiance 360nm lt λ lt 850nm spectrum Sensitive to radiation from near-UV up to near-IR Dynamic parameters stress field (unlimited amplitude) in stacked optic monitor

Shock Reactivity vs Morphology and Density Kinetics RateReaction Radiance Test

HMX particles were bonded with HTPB and Epoxy binder in mass-ratios 8218 8515 amp 9010 Six samples Ǿ4x104mm tested simultaneously HMXEpoxy samples - voids-free PBX-charges of 99TMD -fabricated with use of slurry mixing low pressure pressing vacuum casting amp pressure curing in PMMA holder -HMXHTPB samples 96-98 TMD

Calibrated boosters induce P 0 = 19-20 GPa pressure in HMX particles of test

samples

P E -4AOslash25

detonator

Oslash 40steelP VC S A

350 microm

P VC S M

MF O P to E S C T homson T S N 506 N

B rass 15

T est samples oslash4 x 09

60

Z

Z

PVC SA

PVC SM

Bo

oste

ra

cc

ep

tor

MFOP

D

0 time 40 ns

UF-HMX (16 microm)

F-HMX (111 microm)

PMMA

SW input to samples

Shock motion in PVC SM

0

10

20

30

40

100 120 140 160 180 200 220

Str

es

s G

Pa

time ns

UF-HMX (16)

F-HMX (111)

PMMA

PBXb2 - PVC SA - HMX 85 15 HTPB (900microm) - PVC SM

24 ns-precursors caused by radiation

absorption

dP P = 015

0 time 40 ns Shock motion in PVC SM

Ref HMX (114 microm)

SW in

put t

o sa

mpl

es

UF-HMX (16 microm)

F-HMX PCA (76 microm)

PBX b2 ndash PVC SA ndash P 8515 HTPB (1010 microm) ndash PVC SM induced shock in HMX particles P0 = 197 GPa

0

10

20

30

40

50

120 140 160 180 200 220

P H

E(G

Pa

)

time (ns)

HMX Ref HTPB

20 ns-precursor

Major front output

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

0

4000

8000

12000

40 80 120 160

time ns

Rad

iati

on

In

ten

sit

y [

Arb

itra

ry u

nit

s]

HMX ref -- F3

HMX ref -- F2

HMX ref -- F1

HMX ref aver

O

A

C

Major front output

Shock input

B

R = (ΔIΔt)OC (ΔIΔt)OA = 22

Kinetics RateReaction Radiance Test Basic Concept

Absolute shock reactivity value R at P0-initiation pressure is determined for each i-acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth

R = [(I final ndash I initial)(t final ndash t initial)]mean( ΔI0Δt0)mean

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 2: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

ACKNOWLEDGEMENTS

Work was supported by Office of Naval Research and ONR Global under the ONR Grants N 00014-08-1-0096 0014-12-1-0477 and ONR-G 62909-12-1-7131 with Drs Clifford Bedford and Shawn Thorne as a Program Directors

Research efforts were supported in part by the European Defense Agency amp Portuguese MoD under the RSEM-Project Arrangement No B-0993-GEM2-GP (2012)

Experimental efforts on characterization of the RS-PBXs were conducted as a part of the WEAG Research Program ERG-114009 ldquoParticles Processing and Characterizationrdquo

Prof Pedro Simoes (Dept Chemical Engineering) and Prof Amilcar Romalho (Dept Mechanical Engineering of University of Coimbra) are cordially acknowledged for help in characterization of particlesrsquo density PSD and particlesrsquo morphology

Objective amp Technical Concept

bullMajor challenge bull to find a way for improving the insensitivity characteristics of the HMX-based PBX ingredients --coarse-grained HMX particles and ldquodirty binderrdquo and then

bull to apply RS-ingredients for elaboration of the HMX-based PBXs with the shock sensitivity comparable to TATB while keeping or even improving a detonation performance in comparison with the reference HMX-based PBXs

bull Exploring novel physically justified concept for designing the high performance RS-PBXs containing the HMX-filler in total amount up to 85 wt

Variety technological aspects on fabrication of the RS-HMX components are analyzed in a context of morphological properties of β-HMX particles

Eliminating the nano-porous (defective and sensitive) layer of HMX-particles provides a way for decreasing shock reactivity amp initiation sensitivity Idea for Chemical etching amp Light-reflective coating of HMX grains

β-HMX Coarse Particles applied for PBX fabrication Morphology amp Density

ldquoRef HMX(114microm)rdquo particles HMX Class-6 military grade (Dyno Nobel) Mono-modal PSD d 50 =114408 microm ρ0 = 1881plusmn0006 gcmsup3 ldquoRC-HMX(1309microm)rdquo particles Fraunhofer ICT Re-crystallization of the ldquoRef HMX(114microm)rdquo in the propylene-carbonate solution Mono-modal PSD d50 =130925 microm ρ0 = 1892plusmn0006 gcmsup3

ldquoRef HMX(114 microm)rdquo ldquoRC-HMX(1309 microm)rdquo

bullDensity measurements standard helium and liquid pycnometry bullPSD analyzers bullMalvern Mastersizer 2000

Outer layer represent a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures Clusters are max concentrated in vertexes amp edges Surface layer the average density = 186 gcmsup3

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

rdquoF-HMX (111 microm)rdquo particles Fraunhofer ICT applied a ldquoRotor-Stator Millingrdquo technology for comminuting particles ldquoRef HMX (114microm)rdquo as a row material Mono-modal PSD d 50 = 1106 microm ρ0 = 1874plusmn0008 gcmsup3

ldquoF HMX-PCA (76 microm)rdquo particles Obtained at Fraunhofer ICT using the supercritical fluid technology for precipitation from γ-butyro-lactone solution (Compressed Fluid Anti-solvent PCA) Bi-modal PSD at median size d 50 = 76 microm

0

2

4

6

8

01 1 10 100

q3 [m

m-1

]

Particle size d [mm]

HMX-PCA

PCA-product represents agglomerations of UF-particles (d50 asymp 03 microm) with asymp10 times larger particles

β-HMX UF-Particles applied for PBX fabrication Morphology and Density

ldquoUF-HMX (16 microm)rdquo Fraunhofer ICT applied the ldquoAnnular Gap Ball-Millrdquo technology for further comminuting the water slurry of rdquoF-HMX (111 microm)rdquo particles Mono-modal PSD d50 =164 microm ρ0 = 1933plusmn0005 gcmsup3 ldquoUF-HMX (06 microm)rdquo ρ0 = 1951plusmn0005 gcmsup3

0

2

4

6

8

10

0 0 1 10 100

Vo

lum

e [

]

Particle Size d [mm]

HMX-Ball Mill

001 01 1 10 100

1) surface clusters asymp ldquoUF-HMX (06 microm)rdquo 2) ldquoUF-HMX (16 microm)rdquo particles are almost free of substructures 3) ldquoUF-HMX (06 microm)rdquo particles have a maximal density 1951 gcmsup3

ldquoUF-HMX (06 microm)rdquo particles represent themselves original clusters separated from the crystalrsquos body at commuting

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

ldquoβ-HMX (1375 microm)rdquo crystalrsquos surface structure ldquoβ-HMX UF-particle (16 microm)rdquo

bullCluster structure of the surface layer bull05-1 microm-clusters are spaced by dislocation pits cracks and fissures of 2-4 nm-size

What is a realistic max density of β-HMX ndash Wersquove found ρ0 = 1951 gcmsup3

β-HMX crystal (5075 microm ρ0 =1893plusmn0012 gcmsup3 ) was splitted in median zone of the (0-1-0)-facet

β-HMX seed has a maximum packed molecular structure ρ0 = 195 ndash 196 gcmsup3 (ICT TNO Un Coimbra ρ0 = 1951 gcmsup3 WH Rinkenbach (1951) ρ0 = 196 gcmsup3 ) Outer layer represents a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures The surface layer has the average density = 186 gcmsup3 Thickness of the outer cluster-shell in which the surface-defects are concentrated attains asymp20 of crystalrsquos cross-section or occupies roughly asymp 64 of its volume The defects-less ldquoseedrdquo has 195 gcmsup3-density and occupies asymp 36 of crystalrsquos volume

Relative volume of nanoscale-porosity υ of particles determined with respect to the voids-free

UF-HMX(06 microm)-particles υ = 100 times(1-ρ01951)

ldquoRef HMX(114 microm)rdquo

ldquoRC-HMX(1309 microm)rdquo

rdquo F-HMX (111 microm)rdquo

F-HMX PCA (76 microm)

ldquoUF-HMX (16 microm)rdquo

υ equiv 1

υ = 06 υ = 17

υ = 06 υ = 04

PBX

MFOP

shock

front

emission I0 ~ AT(t)4

transmitted radiance

Iτ = I0 - Iςα

scattering ldquoςrdquo amp

absorption ldquoαrdquo

reaction

spot

Z

-to

ES

C T

ho

mso

n

TS

N 5

06 N

Sp

ectr

al

ran

ge

450 n

m lt

λlt

850 n

m

ℓ-z(t)

SM

RS--PBAN-128

40 ns time

P(t

)-fi

eld

an

aly

zer

D(t)-analyzer

Spectral range 450 nm lt λ lt850 nm

Panoramic Multi-Channel Optical

Analyzer coupled with the ESC Thomson TSN

506 N

Multi-fiber Optical ProbePMMA-fibers Oslash250 microm

360 nm lt λ lt 850 nm

0

1

2

3

4

5

6

7

8

9

10

400 450 500 550 600 650 700 750 800 850 900

Att

en

ua

tio

n [d

Bm

]

Wave Length [nm]

Light intensity attenuation in the PG-S250-64 PMMA fibers(S-grade 250 microm-diameter)

Visible radiation 380 nm lt λ lt 760 nm

700600500400 800300

Near-infrared 760 nm lt λ lt 2500 nm

Ultra-violet 10 nm lt λ lt 400 nm

Multi-Channel Optical Analyzer MCOA-UC instrumented with optical fiber ribbon stacked optical monitor (SM) and ESC Thomson TSN 506N

Light intensity attenuation in optical fibers

Meso-scale probing of the 3D reaction zone structure temporal and spatial resolution 200 ps and 50-250 μm 96 independent registration channels Kinetic parameters time history of reaction radiance 360nm lt λ lt 850nm spectrum Sensitive to radiation from near-UV up to near-IR Dynamic parameters stress field (unlimited amplitude) in stacked optic monitor

Shock Reactivity vs Morphology and Density Kinetics RateReaction Radiance Test

HMX particles were bonded with HTPB and Epoxy binder in mass-ratios 8218 8515 amp 9010 Six samples Ǿ4x104mm tested simultaneously HMXEpoxy samples - voids-free PBX-charges of 99TMD -fabricated with use of slurry mixing low pressure pressing vacuum casting amp pressure curing in PMMA holder -HMXHTPB samples 96-98 TMD

Calibrated boosters induce P 0 = 19-20 GPa pressure in HMX particles of test

samples

P E -4AOslash25

detonator

Oslash 40steelP VC S A

350 microm

P VC S M

MF O P to E S C T homson T S N 506 N

B rass 15

T est samples oslash4 x 09

60

Z

Z

PVC SA

PVC SM

Bo

oste

ra

cc

ep

tor

MFOP

D

0 time 40 ns

UF-HMX (16 microm)

F-HMX (111 microm)

PMMA

SW input to samples

Shock motion in PVC SM

0

10

20

30

40

100 120 140 160 180 200 220

Str

es

s G

Pa

time ns

UF-HMX (16)

F-HMX (111)

PMMA

PBXb2 - PVC SA - HMX 85 15 HTPB (900microm) - PVC SM

24 ns-precursors caused by radiation

absorption

dP P = 015

0 time 40 ns Shock motion in PVC SM

Ref HMX (114 microm)

SW in

put t

o sa

mpl

es

UF-HMX (16 microm)

F-HMX PCA (76 microm)

PBX b2 ndash PVC SA ndash P 8515 HTPB (1010 microm) ndash PVC SM induced shock in HMX particles P0 = 197 GPa

0

10

20

30

40

50

120 140 160 180 200 220

P H

E(G

Pa

)

time (ns)

HMX Ref HTPB

20 ns-precursor

Major front output

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

0

4000

8000

12000

40 80 120 160

time ns

Rad

iati

on

In

ten

sit

y [

Arb

itra

ry u

nit

s]

HMX ref -- F3

HMX ref -- F2

HMX ref -- F1

HMX ref aver

O

A

C

Major front output

Shock input

B

R = (ΔIΔt)OC (ΔIΔt)OA = 22

Kinetics RateReaction Radiance Test Basic Concept

Absolute shock reactivity value R at P0-initiation pressure is determined for each i-acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth

R = [(I final ndash I initial)(t final ndash t initial)]mean( ΔI0Δt0)mean

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 3: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

Objective amp Technical Concept

bullMajor challenge bull to find a way for improving the insensitivity characteristics of the HMX-based PBX ingredients --coarse-grained HMX particles and ldquodirty binderrdquo and then

bull to apply RS-ingredients for elaboration of the HMX-based PBXs with the shock sensitivity comparable to TATB while keeping or even improving a detonation performance in comparison with the reference HMX-based PBXs

bull Exploring novel physically justified concept for designing the high performance RS-PBXs containing the HMX-filler in total amount up to 85 wt

Variety technological aspects on fabrication of the RS-HMX components are analyzed in a context of morphological properties of β-HMX particles

Eliminating the nano-porous (defective and sensitive) layer of HMX-particles provides a way for decreasing shock reactivity amp initiation sensitivity Idea for Chemical etching amp Light-reflective coating of HMX grains

β-HMX Coarse Particles applied for PBX fabrication Morphology amp Density

ldquoRef HMX(114microm)rdquo particles HMX Class-6 military grade (Dyno Nobel) Mono-modal PSD d 50 =114408 microm ρ0 = 1881plusmn0006 gcmsup3 ldquoRC-HMX(1309microm)rdquo particles Fraunhofer ICT Re-crystallization of the ldquoRef HMX(114microm)rdquo in the propylene-carbonate solution Mono-modal PSD d50 =130925 microm ρ0 = 1892plusmn0006 gcmsup3

ldquoRef HMX(114 microm)rdquo ldquoRC-HMX(1309 microm)rdquo

bullDensity measurements standard helium and liquid pycnometry bullPSD analyzers bullMalvern Mastersizer 2000

Outer layer represent a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures Clusters are max concentrated in vertexes amp edges Surface layer the average density = 186 gcmsup3

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

rdquoF-HMX (111 microm)rdquo particles Fraunhofer ICT applied a ldquoRotor-Stator Millingrdquo technology for comminuting particles ldquoRef HMX (114microm)rdquo as a row material Mono-modal PSD d 50 = 1106 microm ρ0 = 1874plusmn0008 gcmsup3

ldquoF HMX-PCA (76 microm)rdquo particles Obtained at Fraunhofer ICT using the supercritical fluid technology for precipitation from γ-butyro-lactone solution (Compressed Fluid Anti-solvent PCA) Bi-modal PSD at median size d 50 = 76 microm

0

2

4

6

8

01 1 10 100

q3 [m

m-1

]

Particle size d [mm]

HMX-PCA

PCA-product represents agglomerations of UF-particles (d50 asymp 03 microm) with asymp10 times larger particles

β-HMX UF-Particles applied for PBX fabrication Morphology and Density

ldquoUF-HMX (16 microm)rdquo Fraunhofer ICT applied the ldquoAnnular Gap Ball-Millrdquo technology for further comminuting the water slurry of rdquoF-HMX (111 microm)rdquo particles Mono-modal PSD d50 =164 microm ρ0 = 1933plusmn0005 gcmsup3 ldquoUF-HMX (06 microm)rdquo ρ0 = 1951plusmn0005 gcmsup3

0

2

4

6

8

10

0 0 1 10 100

Vo

lum

e [

]

Particle Size d [mm]

HMX-Ball Mill

001 01 1 10 100

1) surface clusters asymp ldquoUF-HMX (06 microm)rdquo 2) ldquoUF-HMX (16 microm)rdquo particles are almost free of substructures 3) ldquoUF-HMX (06 microm)rdquo particles have a maximal density 1951 gcmsup3

ldquoUF-HMX (06 microm)rdquo particles represent themselves original clusters separated from the crystalrsquos body at commuting

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

ldquoβ-HMX (1375 microm)rdquo crystalrsquos surface structure ldquoβ-HMX UF-particle (16 microm)rdquo

bullCluster structure of the surface layer bull05-1 microm-clusters are spaced by dislocation pits cracks and fissures of 2-4 nm-size

What is a realistic max density of β-HMX ndash Wersquove found ρ0 = 1951 gcmsup3

β-HMX crystal (5075 microm ρ0 =1893plusmn0012 gcmsup3 ) was splitted in median zone of the (0-1-0)-facet

β-HMX seed has a maximum packed molecular structure ρ0 = 195 ndash 196 gcmsup3 (ICT TNO Un Coimbra ρ0 = 1951 gcmsup3 WH Rinkenbach (1951) ρ0 = 196 gcmsup3 ) Outer layer represents a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures The surface layer has the average density = 186 gcmsup3 Thickness of the outer cluster-shell in which the surface-defects are concentrated attains asymp20 of crystalrsquos cross-section or occupies roughly asymp 64 of its volume The defects-less ldquoseedrdquo has 195 gcmsup3-density and occupies asymp 36 of crystalrsquos volume

Relative volume of nanoscale-porosity υ of particles determined with respect to the voids-free

UF-HMX(06 microm)-particles υ = 100 times(1-ρ01951)

ldquoRef HMX(114 microm)rdquo

ldquoRC-HMX(1309 microm)rdquo

rdquo F-HMX (111 microm)rdquo

F-HMX PCA (76 microm)

ldquoUF-HMX (16 microm)rdquo

υ equiv 1

υ = 06 υ = 17

υ = 06 υ = 04

PBX

MFOP

shock

front

emission I0 ~ AT(t)4

transmitted radiance

Iτ = I0 - Iςα

scattering ldquoςrdquo amp

absorption ldquoαrdquo

reaction

spot

Z

-to

ES

C T

ho

mso

n

TS

N 5

06 N

Sp

ectr

al

ran

ge

450 n

m lt

λlt

850 n

m

ℓ-z(t)

SM

RS--PBAN-128

40 ns time

P(t

)-fi

eld

an

aly

zer

D(t)-analyzer

Spectral range 450 nm lt λ lt850 nm

Panoramic Multi-Channel Optical

Analyzer coupled with the ESC Thomson TSN

506 N

Multi-fiber Optical ProbePMMA-fibers Oslash250 microm

360 nm lt λ lt 850 nm

0

1

2

3

4

5

6

7

8

9

10

400 450 500 550 600 650 700 750 800 850 900

Att

en

ua

tio

n [d

Bm

]

Wave Length [nm]

Light intensity attenuation in the PG-S250-64 PMMA fibers(S-grade 250 microm-diameter)

Visible radiation 380 nm lt λ lt 760 nm

700600500400 800300

Near-infrared 760 nm lt λ lt 2500 nm

Ultra-violet 10 nm lt λ lt 400 nm

Multi-Channel Optical Analyzer MCOA-UC instrumented with optical fiber ribbon stacked optical monitor (SM) and ESC Thomson TSN 506N

Light intensity attenuation in optical fibers

Meso-scale probing of the 3D reaction zone structure temporal and spatial resolution 200 ps and 50-250 μm 96 independent registration channels Kinetic parameters time history of reaction radiance 360nm lt λ lt 850nm spectrum Sensitive to radiation from near-UV up to near-IR Dynamic parameters stress field (unlimited amplitude) in stacked optic monitor

Shock Reactivity vs Morphology and Density Kinetics RateReaction Radiance Test

HMX particles were bonded with HTPB and Epoxy binder in mass-ratios 8218 8515 amp 9010 Six samples Ǿ4x104mm tested simultaneously HMXEpoxy samples - voids-free PBX-charges of 99TMD -fabricated with use of slurry mixing low pressure pressing vacuum casting amp pressure curing in PMMA holder -HMXHTPB samples 96-98 TMD

Calibrated boosters induce P 0 = 19-20 GPa pressure in HMX particles of test

samples

P E -4AOslash25

detonator

Oslash 40steelP VC S A

350 microm

P VC S M

MF O P to E S C T homson T S N 506 N

B rass 15

T est samples oslash4 x 09

60

Z

Z

PVC SA

PVC SM

Bo

oste

ra

cc

ep

tor

MFOP

D

0 time 40 ns

UF-HMX (16 microm)

F-HMX (111 microm)

PMMA

SW input to samples

Shock motion in PVC SM

0

10

20

30

40

100 120 140 160 180 200 220

Str

es

s G

Pa

time ns

UF-HMX (16)

F-HMX (111)

PMMA

PBXb2 - PVC SA - HMX 85 15 HTPB (900microm) - PVC SM

24 ns-precursors caused by radiation

absorption

dP P = 015

0 time 40 ns Shock motion in PVC SM

Ref HMX (114 microm)

SW in

put t

o sa

mpl

es

UF-HMX (16 microm)

F-HMX PCA (76 microm)

PBX b2 ndash PVC SA ndash P 8515 HTPB (1010 microm) ndash PVC SM induced shock in HMX particles P0 = 197 GPa

0

10

20

30

40

50

120 140 160 180 200 220

P H

E(G

Pa

)

time (ns)

HMX Ref HTPB

20 ns-precursor

Major front output

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

0

4000

8000

12000

40 80 120 160

time ns

Rad

iati

on

In

ten

sit

y [

Arb

itra

ry u

nit

s]

HMX ref -- F3

HMX ref -- F2

HMX ref -- F1

HMX ref aver

O

A

C

Major front output

Shock input

B

R = (ΔIΔt)OC (ΔIΔt)OA = 22

Kinetics RateReaction Radiance Test Basic Concept

Absolute shock reactivity value R at P0-initiation pressure is determined for each i-acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth

R = [(I final ndash I initial)(t final ndash t initial)]mean( ΔI0Δt0)mean

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 4: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

β-HMX Coarse Particles applied for PBX fabrication Morphology amp Density

ldquoRef HMX(114microm)rdquo particles HMX Class-6 military grade (Dyno Nobel) Mono-modal PSD d 50 =114408 microm ρ0 = 1881plusmn0006 gcmsup3 ldquoRC-HMX(1309microm)rdquo particles Fraunhofer ICT Re-crystallization of the ldquoRef HMX(114microm)rdquo in the propylene-carbonate solution Mono-modal PSD d50 =130925 microm ρ0 = 1892plusmn0006 gcmsup3

ldquoRef HMX(114 microm)rdquo ldquoRC-HMX(1309 microm)rdquo

bullDensity measurements standard helium and liquid pycnometry bullPSD analyzers bullMalvern Mastersizer 2000

Outer layer represent a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures Clusters are max concentrated in vertexes amp edges Surface layer the average density = 186 gcmsup3

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

rdquoF-HMX (111 microm)rdquo particles Fraunhofer ICT applied a ldquoRotor-Stator Millingrdquo technology for comminuting particles ldquoRef HMX (114microm)rdquo as a row material Mono-modal PSD d 50 = 1106 microm ρ0 = 1874plusmn0008 gcmsup3

ldquoF HMX-PCA (76 microm)rdquo particles Obtained at Fraunhofer ICT using the supercritical fluid technology for precipitation from γ-butyro-lactone solution (Compressed Fluid Anti-solvent PCA) Bi-modal PSD at median size d 50 = 76 microm

0

2

4

6

8

01 1 10 100

q3 [m

m-1

]

Particle size d [mm]

HMX-PCA

PCA-product represents agglomerations of UF-particles (d50 asymp 03 microm) with asymp10 times larger particles

β-HMX UF-Particles applied for PBX fabrication Morphology and Density

ldquoUF-HMX (16 microm)rdquo Fraunhofer ICT applied the ldquoAnnular Gap Ball-Millrdquo technology for further comminuting the water slurry of rdquoF-HMX (111 microm)rdquo particles Mono-modal PSD d50 =164 microm ρ0 = 1933plusmn0005 gcmsup3 ldquoUF-HMX (06 microm)rdquo ρ0 = 1951plusmn0005 gcmsup3

0

2

4

6

8

10

0 0 1 10 100

Vo

lum

e [

]

Particle Size d [mm]

HMX-Ball Mill

001 01 1 10 100

1) surface clusters asymp ldquoUF-HMX (06 microm)rdquo 2) ldquoUF-HMX (16 microm)rdquo particles are almost free of substructures 3) ldquoUF-HMX (06 microm)rdquo particles have a maximal density 1951 gcmsup3

ldquoUF-HMX (06 microm)rdquo particles represent themselves original clusters separated from the crystalrsquos body at commuting

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

ldquoβ-HMX (1375 microm)rdquo crystalrsquos surface structure ldquoβ-HMX UF-particle (16 microm)rdquo

bullCluster structure of the surface layer bull05-1 microm-clusters are spaced by dislocation pits cracks and fissures of 2-4 nm-size

What is a realistic max density of β-HMX ndash Wersquove found ρ0 = 1951 gcmsup3

β-HMX crystal (5075 microm ρ0 =1893plusmn0012 gcmsup3 ) was splitted in median zone of the (0-1-0)-facet

β-HMX seed has a maximum packed molecular structure ρ0 = 195 ndash 196 gcmsup3 (ICT TNO Un Coimbra ρ0 = 1951 gcmsup3 WH Rinkenbach (1951) ρ0 = 196 gcmsup3 ) Outer layer represents a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures The surface layer has the average density = 186 gcmsup3 Thickness of the outer cluster-shell in which the surface-defects are concentrated attains asymp20 of crystalrsquos cross-section or occupies roughly asymp 64 of its volume The defects-less ldquoseedrdquo has 195 gcmsup3-density and occupies asymp 36 of crystalrsquos volume

Relative volume of nanoscale-porosity υ of particles determined with respect to the voids-free

UF-HMX(06 microm)-particles υ = 100 times(1-ρ01951)

ldquoRef HMX(114 microm)rdquo

ldquoRC-HMX(1309 microm)rdquo

rdquo F-HMX (111 microm)rdquo

F-HMX PCA (76 microm)

ldquoUF-HMX (16 microm)rdquo

υ equiv 1

υ = 06 υ = 17

υ = 06 υ = 04

PBX

MFOP

shock

front

emission I0 ~ AT(t)4

transmitted radiance

Iτ = I0 - Iςα

scattering ldquoςrdquo amp

absorption ldquoαrdquo

reaction

spot

Z

-to

ES

C T

ho

mso

n

TS

N 5

06 N

Sp

ectr

al

ran

ge

450 n

m lt

λlt

850 n

m

ℓ-z(t)

SM

RS--PBAN-128

40 ns time

P(t

)-fi

eld

an

aly

zer

D(t)-analyzer

Spectral range 450 nm lt λ lt850 nm

Panoramic Multi-Channel Optical

Analyzer coupled with the ESC Thomson TSN

506 N

Multi-fiber Optical ProbePMMA-fibers Oslash250 microm

360 nm lt λ lt 850 nm

0

1

2

3

4

5

6

7

8

9

10

400 450 500 550 600 650 700 750 800 850 900

Att

en

ua

tio

n [d

Bm

]

Wave Length [nm]

Light intensity attenuation in the PG-S250-64 PMMA fibers(S-grade 250 microm-diameter)

Visible radiation 380 nm lt λ lt 760 nm

700600500400 800300

Near-infrared 760 nm lt λ lt 2500 nm

Ultra-violet 10 nm lt λ lt 400 nm

Multi-Channel Optical Analyzer MCOA-UC instrumented with optical fiber ribbon stacked optical monitor (SM) and ESC Thomson TSN 506N

Light intensity attenuation in optical fibers

Meso-scale probing of the 3D reaction zone structure temporal and spatial resolution 200 ps and 50-250 μm 96 independent registration channels Kinetic parameters time history of reaction radiance 360nm lt λ lt 850nm spectrum Sensitive to radiation from near-UV up to near-IR Dynamic parameters stress field (unlimited amplitude) in stacked optic monitor

Shock Reactivity vs Morphology and Density Kinetics RateReaction Radiance Test

HMX particles were bonded with HTPB and Epoxy binder in mass-ratios 8218 8515 amp 9010 Six samples Ǿ4x104mm tested simultaneously HMXEpoxy samples - voids-free PBX-charges of 99TMD -fabricated with use of slurry mixing low pressure pressing vacuum casting amp pressure curing in PMMA holder -HMXHTPB samples 96-98 TMD

Calibrated boosters induce P 0 = 19-20 GPa pressure in HMX particles of test

samples

P E -4AOslash25

detonator

Oslash 40steelP VC S A

350 microm

P VC S M

MF O P to E S C T homson T S N 506 N

B rass 15

T est samples oslash4 x 09

60

Z

Z

PVC SA

PVC SM

Bo

oste

ra

cc

ep

tor

MFOP

D

0 time 40 ns

UF-HMX (16 microm)

F-HMX (111 microm)

PMMA

SW input to samples

Shock motion in PVC SM

0

10

20

30

40

100 120 140 160 180 200 220

Str

es

s G

Pa

time ns

UF-HMX (16)

F-HMX (111)

PMMA

PBXb2 - PVC SA - HMX 85 15 HTPB (900microm) - PVC SM

24 ns-precursors caused by radiation

absorption

dP P = 015

0 time 40 ns Shock motion in PVC SM

Ref HMX (114 microm)

SW in

put t

o sa

mpl

es

UF-HMX (16 microm)

F-HMX PCA (76 microm)

PBX b2 ndash PVC SA ndash P 8515 HTPB (1010 microm) ndash PVC SM induced shock in HMX particles P0 = 197 GPa

0

10

20

30

40

50

120 140 160 180 200 220

P H

E(G

Pa

)

time (ns)

HMX Ref HTPB

20 ns-precursor

Major front output

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

0

4000

8000

12000

40 80 120 160

time ns

Rad

iati

on

In

ten

sit

y [

Arb

itra

ry u

nit

s]

HMX ref -- F3

HMX ref -- F2

HMX ref -- F1

HMX ref aver

O

A

C

Major front output

Shock input

B

R = (ΔIΔt)OC (ΔIΔt)OA = 22

Kinetics RateReaction Radiance Test Basic Concept

Absolute shock reactivity value R at P0-initiation pressure is determined for each i-acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth

R = [(I final ndash I initial)(t final ndash t initial)]mean( ΔI0Δt0)mean

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 5: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

rdquoF-HMX (111 microm)rdquo particles Fraunhofer ICT applied a ldquoRotor-Stator Millingrdquo technology for comminuting particles ldquoRef HMX (114microm)rdquo as a row material Mono-modal PSD d 50 = 1106 microm ρ0 = 1874plusmn0008 gcmsup3

ldquoF HMX-PCA (76 microm)rdquo particles Obtained at Fraunhofer ICT using the supercritical fluid technology for precipitation from γ-butyro-lactone solution (Compressed Fluid Anti-solvent PCA) Bi-modal PSD at median size d 50 = 76 microm

0

2

4

6

8

01 1 10 100

q3 [m

m-1

]

Particle size d [mm]

HMX-PCA

PCA-product represents agglomerations of UF-particles (d50 asymp 03 microm) with asymp10 times larger particles

β-HMX UF-Particles applied for PBX fabrication Morphology and Density

ldquoUF-HMX (16 microm)rdquo Fraunhofer ICT applied the ldquoAnnular Gap Ball-Millrdquo technology for further comminuting the water slurry of rdquoF-HMX (111 microm)rdquo particles Mono-modal PSD d50 =164 microm ρ0 = 1933plusmn0005 gcmsup3 ldquoUF-HMX (06 microm)rdquo ρ0 = 1951plusmn0005 gcmsup3

0

2

4

6

8

10

0 0 1 10 100

Vo

lum

e [

]

Particle Size d [mm]

HMX-Ball Mill

001 01 1 10 100

1) surface clusters asymp ldquoUF-HMX (06 microm)rdquo 2) ldquoUF-HMX (16 microm)rdquo particles are almost free of substructures 3) ldquoUF-HMX (06 microm)rdquo particles have a maximal density 1951 gcmsup3

ldquoUF-HMX (06 microm)rdquo particles represent themselves original clusters separated from the crystalrsquos body at commuting

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

ldquoβ-HMX (1375 microm)rdquo crystalrsquos surface structure ldquoβ-HMX UF-particle (16 microm)rdquo

bullCluster structure of the surface layer bull05-1 microm-clusters are spaced by dislocation pits cracks and fissures of 2-4 nm-size

What is a realistic max density of β-HMX ndash Wersquove found ρ0 = 1951 gcmsup3

β-HMX crystal (5075 microm ρ0 =1893plusmn0012 gcmsup3 ) was splitted in median zone of the (0-1-0)-facet

β-HMX seed has a maximum packed molecular structure ρ0 = 195 ndash 196 gcmsup3 (ICT TNO Un Coimbra ρ0 = 1951 gcmsup3 WH Rinkenbach (1951) ρ0 = 196 gcmsup3 ) Outer layer represents a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures The surface layer has the average density = 186 gcmsup3 Thickness of the outer cluster-shell in which the surface-defects are concentrated attains asymp20 of crystalrsquos cross-section or occupies roughly asymp 64 of its volume The defects-less ldquoseedrdquo has 195 gcmsup3-density and occupies asymp 36 of crystalrsquos volume

Relative volume of nanoscale-porosity υ of particles determined with respect to the voids-free

UF-HMX(06 microm)-particles υ = 100 times(1-ρ01951)

ldquoRef HMX(114 microm)rdquo

ldquoRC-HMX(1309 microm)rdquo

rdquo F-HMX (111 microm)rdquo

F-HMX PCA (76 microm)

ldquoUF-HMX (16 microm)rdquo

υ equiv 1

υ = 06 υ = 17

υ = 06 υ = 04

PBX

MFOP

shock

front

emission I0 ~ AT(t)4

transmitted radiance

Iτ = I0 - Iςα

scattering ldquoςrdquo amp

absorption ldquoαrdquo

reaction

spot

Z

-to

ES

C T

ho

mso

n

TS

N 5

06 N

Sp

ectr

al

ran

ge

450 n

m lt

λlt

850 n

m

ℓ-z(t)

SM

RS--PBAN-128

40 ns time

P(t

)-fi

eld

an

aly

zer

D(t)-analyzer

Spectral range 450 nm lt λ lt850 nm

Panoramic Multi-Channel Optical

Analyzer coupled with the ESC Thomson TSN

506 N

Multi-fiber Optical ProbePMMA-fibers Oslash250 microm

360 nm lt λ lt 850 nm

0

1

2

3

4

5

6

7

8

9

10

400 450 500 550 600 650 700 750 800 850 900

Att

en

ua

tio

n [d

Bm

]

Wave Length [nm]

Light intensity attenuation in the PG-S250-64 PMMA fibers(S-grade 250 microm-diameter)

Visible radiation 380 nm lt λ lt 760 nm

700600500400 800300

Near-infrared 760 nm lt λ lt 2500 nm

Ultra-violet 10 nm lt λ lt 400 nm

Multi-Channel Optical Analyzer MCOA-UC instrumented with optical fiber ribbon stacked optical monitor (SM) and ESC Thomson TSN 506N

Light intensity attenuation in optical fibers

Meso-scale probing of the 3D reaction zone structure temporal and spatial resolution 200 ps and 50-250 μm 96 independent registration channels Kinetic parameters time history of reaction radiance 360nm lt λ lt 850nm spectrum Sensitive to radiation from near-UV up to near-IR Dynamic parameters stress field (unlimited amplitude) in stacked optic monitor

Shock Reactivity vs Morphology and Density Kinetics RateReaction Radiance Test

HMX particles were bonded with HTPB and Epoxy binder in mass-ratios 8218 8515 amp 9010 Six samples Ǿ4x104mm tested simultaneously HMXEpoxy samples - voids-free PBX-charges of 99TMD -fabricated with use of slurry mixing low pressure pressing vacuum casting amp pressure curing in PMMA holder -HMXHTPB samples 96-98 TMD

Calibrated boosters induce P 0 = 19-20 GPa pressure in HMX particles of test

samples

P E -4AOslash25

detonator

Oslash 40steelP VC S A

350 microm

P VC S M

MF O P to E S C T homson T S N 506 N

B rass 15

T est samples oslash4 x 09

60

Z

Z

PVC SA

PVC SM

Bo

oste

ra

cc

ep

tor

MFOP

D

0 time 40 ns

UF-HMX (16 microm)

F-HMX (111 microm)

PMMA

SW input to samples

Shock motion in PVC SM

0

10

20

30

40

100 120 140 160 180 200 220

Str

es

s G

Pa

time ns

UF-HMX (16)

F-HMX (111)

PMMA

PBXb2 - PVC SA - HMX 85 15 HTPB (900microm) - PVC SM

24 ns-precursors caused by radiation

absorption

dP P = 015

0 time 40 ns Shock motion in PVC SM

Ref HMX (114 microm)

SW in

put t

o sa

mpl

es

UF-HMX (16 microm)

F-HMX PCA (76 microm)

PBX b2 ndash PVC SA ndash P 8515 HTPB (1010 microm) ndash PVC SM induced shock in HMX particles P0 = 197 GPa

0

10

20

30

40

50

120 140 160 180 200 220

P H

E(G

Pa

)

time (ns)

HMX Ref HTPB

20 ns-precursor

Major front output

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

0

4000

8000

12000

40 80 120 160

time ns

Rad

iati

on

In

ten

sit

y [

Arb

itra

ry u

nit

s]

HMX ref -- F3

HMX ref -- F2

HMX ref -- F1

HMX ref aver

O

A

C

Major front output

Shock input

B

R = (ΔIΔt)OC (ΔIΔt)OA = 22

Kinetics RateReaction Radiance Test Basic Concept

Absolute shock reactivity value R at P0-initiation pressure is determined for each i-acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth

R = [(I final ndash I initial)(t final ndash t initial)]mean( ΔI0Δt0)mean

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 6: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

β-HMX UF-Particles applied for PBX fabrication Morphology and Density

ldquoUF-HMX (16 microm)rdquo Fraunhofer ICT applied the ldquoAnnular Gap Ball-Millrdquo technology for further comminuting the water slurry of rdquoF-HMX (111 microm)rdquo particles Mono-modal PSD d50 =164 microm ρ0 = 1933plusmn0005 gcmsup3 ldquoUF-HMX (06 microm)rdquo ρ0 = 1951plusmn0005 gcmsup3

0

2

4

6

8

10

0 0 1 10 100

Vo

lum

e [

]

Particle Size d [mm]

HMX-Ball Mill

001 01 1 10 100

1) surface clusters asymp ldquoUF-HMX (06 microm)rdquo 2) ldquoUF-HMX (16 microm)rdquo particles are almost free of substructures 3) ldquoUF-HMX (06 microm)rdquo particles have a maximal density 1951 gcmsup3

ldquoUF-HMX (06 microm)rdquo particles represent themselves original clusters separated from the crystalrsquos body at commuting

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

ldquoβ-HMX (1375 microm)rdquo crystalrsquos surface structure ldquoβ-HMX UF-particle (16 microm)rdquo

bullCluster structure of the surface layer bull05-1 microm-clusters are spaced by dislocation pits cracks and fissures of 2-4 nm-size

What is a realistic max density of β-HMX ndash Wersquove found ρ0 = 1951 gcmsup3

β-HMX crystal (5075 microm ρ0 =1893plusmn0012 gcmsup3 ) was splitted in median zone of the (0-1-0)-facet

β-HMX seed has a maximum packed molecular structure ρ0 = 195 ndash 196 gcmsup3 (ICT TNO Un Coimbra ρ0 = 1951 gcmsup3 WH Rinkenbach (1951) ρ0 = 196 gcmsup3 ) Outer layer represents a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures The surface layer has the average density = 186 gcmsup3 Thickness of the outer cluster-shell in which the surface-defects are concentrated attains asymp20 of crystalrsquos cross-section or occupies roughly asymp 64 of its volume The defects-less ldquoseedrdquo has 195 gcmsup3-density and occupies asymp 36 of crystalrsquos volume

Relative volume of nanoscale-porosity υ of particles determined with respect to the voids-free

UF-HMX(06 microm)-particles υ = 100 times(1-ρ01951)

ldquoRef HMX(114 microm)rdquo

ldquoRC-HMX(1309 microm)rdquo

rdquo F-HMX (111 microm)rdquo

F-HMX PCA (76 microm)

ldquoUF-HMX (16 microm)rdquo

υ equiv 1

υ = 06 υ = 17

υ = 06 υ = 04

PBX

MFOP

shock

front

emission I0 ~ AT(t)4

transmitted radiance

Iτ = I0 - Iςα

scattering ldquoςrdquo amp

absorption ldquoαrdquo

reaction

spot

Z

-to

ES

C T

ho

mso

n

TS

N 5

06 N

Sp

ectr

al

ran

ge

450 n

m lt

λlt

850 n

m

ℓ-z(t)

SM

RS--PBAN-128

40 ns time

P(t

)-fi

eld

an

aly

zer

D(t)-analyzer

Spectral range 450 nm lt λ lt850 nm

Panoramic Multi-Channel Optical

Analyzer coupled with the ESC Thomson TSN

506 N

Multi-fiber Optical ProbePMMA-fibers Oslash250 microm

360 nm lt λ lt 850 nm

0

1

2

3

4

5

6

7

8

9

10

400 450 500 550 600 650 700 750 800 850 900

Att

en

ua

tio

n [d

Bm

]

Wave Length [nm]

Light intensity attenuation in the PG-S250-64 PMMA fibers(S-grade 250 microm-diameter)

Visible radiation 380 nm lt λ lt 760 nm

700600500400 800300

Near-infrared 760 nm lt λ lt 2500 nm

Ultra-violet 10 nm lt λ lt 400 nm

Multi-Channel Optical Analyzer MCOA-UC instrumented with optical fiber ribbon stacked optical monitor (SM) and ESC Thomson TSN 506N

Light intensity attenuation in optical fibers

Meso-scale probing of the 3D reaction zone structure temporal and spatial resolution 200 ps and 50-250 μm 96 independent registration channels Kinetic parameters time history of reaction radiance 360nm lt λ lt 850nm spectrum Sensitive to radiation from near-UV up to near-IR Dynamic parameters stress field (unlimited amplitude) in stacked optic monitor

Shock Reactivity vs Morphology and Density Kinetics RateReaction Radiance Test

HMX particles were bonded with HTPB and Epoxy binder in mass-ratios 8218 8515 amp 9010 Six samples Ǿ4x104mm tested simultaneously HMXEpoxy samples - voids-free PBX-charges of 99TMD -fabricated with use of slurry mixing low pressure pressing vacuum casting amp pressure curing in PMMA holder -HMXHTPB samples 96-98 TMD

Calibrated boosters induce P 0 = 19-20 GPa pressure in HMX particles of test

samples

P E -4AOslash25

detonator

Oslash 40steelP VC S A

350 microm

P VC S M

MF O P to E S C T homson T S N 506 N

B rass 15

T est samples oslash4 x 09

60

Z

Z

PVC SA

PVC SM

Bo

oste

ra

cc

ep

tor

MFOP

D

0 time 40 ns

UF-HMX (16 microm)

F-HMX (111 microm)

PMMA

SW input to samples

Shock motion in PVC SM

0

10

20

30

40

100 120 140 160 180 200 220

Str

es

s G

Pa

time ns

UF-HMX (16)

F-HMX (111)

PMMA

PBXb2 - PVC SA - HMX 85 15 HTPB (900microm) - PVC SM

24 ns-precursors caused by radiation

absorption

dP P = 015

0 time 40 ns Shock motion in PVC SM

Ref HMX (114 microm)

SW in

put t

o sa

mpl

es

UF-HMX (16 microm)

F-HMX PCA (76 microm)

PBX b2 ndash PVC SA ndash P 8515 HTPB (1010 microm) ndash PVC SM induced shock in HMX particles P0 = 197 GPa

0

10

20

30

40

50

120 140 160 180 200 220

P H

E(G

Pa

)

time (ns)

HMX Ref HTPB

20 ns-precursor

Major front output

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

0

4000

8000

12000

40 80 120 160

time ns

Rad

iati

on

In

ten

sit

y [

Arb

itra

ry u

nit

s]

HMX ref -- F3

HMX ref -- F2

HMX ref -- F1

HMX ref aver

O

A

C

Major front output

Shock input

B

R = (ΔIΔt)OC (ΔIΔt)OA = 22

Kinetics RateReaction Radiance Test Basic Concept

Absolute shock reactivity value R at P0-initiation pressure is determined for each i-acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth

R = [(I final ndash I initial)(t final ndash t initial)]mean( ΔI0Δt0)mean

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 7: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

1) surface clusters asymp ldquoUF-HMX (06 microm)rdquo 2) ldquoUF-HMX (16 microm)rdquo particles are almost free of substructures 3) ldquoUF-HMX (06 microm)rdquo particles have a maximal density 1951 gcmsup3

ldquoUF-HMX (06 microm)rdquo particles represent themselves original clusters separated from the crystalrsquos body at commuting

β-HMX Fine amp UF-Particles applied for PBX fabrication Morphology and Density

ldquoβ-HMX (1375 microm)rdquo crystalrsquos surface structure ldquoβ-HMX UF-particle (16 microm)rdquo

bullCluster structure of the surface layer bull05-1 microm-clusters are spaced by dislocation pits cracks and fissures of 2-4 nm-size

What is a realistic max density of β-HMX ndash Wersquove found ρ0 = 1951 gcmsup3

β-HMX crystal (5075 microm ρ0 =1893plusmn0012 gcmsup3 ) was splitted in median zone of the (0-1-0)-facet

β-HMX seed has a maximum packed molecular structure ρ0 = 195 ndash 196 gcmsup3 (ICT TNO Un Coimbra ρ0 = 1951 gcmsup3 WH Rinkenbach (1951) ρ0 = 196 gcmsup3 ) Outer layer represents a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures The surface layer has the average density = 186 gcmsup3 Thickness of the outer cluster-shell in which the surface-defects are concentrated attains asymp20 of crystalrsquos cross-section or occupies roughly asymp 64 of its volume The defects-less ldquoseedrdquo has 195 gcmsup3-density and occupies asymp 36 of crystalrsquos volume

Relative volume of nanoscale-porosity υ of particles determined with respect to the voids-free

UF-HMX(06 microm)-particles υ = 100 times(1-ρ01951)

ldquoRef HMX(114 microm)rdquo

ldquoRC-HMX(1309 microm)rdquo

rdquo F-HMX (111 microm)rdquo

F-HMX PCA (76 microm)

ldquoUF-HMX (16 microm)rdquo

υ equiv 1

υ = 06 υ = 17

υ = 06 υ = 04

PBX

MFOP

shock

front

emission I0 ~ AT(t)4

transmitted radiance

Iτ = I0 - Iςα

scattering ldquoςrdquo amp

absorption ldquoαrdquo

reaction

spot

Z

-to

ES

C T

ho

mso

n

TS

N 5

06 N

Sp

ectr

al

ran

ge

450 n

m lt

λlt

850 n

m

ℓ-z(t)

SM

RS--PBAN-128

40 ns time

P(t

)-fi

eld

an

aly

zer

D(t)-analyzer

Spectral range 450 nm lt λ lt850 nm

Panoramic Multi-Channel Optical

Analyzer coupled with the ESC Thomson TSN

506 N

Multi-fiber Optical ProbePMMA-fibers Oslash250 microm

360 nm lt λ lt 850 nm

0

1

2

3

4

5

6

7

8

9

10

400 450 500 550 600 650 700 750 800 850 900

Att

en

ua

tio

n [d

Bm

]

Wave Length [nm]

Light intensity attenuation in the PG-S250-64 PMMA fibers(S-grade 250 microm-diameter)

Visible radiation 380 nm lt λ lt 760 nm

700600500400 800300

Near-infrared 760 nm lt λ lt 2500 nm

Ultra-violet 10 nm lt λ lt 400 nm

Multi-Channel Optical Analyzer MCOA-UC instrumented with optical fiber ribbon stacked optical monitor (SM) and ESC Thomson TSN 506N

Light intensity attenuation in optical fibers

Meso-scale probing of the 3D reaction zone structure temporal and spatial resolution 200 ps and 50-250 μm 96 independent registration channels Kinetic parameters time history of reaction radiance 360nm lt λ lt 850nm spectrum Sensitive to radiation from near-UV up to near-IR Dynamic parameters stress field (unlimited amplitude) in stacked optic monitor

Shock Reactivity vs Morphology and Density Kinetics RateReaction Radiance Test

HMX particles were bonded with HTPB and Epoxy binder in mass-ratios 8218 8515 amp 9010 Six samples Ǿ4x104mm tested simultaneously HMXEpoxy samples - voids-free PBX-charges of 99TMD -fabricated with use of slurry mixing low pressure pressing vacuum casting amp pressure curing in PMMA holder -HMXHTPB samples 96-98 TMD

Calibrated boosters induce P 0 = 19-20 GPa pressure in HMX particles of test

samples

P E -4AOslash25

detonator

Oslash 40steelP VC S A

350 microm

P VC S M

MF O P to E S C T homson T S N 506 N

B rass 15

T est samples oslash4 x 09

60

Z

Z

PVC SA

PVC SM

Bo

oste

ra

cc

ep

tor

MFOP

D

0 time 40 ns

UF-HMX (16 microm)

F-HMX (111 microm)

PMMA

SW input to samples

Shock motion in PVC SM

0

10

20

30

40

100 120 140 160 180 200 220

Str

es

s G

Pa

time ns

UF-HMX (16)

F-HMX (111)

PMMA

PBXb2 - PVC SA - HMX 85 15 HTPB (900microm) - PVC SM

24 ns-precursors caused by radiation

absorption

dP P = 015

0 time 40 ns Shock motion in PVC SM

Ref HMX (114 microm)

SW in

put t

o sa

mpl

es

UF-HMX (16 microm)

F-HMX PCA (76 microm)

PBX b2 ndash PVC SA ndash P 8515 HTPB (1010 microm) ndash PVC SM induced shock in HMX particles P0 = 197 GPa

0

10

20

30

40

50

120 140 160 180 200 220

P H

E(G

Pa

)

time (ns)

HMX Ref HTPB

20 ns-precursor

Major front output

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

0

4000

8000

12000

40 80 120 160

time ns

Rad

iati

on

In

ten

sit

y [

Arb

itra

ry u

nit

s]

HMX ref -- F3

HMX ref -- F2

HMX ref -- F1

HMX ref aver

O

A

C

Major front output

Shock input

B

R = (ΔIΔt)OC (ΔIΔt)OA = 22

Kinetics RateReaction Radiance Test Basic Concept

Absolute shock reactivity value R at P0-initiation pressure is determined for each i-acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth

R = [(I final ndash I initial)(t final ndash t initial)]mean( ΔI0Δt0)mean

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 8: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

What is a realistic max density of β-HMX ndash Wersquove found ρ0 = 1951 gcmsup3

β-HMX crystal (5075 microm ρ0 =1893plusmn0012 gcmsup3 ) was splitted in median zone of the (0-1-0)-facet

β-HMX seed has a maximum packed molecular structure ρ0 = 195 ndash 196 gcmsup3 (ICT TNO Un Coimbra ρ0 = 1951 gcmsup3 WH Rinkenbach (1951) ρ0 = 196 gcmsup3 ) Outer layer represents a continuum the cluster-type substructures spaced by dislocation pits cracks and fissures The surface layer has the average density = 186 gcmsup3 Thickness of the outer cluster-shell in which the surface-defects are concentrated attains asymp20 of crystalrsquos cross-section or occupies roughly asymp 64 of its volume The defects-less ldquoseedrdquo has 195 gcmsup3-density and occupies asymp 36 of crystalrsquos volume

Relative volume of nanoscale-porosity υ of particles determined with respect to the voids-free

UF-HMX(06 microm)-particles υ = 100 times(1-ρ01951)

ldquoRef HMX(114 microm)rdquo

ldquoRC-HMX(1309 microm)rdquo

rdquo F-HMX (111 microm)rdquo

F-HMX PCA (76 microm)

ldquoUF-HMX (16 microm)rdquo

υ equiv 1

υ = 06 υ = 17

υ = 06 υ = 04

PBX

MFOP

shock

front

emission I0 ~ AT(t)4

transmitted radiance

Iτ = I0 - Iςα

scattering ldquoςrdquo amp

absorption ldquoαrdquo

reaction

spot

Z

-to

ES

C T

ho

mso

n

TS

N 5

06 N

Sp

ectr

al

ran

ge

450 n

m lt

λlt

850 n

m

ℓ-z(t)

SM

RS--PBAN-128

40 ns time

P(t

)-fi

eld

an

aly

zer

D(t)-analyzer

Spectral range 450 nm lt λ lt850 nm

Panoramic Multi-Channel Optical

Analyzer coupled with the ESC Thomson TSN

506 N

Multi-fiber Optical ProbePMMA-fibers Oslash250 microm

360 nm lt λ lt 850 nm

0

1

2

3

4

5

6

7

8

9

10

400 450 500 550 600 650 700 750 800 850 900

Att

en

ua

tio

n [d

Bm

]

Wave Length [nm]

Light intensity attenuation in the PG-S250-64 PMMA fibers(S-grade 250 microm-diameter)

Visible radiation 380 nm lt λ lt 760 nm

700600500400 800300

Near-infrared 760 nm lt λ lt 2500 nm

Ultra-violet 10 nm lt λ lt 400 nm

Multi-Channel Optical Analyzer MCOA-UC instrumented with optical fiber ribbon stacked optical monitor (SM) and ESC Thomson TSN 506N

Light intensity attenuation in optical fibers

Meso-scale probing of the 3D reaction zone structure temporal and spatial resolution 200 ps and 50-250 μm 96 independent registration channels Kinetic parameters time history of reaction radiance 360nm lt λ lt 850nm spectrum Sensitive to radiation from near-UV up to near-IR Dynamic parameters stress field (unlimited amplitude) in stacked optic monitor

Shock Reactivity vs Morphology and Density Kinetics RateReaction Radiance Test

HMX particles were bonded with HTPB and Epoxy binder in mass-ratios 8218 8515 amp 9010 Six samples Ǿ4x104mm tested simultaneously HMXEpoxy samples - voids-free PBX-charges of 99TMD -fabricated with use of slurry mixing low pressure pressing vacuum casting amp pressure curing in PMMA holder -HMXHTPB samples 96-98 TMD

Calibrated boosters induce P 0 = 19-20 GPa pressure in HMX particles of test

samples

P E -4AOslash25

detonator

Oslash 40steelP VC S A

350 microm

P VC S M

MF O P to E S C T homson T S N 506 N

B rass 15

T est samples oslash4 x 09

60

Z

Z

PVC SA

PVC SM

Bo

oste

ra

cc

ep

tor

MFOP

D

0 time 40 ns

UF-HMX (16 microm)

F-HMX (111 microm)

PMMA

SW input to samples

Shock motion in PVC SM

0

10

20

30

40

100 120 140 160 180 200 220

Str

es

s G

Pa

time ns

UF-HMX (16)

F-HMX (111)

PMMA

PBXb2 - PVC SA - HMX 85 15 HTPB (900microm) - PVC SM

24 ns-precursors caused by radiation

absorption

dP P = 015

0 time 40 ns Shock motion in PVC SM

Ref HMX (114 microm)

SW in

put t

o sa

mpl

es

UF-HMX (16 microm)

F-HMX PCA (76 microm)

PBX b2 ndash PVC SA ndash P 8515 HTPB (1010 microm) ndash PVC SM induced shock in HMX particles P0 = 197 GPa

0

10

20

30

40

50

120 140 160 180 200 220

P H

E(G

Pa

)

time (ns)

HMX Ref HTPB

20 ns-precursor

Major front output

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

0

4000

8000

12000

40 80 120 160

time ns

Rad

iati

on

In

ten

sit

y [

Arb

itra

ry u

nit

s]

HMX ref -- F3

HMX ref -- F2

HMX ref -- F1

HMX ref aver

O

A

C

Major front output

Shock input

B

R = (ΔIΔt)OC (ΔIΔt)OA = 22

Kinetics RateReaction Radiance Test Basic Concept

Absolute shock reactivity value R at P0-initiation pressure is determined for each i-acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth

R = [(I final ndash I initial)(t final ndash t initial)]mean( ΔI0Δt0)mean

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 9: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

PBX

MFOP

shock

front

emission I0 ~ AT(t)4

transmitted radiance

Iτ = I0 - Iςα

scattering ldquoςrdquo amp

absorption ldquoαrdquo

reaction

spot

Z

-to

ES

C T

ho

mso

n

TS

N 5

06 N

Sp

ectr

al

ran

ge

450 n

m lt

λlt

850 n

m

ℓ-z(t)

SM

RS--PBAN-128

40 ns time

P(t

)-fi

eld

an

aly

zer

D(t)-analyzer

Spectral range 450 nm lt λ lt850 nm

Panoramic Multi-Channel Optical

Analyzer coupled with the ESC Thomson TSN

506 N

Multi-fiber Optical ProbePMMA-fibers Oslash250 microm

360 nm lt λ lt 850 nm

0

1

2

3

4

5

6

7

8

9

10

400 450 500 550 600 650 700 750 800 850 900

Att

en

ua

tio

n [d

Bm

]

Wave Length [nm]

Light intensity attenuation in the PG-S250-64 PMMA fibers(S-grade 250 microm-diameter)

Visible radiation 380 nm lt λ lt 760 nm

700600500400 800300

Near-infrared 760 nm lt λ lt 2500 nm

Ultra-violet 10 nm lt λ lt 400 nm

Multi-Channel Optical Analyzer MCOA-UC instrumented with optical fiber ribbon stacked optical monitor (SM) and ESC Thomson TSN 506N

Light intensity attenuation in optical fibers

Meso-scale probing of the 3D reaction zone structure temporal and spatial resolution 200 ps and 50-250 μm 96 independent registration channels Kinetic parameters time history of reaction radiance 360nm lt λ lt 850nm spectrum Sensitive to radiation from near-UV up to near-IR Dynamic parameters stress field (unlimited amplitude) in stacked optic monitor

Shock Reactivity vs Morphology and Density Kinetics RateReaction Radiance Test

HMX particles were bonded with HTPB and Epoxy binder in mass-ratios 8218 8515 amp 9010 Six samples Ǿ4x104mm tested simultaneously HMXEpoxy samples - voids-free PBX-charges of 99TMD -fabricated with use of slurry mixing low pressure pressing vacuum casting amp pressure curing in PMMA holder -HMXHTPB samples 96-98 TMD

Calibrated boosters induce P 0 = 19-20 GPa pressure in HMX particles of test

samples

P E -4AOslash25

detonator

Oslash 40steelP VC S A

350 microm

P VC S M

MF O P to E S C T homson T S N 506 N

B rass 15

T est samples oslash4 x 09

60

Z

Z

PVC SA

PVC SM

Bo

oste

ra

cc

ep

tor

MFOP

D

0 time 40 ns

UF-HMX (16 microm)

F-HMX (111 microm)

PMMA

SW input to samples

Shock motion in PVC SM

0

10

20

30

40

100 120 140 160 180 200 220

Str

es

s G

Pa

time ns

UF-HMX (16)

F-HMX (111)

PMMA

PBXb2 - PVC SA - HMX 85 15 HTPB (900microm) - PVC SM

24 ns-precursors caused by radiation

absorption

dP P = 015

0 time 40 ns Shock motion in PVC SM

Ref HMX (114 microm)

SW in

put t

o sa

mpl

es

UF-HMX (16 microm)

F-HMX PCA (76 microm)

PBX b2 ndash PVC SA ndash P 8515 HTPB (1010 microm) ndash PVC SM induced shock in HMX particles P0 = 197 GPa

0

10

20

30

40

50

120 140 160 180 200 220

P H

E(G

Pa

)

time (ns)

HMX Ref HTPB

20 ns-precursor

Major front output

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

0

4000

8000

12000

40 80 120 160

time ns

Rad

iati

on

In

ten

sit

y [

Arb

itra

ry u

nit

s]

HMX ref -- F3

HMX ref -- F2

HMX ref -- F1

HMX ref aver

O

A

C

Major front output

Shock input

B

R = (ΔIΔt)OC (ΔIΔt)OA = 22

Kinetics RateReaction Radiance Test Basic Concept

Absolute shock reactivity value R at P0-initiation pressure is determined for each i-acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth

R = [(I final ndash I initial)(t final ndash t initial)]mean( ΔI0Δt0)mean

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 10: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

Shock Reactivity vs Morphology and Density Kinetics RateReaction Radiance Test

HMX particles were bonded with HTPB and Epoxy binder in mass-ratios 8218 8515 amp 9010 Six samples Ǿ4x104mm tested simultaneously HMXEpoxy samples - voids-free PBX-charges of 99TMD -fabricated with use of slurry mixing low pressure pressing vacuum casting amp pressure curing in PMMA holder -HMXHTPB samples 96-98 TMD

Calibrated boosters induce P 0 = 19-20 GPa pressure in HMX particles of test

samples

P E -4AOslash25

detonator

Oslash 40steelP VC S A

350 microm

P VC S M

MF O P to E S C T homson T S N 506 N

B rass 15

T est samples oslash4 x 09

60

Z

Z

PVC SA

PVC SM

Bo

oste

ra

cc

ep

tor

MFOP

D

0 time 40 ns

UF-HMX (16 microm)

F-HMX (111 microm)

PMMA

SW input to samples

Shock motion in PVC SM

0

10

20

30

40

100 120 140 160 180 200 220

Str

es

s G

Pa

time ns

UF-HMX (16)

F-HMX (111)

PMMA

PBXb2 - PVC SA - HMX 85 15 HTPB (900microm) - PVC SM

24 ns-precursors caused by radiation

absorption

dP P = 015

0 time 40 ns Shock motion in PVC SM

Ref HMX (114 microm)

SW in

put t

o sa

mpl

es

UF-HMX (16 microm)

F-HMX PCA (76 microm)

PBX b2 ndash PVC SA ndash P 8515 HTPB (1010 microm) ndash PVC SM induced shock in HMX particles P0 = 197 GPa

0

10

20

30

40

50

120 140 160 180 200 220

P H

E(G

Pa

)

time (ns)

HMX Ref HTPB

20 ns-precursor

Major front output

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

0

4000

8000

12000

40 80 120 160

time ns

Rad

iati

on

In

ten

sit

y [

Arb

itra

ry u

nit

s]

HMX ref -- F3

HMX ref -- F2

HMX ref -- F1

HMX ref aver

O

A

C

Major front output

Shock input

B

R = (ΔIΔt)OC (ΔIΔt)OA = 22

Kinetics RateReaction Radiance Test Basic Concept

Absolute shock reactivity value R at P0-initiation pressure is determined for each i-acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth

R = [(I final ndash I initial)(t final ndash t initial)]mean( ΔI0Δt0)mean

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 11: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

0 time 40 ns Shock motion in PVC SM

Ref HMX (114 microm)

SW in

put t

o sa

mpl

es

UF-HMX (16 microm)

F-HMX PCA (76 microm)

PBX b2 ndash PVC SA ndash P 8515 HTPB (1010 microm) ndash PVC SM induced shock in HMX particles P0 = 197 GPa

0

10

20

30

40

50

120 140 160 180 200 220

P H

E(G

Pa

)

time (ns)

HMX Ref HTPB

20 ns-precursor

Major front output

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

0

4000

8000

12000

40 80 120 160

time ns

Rad

iati

on

In

ten

sit

y [

Arb

itra

ry u

nit

s]

HMX ref -- F3

HMX ref -- F2

HMX ref -- F1

HMX ref aver

O

A

C

Major front output

Shock input

B

R = (ΔIΔt)OC (ΔIΔt)OA = 22

Kinetics RateReaction Radiance Test Basic Concept

Absolute shock reactivity value R at P0-initiation pressure is determined for each i-acceptor as a ratio between mean rate of full radiation growth and the initial rate of the reaction light growth

R = [(I final ndash I initial)(t final ndash t initial)]mean( ΔI0Δt0)mean

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 12: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

0

10000

20000

30000

40000

50000

0 50 100 150 200 250time (ns)

P05-F1

P05-F2

P05-F3

P05

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

Major front output

SW input

O

C

O1

AB

R = (ΔIΔt)OC (ΔIΔt)O1-A = 06

5000

15000

25000

35000

45000

0 50 100 150 200 250 300

time (ns)

Channel 1

Channel 2

Channel 3

SW input 21 ns

Major front outputPrecursor output

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

SW motion in PVC SM

A

O

B C

(ΔIΔt)OA = 78 ns-1

(ΔIΔt)OC = 206 ns-1

R = (ΔIΔt)OC (ΔIΔt)OA = 26 04

PBX b2 - ldquoUF-HMX (16 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

PBX b2 ndash ldquoF-HMX (1106 microm) 8518 HTPBrdquo-PVC SM 985 microm-sample

10000

15000

20000

25000

30000

35000

100 150 200 250 300

time (ns)

P03-F1

P03-F2

P03-F3

P03

PBXb2 - KSA - P 8515 Epoxy(985um) - KSM

Major front outputSW input

C

A B

R = (ΔIΔt)OC (ΔIΔt)OA = 06

Ra

dia

tio

n in

ten

sit

y

I (a

rbit

rary

un

its

)

O

PBX b2 ndash ldquoRC-HMX (1309 microm) 8518 HTPBrdquo-KSM 985 microm-sample

KRRR Test data

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 13: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

Detonation Failure Cone Test Determination of Detonation Failure Diameter

2

4

6

8

10

12

14

16

14 16 18 2 22 24 26 28 3 32 34

D lo

cal

(mm

us)

OslashPBX (mm)

HMX(165 plusmn 15 microm) 8218 wt HTPB

Detonation failure Oslash f = 165 mm

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 14: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

2

4

6

8

10

12

2 25 3 35 4 45 5

D lo

cal

(mm

us)

OslashPBX (mm)

UF-HMX(d 50 = 16 microm) 8515 HTPB

Detonation failure Oslash f = 220 mm

20

40

60

80

100

30 40 50 60 70

D [m

mm

s]

f [mm]

RC-HMX (1309 um)UF-HMX (164 um)HTPB = 06560164018

d f = 40 mm

time 200 ns between marks

Detonation Failure Cone Test Determination of Detonation Failure diameter

UF-HMX (16 microm) 8515 HTPB

The RS-PBX ldquoRC-HMXUF-HMXHTPB 65616418 wtrdquo is possessing the Detonation Failure diameter on the level of the purified TATB explosive material of 097 TMD (LASL data)

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 15: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

ID - HMX particles d50 dmin amp dmax ρ0 [gcm3] nano-Porosity

υ [vol ]

R Shock

Reactivity

Failure diam df

[mm]

Relative Shock

Sensitivity S

HMX ref (114408 um) 1877plusmn 0005 37 22 na equiv1 RC-HMX (1309 um) 1895plusmn 0007 29 06 na 03 F-HMX (1106 um) 1874plusmn0008 39 26 na 12

UF-HMX (Ball Milled) d50 = 164 um 19330005 09 04 22 02 F-HMX PCA 76 um 1939 06 1 na 05

HMX (420-595 um) 1893plusmn0012 3 13 252 06 HMX (180-210 um) na na na 155 na HMX (150-180 um) 1896 28 065 165 03 HMX (125-150 um) 1899plusmn0001 27 043 na 02

HMX (63-90 um) na na na 155 na HMX (45-53 um) 1886plusmn 0019 33 14 138 06

Fractions of HMX Class-3 particles

Shock Reactivity of PBXs vs HMX-particles Morphology Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 16: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

y = 17664x - 43158Rsup2 = 09622

0

05

1

15

2

25

3

0 05 1 15 2 25 3 35 4 45

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te v

alu

es

)

nano-voids in HMX particles υ (vol )

F-HMX 1106 microm

HMX (45-53 microm)HMX (420-595 microm)

RC-HMX 1309 microm

HMX (125-150 microm)UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA) HMX (150-180 microm)

Shock Reactivity of PBXs vs nano-porosity of HMX particles Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo (096-098TMD) amp ldquoHMX (85-90

wt )Epoxyrdquo (099TMD)

Agglomeration of particles causes

increase of shock reactivity

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 17: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

0

05

1

15

2

25

3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Sh

oc

k R

ea

cti

vit

y R

(A

bs

olu

te

HMX particle sizes d 50 (microm)

F-HMX 1106 microm

RC-HMX 1309 microm

UF-HMX 164 microm (BM)

F-HMX 76 microm (PCA)HMX (150-180 microm)

HMX Ref 1144 microm

HMX 8515 HTPB ρ0 asymp 096 TMD

Shock Reactivity of PBXs vs HMX-particle size Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Re-crystallization of particles provides decrease of shock

reactivity in 37 times

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 18: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

1

12

14

16

18

2

22

24

0 100 200 300 400 500 600

UF-HMX (Ball Mill) 164 um

HMX (420-595 um)

HMX (180-210 um)

HMX (150-180 um)

HMX (63-90 um)

HMX (45-53 um)

d failure vs HMX particle size

HMX particle sizes d (microm)

De

ton

ati

on

Failu

re D

iam

ete

r d

f (micro

m)

Detonation failure diameter of PBXs vs HMX-particle sizes Data Summary for PBXs ldquoHMX (82-85 wt )Epoxyrdquo amp ldquoHMX (85-90 wt )Epoxyrdquo

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB

Page 19: Decreasing a Shock Sensitivity of the HMX- & Detonics ......Decreasing a Shock Sensitivity of the HMX-based PBXs through the Morphology Modification of the HMX-Constituents 1IgorPlaksin,

Conclusive Remarks

Kinetic RateReaction Radiance Test and Detonation Failure Cone Test both instrumented with Multi-Channel Optical Analyzer MCOA-UC produce quantitative data on reaction rate in PBX-samples subjected to shock or detonation

Very small amount of test material (KR-RR Test 20mg Detonation Failure Test 800 mg) is required for tailoring PBXs on shock sensitivity

Role of HMX-particles morphology in shock sensitivity of PBXs is quantitatively described

Basic ldquomorphological factorrdquo determining a shock reactivity of HMX-particles is a nano-porosity of crystalline structure of the particlersquos surface layer

HMX-particles of micronsubmicron size demonstrate a shock reactivity in 5-7 times lesser than larger particles having 100-10microm sizes Experimental data are in good correlation with Kenneth Grahamrsquos results

In this context shock reactivity data strongly support the idea to minimize the amount of the surface micro-defects via the re-crystallization or comminuting particles up to the 05-1 microm-size

PBX-formulations composed with the re-crystallized particles a micron-size particles and HTPB in ratio 65616418 wt rdquo is possessing the insensitivity to shock on the level of the TATB