20

Click here to load reader

DeMoivre’s Theorem

Embed Size (px)

DESCRIPTION

DeMoivre’s Theorem

Citation preview

Page 1: DeMoivre’s Theorem

DeMoivre’s Theorem

The Complex Plane

Page 2: DeMoivre’s Theorem

Complex Number

A complex number z = x + yi can be interpreted geometrically as the point (x, y) in the complex plane. The x-axis is the real axis and the y-axis is the imaginary axis.

Page 3: DeMoivre’s Theorem

Complex Plane

Page 4: DeMoivre’s Theorem

Magnitude or Modulus of z

Let z = x + yi be a complex number. The magnitude or modulus of z, denoted by |z| is defined as the distance from the origin to the point (x, y). In other words

2 2z x y

Page 5: DeMoivre’s Theorem

Polar Form of a Complex Number

If r ≥ 0 and 0 ≤ ≤ 2, the complex number z = x + yi may be written in polar form as z = x + yi = (r cos ) + (r sin )i or z = r (cos + i sin )

The angle is called the argument of z. |z| = r

Page 6: DeMoivre’s Theorem

Plotting a Point in the Complex Plane and Writing it in Polar Form

Plot the point corresponding to z = 4 – 4i and write an expression for z in polar form

Plot the point 2 3 and write it in polar form.

Express the argument in degrees.

i

Page 7: DeMoivre’s Theorem

Plot the Point in the Complex Plane and Convert from Polar to Rectangular Form

Plot the point corresponding to

2(cos30 sin 30 )

in the complex plane, and write an

expression for in rectangular form.

o oz i

z

Page 8: DeMoivre’s Theorem

Write Numbers in Rectangular Form

2 (cos 120o + i sin 120o)

4 cos sin2 2i

Page 9: DeMoivre’s Theorem

Multiplying and Dividing Complex Numbers

1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2

2

1 11 2 1 2

2 2

Let (cos sin ) and cos sin

be two complex numbers. Then

cos sin

If 0, then

cos sin

z r i z r i

z z r r i

z

z ri

z r

Page 10: DeMoivre’s Theorem

Finding Products and Quotients of Complex Numbers in Polar Form

If z = 3 (cos 20o + i sin 20o) and w = 5 (cos 100o + i sin 100o), find (a) zw

(b) z/w

(c) w/z

Page 11: DeMoivre’s Theorem

DeMoivre’s Theorem

DeMoivre’s Theorem is a formula for raising a complex number to the power n.

If z = r (cos + i sin ) is a complex number, then

zn = rn [(cos (n) + i sin (n)] where n ≥ 1 is a positive integer.

Page 12: DeMoivre’s Theorem

Using DeMoivre’s Theorem

Write [2(cos 20o + i sin 20o)]3 in the standard form a + bi.

Page 13: DeMoivre’s Theorem

Using DeMoivre’s Theorem

= 23 [(cos (3 x 20o) + i sin (3 x 20o)] = 8 (cos 60o + i sin 60o)

1 38 4 4 3

2 2

Page 14: DeMoivre’s Theorem

Using DeMoivre’s Theorem

Write (1 + i)5 in standard form a + bi

First we have to change to (1 + i) to polar form

2 2

1

1 1 2

1tan

1 4

r

Page 15: DeMoivre’s Theorem

Using DeMoivre’s Theorem

5

5

2 cos sin4 4

2 cos 5 sin 54 4

5 54 2 cos sin

4 4

2 24 2 4 4

2 2

i

i

i

i

Page 16: DeMoivre’s Theorem

Finding Complex Roots

Let w = r(cos 0 + i sin 0) be a complex number and let n ≥ 2 be an integer. If w ≠ 0, there are n distinct complex roots of w, given by the formula

0 02 2cos sin

0,1,2,. . . , 1.

nk

k kz r i

n n n n

where k n

Page 17: DeMoivre’s Theorem

Finding Complex Roots

Find the complex fourth roots of -16i

First we have to change the number to polar form

22

1

0 16 16

16 3tan

0 2

r

Page 18: DeMoivre’s Theorem

Finding Complex Roots

1

4

3 316 cos sin

2 2

1 3 1 3(16) cos sin

4 2 4 2

3 2 3 22 cos sin , 0,1,2,3

8 4 8 4

3 32 cos sin

8 2 8 2

n

i

z i

k ki k

k ki

Page 19: DeMoivre’s Theorem

Finding Complex Roots

0

0

1

1

3 0 3 02 cos sin

8 2 8 2

3 32 cos sin

8 8

3 1 3 12 cos sin

8 2 8 2

7 72 cos sin

8 8

z i

z i

z i

z i

Page 20: DeMoivre’s Theorem

Finding Complex Roots

2

3

3 2 3 22 cos sin

8 2 8 2

11 112 cos sin

8 8

3 3 3 32 cos sin

8 2 8 2

15 152 cos sin

8 8

z i

i

z i

i