13
Departement Elektriese, Elektroniese & Rekenaar- Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha SiGe based SiGe based Multiple-phase VCO Multiple-phase VCO Operating for mm-Wave Operating for mm-Wave Frequencies Frequencies Deepa George Deepa George Saurabh Sinha Saurabh Sinha Microelectronics & Electronics Group University of Pretoria, South Africa Monday 27 June 2022

Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

Embed Size (px)

Citation preview

Page 1: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

Departement Elektriese, Elektroniese & Rekenaar-IngenieursweseDepartment of Electrical, Electronic & Computer EngineeringKgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha

SiGe based SiGe based Multiple-phase VCO Multiple-phase VCO Operating for mm-WaveOperating for mm-WaveFrequenciesFrequencies

Deepa GeorgeDeepa George

Saurabh SinhaSaurabh Sinha

Microelectronics & Electronics GroupUniversity of Pretoria, South Africa

Wednesday 19 April 2023

Page 2: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

mm-Wave systems• Unlicensed spectrum – 7 GHz bandwidth @ 60 GHz• Short range communication systems - specific attenuation

characteristics :10-15 dB/km • Highly advanced Silicon integrated circuit technology

eg: SiGe HBTs with fT = 500GHz

• Reduced antenna size – phased arrays

2

Page 3: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

Phased arrays

Phased array transmitter [1]

• Number of antenna elements

• Narrow-band systems

Phase control range = 360°

Phase resolution = 22.5°

• Phase shift @ RF, IF or LO

3

Page 4: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

Integrated phase shifter

•Vector sum phase shifting method

- Practically demonstrated at 5 GHz [1]

Vector sum method

I

Q

V

Vφ 1tan

Block diagram

2Q

2I VV RESV

4

Page 5: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

VCO• Centre frequency of 60 GHz and a tuning range to

accommodate process, voltage and temperature variations• Figure of merit

• Phase noise

• Phase noise improvement– Circuit techniques

• LC oscillators – lowest phase noise

• Fully differential configuration

• LC filtering technique

– Device technology

0( ,1Hz)( ) 10.log sideband

carrier

PL

P

21mW

FOM ( , ) 10.log cc

DC

fL f f

f P

5

Page 6: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

VCO – Basic topology

• High Q tank

• Qtank dependant on Qvaractor

– MOS varactors are preferred– Accumulation mode varactors

• Transmission lines as L

• Transistors biased at NFmin current density

• High tank swing

6

Page 7: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

Improving the phase noise•LC filtering technique – improves phase noise and tuning range [2]

Normal topology LC filtering technique

7

Page 8: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

SiGe BiCMOS technology

• Low 1/f noise • Graded Ge content in base

– Reduces base transmit time, b

– Increases unity gain frequency, ft

IBM SiGe structure Ge content in base

1~

2 Je Jc b e c e c Jc ns SUBt C

kTC C R R C R C

f qI

8

Page 9: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

Need for HICUM/L0• SGPM inaccurate for SiGe transistors at high frequencies

– Charge storage effects

– Internal base resistance

– Self-heating

– Base-Collector avalanche effect

• Advanced models (MEXTRAM, VBIC, HICUM/L2)

– Complicated – EC, model equations, parameter extraction and computational effort

• HICUM/L0 for high frequency circuit design [4]

SGPM equivalent circuit

9

Page 10: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

Design and Challenges

• Transistor model – Accurate and time-efficient• Interconnect modeling

- Transmission line effects• Substrate effects shielded/accurately modeled• Accurate extraction of layout parasitic effects• SpectreRF from Cadence

10

Page 11: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

Conclusion

• Integrated phase shifter– Reduce rms phase error

– Investigate the current scaled DACs effectiveness to compensate for the amplitude mismatch introduced by QAF

• Investigate techniques to improve the phase noise of the VCO

• Accuracy of HICUM/L0 for mm-wave designs

11

Page 12: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

References [1] A. Hajimiri, H. Hashemi, A. Natarajan, X. Guan and A. Komijani, “Integrated

Phased Array Systems in Silicon,” Proc. IEEE, vol. 93, no. 9, pp. 1637–1655, Sept. 2005.

[2] T. A. K. Opperman and S. Sinha, “A 5 GHz BiCMOS I/Q VCO with 360◦ variable phase outputs using the vector sum method,” Proc. IEEE PIMRC 2008 Symp., Cannes, pp. 1–5, 15-18 Sept. 2008.

[3] H. Li and H. M. Rein, “Millimeter-Wave VCOs With Wide Tuning Range and Low Phase Noise, Fully Integrated in a SiGe Bipolar Production Technology,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 184–191, Feb. 2003.

[4] M. Schröter, S. Lehmann, S. Fregonese and T. Zimmer, “A Computationally Efficient Physics-Based Compact Bipolar Transistor Model for Circuit Design Part I: Model Formulation,” IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 279–286, Feb. 2006.

12

Page 13: Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,

Feedback/QuestionsDeepa GeorgeCarl & Emily Fuchs Institute for MicroelectronicsDept.: Electrical, Electronic & Computer EngineeringUniversity of PretoriaPretoria 0002SOUTH AFRICA

E-mail: [email protected]

13

Acknowledgements

The authors would like to thank the Federal Ministry for Education and Research (BMBF), Germany and National Research Foundation (NRF), South Africa for enabling bilateral collaboration; particularly for enabling reciprocity around usage of the High Current Model (TU-Dresden).