Design Elements of Treatment Technology - Cole Et Al

Embed Size (px)

Citation preview

  • 8/2/2019 Design Elements of Treatment Technology - Cole Et Al

    1/11

    Presentedat2007VirginiaAWWA/WEAWaterJAM

    THEDESIGNELEMENTSOFSTATEOFTHEARTTREATMENTTECHNOLOGY:MBR

    WASTEWATERTREATMENTSYSTEMS

    AnnCopeland,

    PE,*

    Hampton

    Roads

    Sanitation

    District

    KirkCole,Ph.D.,PE,**McKim&CreedPA

    RaymondBarrows,PE,CommonwealthofVirginia,Dept.ofEnvironmentalQuality

    JamesC.Pyne,Ph.D.,PE,BCEE,HamptonRoadsSanitationDistrict

    *Presenter

    **PrincipalAuthorandContactforQuestions

    Abstract

    TheVirginiaWaterQualityImprovementActof1997wasenactedinresponsetotheneedto

    financethenutrientreductionstrategiesbeingdevelopedfortheChesapeakeBayandits

    tributaries.PursuanttotheAct,theCommonwealthestablishedintheStatetreasuryaspecialpermanent,nonrevertingfundknownasthe VirginiaWaterQualityImprovementFund.

    Legislationpassedduringthe2006legislativesession(SB644Watkins)amendedtheWater

    QualityImprovementFundwithrespecttoseveralissues.Notably,SB644includedachangeto

    thenumericalconcentrationlimitsingrantagreementssothattheyarebaseduponthe

    technologyinstalledatthefacility(technologybasedlimits). Tofurtherfacilitateandassure

    anequitablegrantprocess,DEQdevelopedguidancememorandum (GM)#062012.Boththe

    GMandthewasteloadallocationregulation(9VAC2582010)currentlydefine stateoftheart

    nutrientremovaltechnology astechnologythatwillachieveanannualaveragetotalnitrogen

    effluentconcentrationof3mgL1andanannualaveragetotalphosphoruseffluent

    concentrationof0.3mgL1,orequivalentloadreductionsintotalnitrogenandtotalphosphorus

    throughrecycleorreuseofwastewaterasdeterminedbytheDepartment.Theproven

    technologiesforcompliancewiththisdefinitionincludebiologicalnutrientremovalwith

    supplementalcarbonandphosphorusremovalbyusingaphysiochemicalprecipitationprocess.

    Amembranebioreactor(MBR)isawastewatertreatmentprocessthatcanbecoupledwitha

    biologicalnutrientremovalandphysiochemicalprocesstomeettheneedforsupportingthe

    WaterQualityImprovementAct.Currently,theteamcomprisedofHRSD,DEQandMcKim&

    CreedhasidentifiedtheminimumdesignrequirementsofaMBRWastewaterTreatment

    Systemtocomplywiththepermittedeffluentrequirementsforthewastewatersystemandthe

    currentstateoftheartnutrientremovalrequirementsfornitrogenandphosphoruslimits.This

    paperwilladdressthefundamentaldesignrequirementsneededfortheMBRwastewater

    treatmentsystemscompliancewiththeregulatedeffluentlimitsandincludeadiscussionoftechnicalissuesthatwereaccountedforintheprocessanalysis.Thepaperwillalsoincludea

    discussionofbiologicalmodelingasameanstohelpevaluatethedesigncriteria.The

    informationpresentedinthispapershouldhelpengineers, regulatoryagencies,andowners

    addresstheminimumrequirementsforinitiatingaMBRwastewatertreatmentsystem.

    http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://www.deq.virginia.gov/bay/ApplicationReviewProceduresWQIF.pdfhttp://www.deq.virginia.gov/bay/ApplicationReviewProceduresWQIF.pdfhttp://www.deq.virginia.gov/bay/ApplicationReviewProceduresWQIF.pdfhttp://www.deq.virginia.gov/bay/ApplicationReviewProceduresWQIF.pdfhttp://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117
  • 8/2/2019 Design Elements of Treatment Technology - Cole Et Al

    2/11

    Introduction

    TheVirginiaWaterQualityImprovementActof1997wasenactedinresponsetotheneedto

    financethenutrientreductionstrategiesbeingdevelopedfortheChesapeakeBayandits

    tributaries.PursuanttotheAct,theCommonwealthestablishedintheStatetreasuryaspecial

    permanent,nonrevertingfundknownasthe VirginiaWaterQualityImprovementFund.

    Legislationpassedduringthe2006legislativesession(SB644Watkins)amendedtheWaterQualityImprovementFundwithrespecttoseveralissues.Notably,SB644includedachangeto

    thenumericalconcentrationlimitsingrantagreementssothattheyarebaseduponthe

    technologyinstalledatthefacility(technologybasedlimits). Tofurtherfacilitateandassure

    anequitablegrantprocess,DEQdevelopedguidancememorandum (GM)#062012.Boththe

    GMandthewasteloadallocationregulation(9VAC2582010)currentlydefine stateoftheart

    nutrientremovaltechnology (SOA)astechnologythatwillachieveanannualaveragetotal

    nitrogeneffluentconcentrationof3mgL1andanannualaveragetotalphosphoruseffluent

    concentrationof0.3mgL1,orequivalentloadreductionsintotalnitrogenandtotalphosphorus

    throughrecycleorreuseofwastewaterasdeterminedbytheDepartment.Theproven

    technologiesforcompliancewiththisdefinitionincludebiologicalnutrientremovalwithsupplementalcarbonandphosphorusremovalbyusingaphysiochemicalprecipitationprocess.

    Themembranebioreactor(MBR)wasawastewatertreatmentprocessthatcanbecoupledwith

    biologicalnutrientremovalandphysiochemicalprocesstomeettheneedforsupportingthe

    WaterQualityImprovementAct(WQIA).

    GiventheKingWilliamWastewatertreatmentplant,locatedinKingWilliamCounty,Virginia,

    providesservicetoseveralsmallcommercialestablishments,acarwash,andresidential

    dischargers,aneedwasidentifiedtoexpandtheexistingfacilityasasmallwastewatersystem.

    Currently,theflowisabout15,000gallonsperdayandhasbeenidentifiedtobeexpandedto

    100,000gallonsperdayforservicetoprimarilyresidentialgrowth.Duetothestringent

    environmentalregulation,conventionalwasteactivatedsludgewastewatertreatmentplants

    maynotprovidetheleveloftreatmentrequiredtocomplywith3mgL1nitrogenand0.3mgL1

    phosphorusintheeffluent.CoupledwiththeneedformeetingthenewWQIAdischargelimits

    wastheneedfor:handlingvariableflow;providingareasonableeconomicsolution;successin

    treatinghighammoniawastewater;andsatisfyingthepotentialrelocationofthetreatment

    works,thusinvolvinganabandonmentoftheexistingtreatmentplantsiteinthefuture.A

    projectgoalwasestablishedtodeployaSOAtreatmentsystemthatwouldcomplywiththese

    conditionsthroughuseofaMBRwastewatertreatmentsystem.

    TheMBRwastewatertreatmentsystemhasgainedwideuseintheUS(Yangetal.,2006)andits

    applicationwouldachievethedesiredperformancebasedontheinfluentconditionsandwastewatercharacteristics.Previousstudyforsmallwastewatertreatmentsystemsindicated

    thattheMBRwastewatertreatmentsystemswereeconomicalandcouldmeetvariableinfluent

    characteristics,performanceobjectives,andsiteconstraints(Cole,2002).TheMBRtreatment

    systemhasbeendemonstratedto:reduceBODgreaterthan98%(Kishinoetal.,1996);reduce

    COD84%(FanandHaung, 2002),94%(Bracklowetal.,2007)(Wangetal.,2005),95%

    (Rosenbergeretal.,2002),97%(Badanietal.,2005)(Atigaetal.,2005)to98%(AlMalacketal.,

    http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117http://www.deq.virginia.gov/bay/ApplicationReviewProceduresWQIF.pdfhttp://www.deq.virginia.gov/bay/ApplicationReviewProceduresWQIF.pdfhttp://www.deq.virginia.gov/bay/ApplicationReviewProceduresWQIF.pdfhttp://www.deq.virginia.gov/bay/ApplicationReviewProceduresWQIF.pdfhttp://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+10.1-2117
  • 8/2/2019 Design Elements of Treatment Technology - Cole Et Al

    3/11

    2007);produceaconsistentNH4+N+removalrate91%(Wangetal.,2005),94%(Kishinoetal.,

    1996),98%(FanandHaung, 2002),and99%(Gaoetal.,2004a);exhibitaconsistentnitrate

    removalforwastewaterthroughdenitrification(Wasiketal.,2001),60%denitrification

    (Yamamotoetal.,1989),74%TNremoval(Wangetal.,2005),and82%nitrogenremoval

    (Rosenbergeretal.,2002); provide5logremovalofE.coli(Ottosonetal.,2006);andeliminate

    greaterthan97%phosphorus(Bracklowetal.,2007).MBRperformanceforwastewater

    containingammoniawasfoundtobecompletelyconvertedNH4+NtoNO3Nascomparedtoa

    conversionrateof95%forconventionalactivatedsludgeprocesses(Gaoetal.,2004b).

    DuetodifferencesinMBRwastewatertreatmentsystemsmanufacture,membranes,siteand

    operationalconstraints,severalobjectiveswereidentifiedforthedesignoftheKingWilliam

    Wastewatertreatmentsystem.ThekeyobjectivewastoidentifydesignelementsfortheMBR

    wastewatertreatmentsystemthatwouldprovidereasonableresulttowardaccomplishingthe

    establishedprojectgoal.

    TechnicalEvaluation

    BecausethereweremultipleMBRwastewatertreatmentsystemscapableofcomplyingwiththe

    project,thedesignelementsweredividedintothreeprimarycategories.Thesewereuseof

    existingfacilities,treatmentperformance,andportability.

    ExistingFacilities

    TheMBRSOAtreatmentsystemcriteriaconsideredthemaximumuseofexistingtreatment

    facilities.Theseconsiderationsincludedasystematicevaluationoftheconditionoftheexisting

    facilityfromtheplantintaketotheexistingoutfall,Figure1.Beginningattheplantintake,

    existingcoursescreeningworkswereidentifiedandthesescreenswereidentifiedtoremain.

    Thegravitypipelocatedfromtheintakeworkstotheexistingtreatmentfacilitieswaschecked

    toconfirmfuturecapacity.

    TertiaryTreatment

    TreatmentPlant

    Sludge DryingBed

    UVSystem

    CascadeAerator

    Lab ScreenHeadworks

    ResourceProtection

    Area

    FacilityPerimeter

    Fence

    N

    SITE LAYOUTNOT TO SCALE

    Figure1.ExistingWastewaterTreatmentFacilitySchematicDiagram

    DiagramBy:YasuhitoKai,NicoleTurnbull,JohnDonohue,RamPrasad

    CivilandEnvironmentalEngineeringDept.,OldDominionUniversity,Norfolk,May2004N

  • 8/2/2019 Design Elements of Treatment Technology - Cole Et Al

    4/11

    Theexisting25,000gallonperdaywastewatertreatmentplantwasaconventionalwaste

    activatedtreatmentplantbuiltandinstalledinground.Theexistingtreatmentplantwas

    evaluatedfor1)useduringconstructionofthenewMBRfacilities,2)materialcondition,and3)

    futureuse.Basedonassessmentoftheexistingfacility,itwasdeterminedthatitsbestvaluefor

    usewasthatofanequalizationfacility.TheMBRSOAsystemcannormallytoleratevariableflowsandloadingrates(Stepehsonetal.,2000)anddoesnotnormallyrequireflows

    equalization;however,theperceivedadvantageforuseoftheexistingtreatmentplantas

    tankagewasincluded,Figure2.

    Figure2.MBRProcessSchematic.

    Theexistingsanddryingbedswerenotconsideredtobeneededforsolidshandling,as

    operationsintended

    to

    use

    trucks

    for

    hauling

    solids

    on

    aroutine

    biweekly

    basis.

    Other

    existing

    facilitiesthatwouldnotbeneededfortheMBRsystemincludeduseoftheexistingUV

    disinfectionsystem,sandfilterslocateddownstreamofthewastewatertreatmentplant,andthe

    aerationstepslocatedaheadoftheoutfall.Theconcretesteppedaeratorwouldbeconvertedto

    aflowchamberforuseasacompliancemonitoringsamplepointthathelpedtoimproved

    hydraulicperformanceatincreasedplantflow.Outfallpipingwascheckedtoconfirmthatthe

    linewassuitableforfutureflows.

  • 8/2/2019 Design Elements of Treatment Technology - Cole Et Al

    5/11

    TreatmentPerformance

    ThetreatmentperformanceoftheMBRtomeettheprojectgoalwasidentifiedbyindicatingthe

    criteriaforeffluentlimits.MBRsystemshavebeenprovensuccessfultomeetstringenteffluent

    requirementsandthishasbeendemonstratedbyreuserequirements(Ernstetal.,2007)that

    exceedwastewaterpermitrequirementsandwastewatersthatcontainsurfactants(Dhouibetal.,

    2005).TheMBRwastewatertreatmentsystemdesignelementsincludethoseparametersinTable1forthelimitsforwastewatereffluent:

  • 8/2/2019 Design Elements of Treatment Technology - Cole Et Al

    6/11

    Table1

    MBRSystemEffluentParameters

    Parameter Value Remarks

    Dailyflow,gpd Initial StartUp

    Flow

    30,000

    AverageDailyFlow 100,000

    MaximumDaily

    Flow

    200,000

    PeakHourlyFlow 250,000

    cBOD5,mgL1 Influent: 208to674 (CarbonaceousBOD)

    Effluent 10(Monthly

    Average)

    Effluent 15(WeeklyAverage) cBOD5mustbereduced

    byatleast85%of

    influent.TSS,mgL1 Influent 218to744

    Effluent 10(Monthly

    Average)

    Effluent 15(WeeklyAverage) TSSmustbereduced

    byatleast85%of

    influent.

    DissolvedOxygen,mgL1 Influent(Estimated) Zero

    Effluent 5.0

    pH 0to14S.U

    Influent

    6.8

    to

    7.5

    Effluent 6.0to9.0

    E.Coli,n/100mL Influent Unknown

    Effluent 126(geometricmean)

    Nitrogen,mgL1 Influent

    TKN 25.9to186

    TKN(average) 71.3

    NH3 7.5to74.6

    NH3(average) 40

    Effluent 3.0(Monthly

    Average)

    Permittedvalue

    Effluent 4.5(Weekly

    Average)

    TotalPhosphorous,mgL1 Influent 5.9to41.1

    Influent(average) 10.4

    Effluent

  • 8/2/2019 Design Elements of Treatment Technology - Cole Et Al

    7/11

    Alkalinity,mgL1asCa

    CO3

    Influent 117to362

    Influent(average) 264.9

    Effluent 75

    Thesystemconfigurationtomeettheseeffluentlimitsgenerallyconsistedoftwoindividual50,000gallonperdayMBRs,includingallbiologicaltanks,membraneoperatingtanks,influent

    screeningandanUVdisinfectionsystem. TheMBRsystemwasidentifiedtocontain

    membranetankwithmanifoldsandsupportsforcontainingthemembranesandthe

    membranescomprisedofeitherproprietary,PVDF,orpolyethylenematerialswithaporesize

    notmorethan0.1micronorasrequiredtomeettheprojectconditions. Thesystemwouldalso

    berequiredtocontainafiltrationmanifold,airmanifoldandmixedliquormanifold. Eachof

    themembranetankswastobelargeenoughtocontaintherequirednumberofmembranes,

    sizedtoremovethemembranesforreplacementorservice,andbeseparatedfromthe

    remainderoftheprocessvolumefortherequiredbiologicalreactions.Themembranetanks

    couldformpartoftheaerobicbiologicaltreatmentvolume. Themixedliquorwasidentifiedtobefedtothemembranetanksfromtheremainderofthebiologicalsystemalongwithair. The

    MBRsystemconfigurationwastypicalinthatallmembraneswereconnectedtoacommon

    permeateheaderandpumps,withpermeateultimatelypassingthroughthemembranestothe

    existingwastewaterplantoutfall. Thesystemalsoincludedinplacechemicalcleaningwiththe

    neededpipingandvalvestoallowautomaticflushingofallmembranemanifoldsand

    appurtenanceswithcleaningchemicals.Automationinthesystemscontrolandmonitoring

    functionswasdevisedtoassistinthereductionofstafftimeonsite.

    ComputerModeling

    Manydesignsandprocessesarepossibleandthecalculationsusedtosupportthesedesignscan

    becomplex.Tohelpdevelopasystematicmethodforinterpretationoftheprocesseswiththeir

    respectivecalculationsandresults,computermodelingwasused.Thiscomputermodeling

    includesallmajorunitprocesses,calculations,andresultsindicatinginfluentdataand

    compliancewitheffluentrequirements.ComputersoftwaresuchasBioWin(version2.2)by

    EnviroSimAssociatesLtd.usesageneralActivatedSludge/AnaerobicDigestionmodelwhichis

    referredtoastheBioWinGeneralModel.Themodelincludes50statevariablesand60process

    expressionswheretheseexpressionsareusedtodescribethebiologicalprocessesoccurringin

    activatedsludgeandanaerobicdigestionsystemsandseveralchemicalprecipitationreactions.

    Althoughthemodelwasnotcalibrated,themodelhelpstoprovideabenefitforusein

    predictionofthesystemperformance,futureoperationsanddecisionmaking.Thearrangement

    processesuniquetotheBioWincomputermodelwouldbesimilartoFigure3.

  • 8/2/2019 Design Elements of Treatment Technology - Cole Et Al

    8/11

    Figure3.TypicalprocessarrangementBioWincomputermodelforMBRwastewater

    treatmentsystem.CourtesyofReidEngineeringCompany,Inc.(5403718500).

    Portability

    Theexistingactivatedsludgewastewatertreatmentplantwasconstructedcirca1999.The

    facilitywithlandsarecurrentlyleasedfromtheCounty.Thesitewassmallandlimitedinthe

    amountofspacethatcouldbebuiltout.Thesite,however,wasfoundtobeofanadequatesize

    toaccommodateaninitial100,000gpdMBRtreatmentfacilitysuitableforadesignlife

    expectancyof20yearswithanexpansionofanadditional100,000gpdMBRtreatmentplant.

    Futureflowstothetreatmentplantbeyond200,000gpdwillrequireexpansionbeyondthe

    capabilityoftheexistingsitetosupportanyfurtherexpansion.Shouldtheplantrequire

    additionalspaceforexpansion,thenewMBRtreatmentplantwillberelocated.Asadesign

    elementtotheproject,theMBRwastewatertreatmentsystemwasrequiredtoincorporate

    portability.TheportablenatureoftheMBRwastewatertreatmentfacilitygenerallyincluded

    removingallprimarysystems.Thisportabilitywasalsodemonstratedbythemethodsusedfor

    installation,Figure4.

    Figure4.PortabilityoftheMBRWastewaterTreatmentSystem

    asDemonstratedbyInstallationMethod.

  • 8/2/2019 Design Elements of Treatment Technology - Cole Et Al

    9/11

    Conclusions

    ThedesignelementsidentifiedforaMBRwastewatertreatmentsystemwerefoundsuccessful

    forfacilitatingstartupandoperationofthefacility,andformeetingtheintendedwastewater

    effluentqualityobjectivesandresults.Alleffluentrequirementsidentifiedhavebeensatisfied.

    UseofexistingtreatmentfacilitieshavebeenfoundtoenhanceoperationoftheMBRsystem.Inadditiontocompliancewithstringentregulatorydischargerequirements,thesignificantbenefit

    gainedfromtheuseofMBRtreatmentsystemwasprojectschedule.Thetotaldurationfrom

    projectconceptiontosubstantialcompletionwasapproximately11months.Otherinherent

    valueoftheMBRtreatmentsystemwastheportabilityofthesystemthatwasalsoidentifiedas

    criticaltowardthesystemstotalsuitabilityforuse.AstheMBRtreatmentsystemeffluent

    qualityhasbeenfoundtoexceedregulatoryrequirementsandprojectexpectations,thesystem

    canberelocatedinthefutureforuseatotherlocationsasasatelliteorscalpingplant.

    Throughouttheprojectdevelopment,frominitialconception,design,shopdrawingreview,to

    installation,itwasnotedthatastrongteamcomprisedoftheOwner(HRSD),Engineer(McKim&Creed,PA),RegulatoryAuthority(DEQ),Contractor(MEB),and MBREquipment

    Manufacturer(Heyward,Inc.)wascriticaltowardtheprojectsoverwhelmingsuccess.In

    particular,opencommunicationsandawillingnesstoparticipateinvalueengineeringbyall

    teammembersturnedthisverygoodprojectintoanexcellentproject.

    ThedesignelementsselectedfortheMBRwastewatertreatmentsystemresultedinasystem

    thatmetandexceededtheestablishedprojectobjectivesandgoal.Thebenefitsgainedfromuse

    ofanMBRSOAsystemwillimproveourenvironmentandhelpmeetregulatoryrequirements

    wellintothefuture.

    References

    Yang,W.,Cicek,N,andIlg,J.(2006)Stateoftheartofmembranebioreactors:Worldwide

    researchandcommercialapplicationsinNorthAmerica.JournalofMembraneScience270,201

    211.

    Cole,S.K.(2002)PreliminaryProcessFeasibilityEvaluation,MembraneBiologicalReactor

    (MBR)InstallationforWestPointandUrbannaWastewaterTreatmentPlants,CE895,

    MembraneWater/WastewaterCivilandEnvironmentalEngineeringDept.,OldDominion

    University.

    Kishino,H.,Ishida,H.,Iwabu,H.,andNakano,I.(1996)Domesticwastewaterreuseusingasubmergedmembranebioreactor.Desalination106,115119.

    Fan,B.,andHuang,X.(2002)CharacteristicsofaSelfFormingDynamicMembraneCoupled

    withaBioreactorforMunicipalWastewaterTreatment.EnvironmentScience&Technology36,

    52455251.

  • 8/2/2019 Design Elements of Treatment Technology - Cole Et Al

    10/11

    Bracklow,U.,Drews,A.,Vocks,M.,andKraume,M.(2007)Comparisonofnutrients

    degradationinsmallscalemembranebioreactorsfedwithsynthetic/domesticwastewater.

    JournalofHazardousMaterials144,620621.

    Wang,Y.,Huang,X.,andYuan,Q.(2005)Nitrogenandcarbonremovalsfromfoodprocessing

    wastewaterbyananoxic/aerobicmembranebioreactor.ProcessBiochemistry

    40,

    1733

    1739.

    Rosenberger,S.,Kruger,U.,Witzig,R.,Manz,W.,Szewzyk,U.,andKraume,M.(2002)

    Performanceofabioreactorwithsubmergedmembranesforaerobictreatmentofmunicipal

    wastewater.WaterResearch36,413420.

    Badani,Z.,AitAmar,H.,SiSalah,A.,Brik,M.,andFuchs,W.(2005)Treatmentoftextilewaste

    waterbymembranebioreactorandreuse.Desalination185,411417.

    Artiga,P.,Ficara,E.,Malpei,F.,Garrido,J.M.,andMendez,R.(2005)Treatmentoftwo

    industrialwastewatersinasubmergedmembranebioreactor.Desalination179,

    161

    169.

    AlMalack,M.H.(2007)Performanceofanimmersedmembranebioreactor(IMBR).Desalination

    214,112127.

    Gao,M.,Yang,M.,Li,H.,Wang,Y.,andPan,F.(2004a)Nitrificationandsludgecharacteristics

    inasubmergedmembranebioreactoronsyntheticinorganicwastewater.Desalination170,177

    185.

    Wasik,E.,Bohdziewicz,J.,andBlaszczyk,M.(2001)Removalofnitrateionsfromnaturalwater

    usingamembranebioreactor.SeparationandPurificationTechnology2223,383392.

    Yamamoto,K.,Hiasa,M.,Mahmood,T.,andMatsuo,T.(1989)Directsolidliquidseparation

    usinghollowfibermembraneinanactivatedsludgeaerationtank.Wat.Sci.Tech.Vol.21,4354.

    Ottoson,J.,Hansen,A.,Bjorlenius,B.,Norder,H.,andStenstrom,T.A.(2006)Removalof

    viruses,parasiticprotozoaandmicrobialindicatorsinconventionalandmembraneprocessesin

    awastewaterpilotplant.WaterResearch40,14491457.

    Gao,M.,Yang,M.,Li,H.,Yang,Q.,andZhang,Y.(2004b)Comparisonbetweenasubmerged

    membranebioreactorandaconventionalactivatedsludgesystemontreatingammoniabearing

    inorganicwastewater.Journalof

    Biotechnology

    108,

    265

    269

    Ernst,M.,Sperlich,A.,Zheng,X.,Gan,Y.,Hu,J.,Zhao,X.,WangJ.,andJekel,M.(2007)An

    integratedwastewatertreatmentandreuseconceptfortheOlympicPark2008,

    Beijing.Desalination202,293301.

  • 8/2/2019 Design Elements of Treatment Technology - Cole Et Al

    11/11

    Dhouib,A.,Hdiji,N.,Hassairi,I.,andSayadi,S.(2005)Largescaleapplicationofmembrane

    bioreactortechnologyforthetreatmentandreuseofananionicsurfactantwastewater.Process

    Biochemistry40,27152720.

    http://www.envirosim.com/downloads/modelsusedinbiowin.pdf

    Stephenson,T.,Judd,S.,Jefferson,B.,andBrindleK.(2000)MembraneBioreactorsFor

    WastewaterTreatment,By,IWAPublishing,AllianceHouse,12CaxtonStreet,London

    SW1H0QS,UK.

    http://www.envirosim.com/downloads/modelsusedinbiowin.pdfhttp://www.envirosim.com/downloads/modelsusedinbiowin.pdf