30
1 Design of Chemical Reactors in Recycle Systems from Plantwide Control Perspective C.S. Bildea and A.C. Dimian University of Amsterdam

Design of Chemical Reactors

Embed Size (px)

DESCRIPTION

Design of Chemical Reactors

Citation preview

Page 1: Design of Chemical Reactors

1

Design of Chemical Reactors in Recycle Systems

fromPlantwide Control Perspective

C.S. Bildea and A.C. DimianUniversity of Amsterdam

Page 2: Design of Chemical Reactors

2

Outline

• Plantwide control• Isothermal reactor

– One-reactant– Two-reactants

• Adiabatic reactor• Non-adiabatic reactor

Page 3: Design of Chemical Reactors

3

Plantwide control

• “control loops needed to operate an entire process and achieve its design objectives” (Luyben)

• “not concerned with tuning and behaviour of all control loops … , but rather with the control philosophy of the overall plant” (Skogestad)

Page 4: Design of Chemical Reactors

4

Systemic approach to Plantwide control

Chemical plant

Heat-integrated reactors

AB

BC

C

A

BABC

HX1

HX1

PF

C

Heat-integrated distillation

Azeotropic distillation with solvent recycle

Unit operation

Connections

Raw materials

Unit operation

Products

By-products

Purge

Page 5: Design of Chemical Reactors

5

Systemic approach to Plantwide control (2)

• Local control – unit operations, complex structures

• Plantwide control – Mass balance

• Reactants• Products• Impurities

– Energy balance

•Reactor•Separation•Recycle

Page 6: Design of Chemical Reactors

6

Reactor – Separator –Recycle

Gasseparation

Liquid separation

G-L

F

R

S

Y

P

Reactor

RecycleFeed

Products

Page 7: Design of Chemical Reactors

7

First-order reaction in isothermal CSTR

( ) ( ) ( )( ) 0111

,,,

, =−⋅−⋅−

−=ASYA

ASYA xx

xDaDaxgα

α

Dimensionless mass balance

Aµ,AVFVkDa ⋅= (first-order reaction)

Reactor: Plant Damkohler number:

Separation:recovery / purity of reactants / products

Page 8: Design of Chemical Reactors

8

Solution of mass balance equation

-1

-0.5

0

0.5

1

0.1 1 10Da

xA

α Y,S=1α Y,S=0.9

α Y,S=0.9

α Y,S=1T

α Y,S =0

Dacr = 1

Page 9: Design of Chemical Reactors

9

Other one-reactant systems

PFR

nth-order (CSTR, PFR)

Purity < 1

1=> crDaDa

YA,

PB,cr

zz

DaDa =>

1

Aµ,Aµ,A

1−

⋅⋅=

n

VVFVkDa

Page 10: Design of Chemical Reactors

10

Design and control (1)

LC

CC

CC

FC

FA

V

zB,P=1Sepa

ratio

n

(a)

Page 11: Design of Chemical Reactors

11

Production change (1)

0

2

4

6

0.7 1 1.3F A/F *A

S/ F

* A

Da *=10

Da *=1.5

Da *=2

Da *=3

Da *=5

z A,Y=0.95

Page 12: Design of Chemical Reactors

12

Design and control (2)

FC

CC

CCLC

V

S

zB,P=1Sepa

ratio

n

(b)

Page 13: Design of Chemical Reactors

13

Production change (2)

0

5

10

0.7 1 1.3F A/F *A

kV/(V

µµ µµF* A

)

Da *=5

Da *=1.2

Da *=1.5

Da *=2

Da *=3

z A,Y=0.95

Page 14: Design of Chemical Reactors

14

Bifurcations

T

Transcritical

“Perturbed” Transcritical (1) “Perturbed” Transcritical (2) ????

Page 15: Design of Chemical Reactors

15

Two-reactants system

A

B

P

LC3LC3

LC2LC2

LC4LC4

LC1LC1

FCFC

FCFCB feed(fB,0)

A recycle (f3, zA,3)

B recycle

SP=fRec, B

(fRec, B)

f2, zA,2, zB,2

(f5, zB,5)

A feed

Products→+ BA

Products

Page 16: Design of Chemical Reactors

16

Multiple steady states

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25Da

X A

f Rec,B=10

53

2

1.21.5

(Dacr)min=4

Page 17: Design of Chemical Reactors

17

Complex kinetics - polymerization

0.00001

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500Da

X

Page 18: Design of Chemical Reactors

18

Conclusions (1)

• Plant Damkohler number

• Feasibility Da > Dacr

• Design Control– Small reactor – manipulate reaction conditions– Large reactor – reaction conditions may be constant

Page 19: Design of Chemical Reactors

19

Bifurcations

T

Transcritical Pitchfork

P

????

Page 20: Design of Chemical Reactors

20

First-order reaction in adiabatic CSTR

LC

CC

CC

FC

FA

V

zB,P=1Sepa

ratio

n

LC

CC

CC

FC

FA

V

zB,P=1Sepa

ratio

n

Model parameters:• Reactor : Da• Separation : zA,3• Reaction

•Adiabatic temperature rise : B•Activation energy : γ

zA,3

Page 21: Design of Chemical Reactors

21

Results

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5Da

X

γ=25z A3=1

Β =0.04=1/γ

B =0.08

B =0.12B =0.16

B =0.2

B < 1/γ

Page 22: Design of Chemical Reactors

22

Which reactor ?

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4B

Da LP

z A3=12 steady states

no steady state

γ=40 2030

B=1/γ

Page 23: Design of Chemical Reactors

23

What conversion ?

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25B

X

z A3=1

γ=4030

2015

10

Unstable

Stable

Page 24: Design of Chemical Reactors

24

Non-adiabatic CSTR

LC

CC

CC

FC

FA

V

zB,P=1Sepa

ratio

n

LC

CC

CC

FC

FA

V

zB,P=1Sepa

ratio

n zA,3

Model parameters:• Reactor

•Volume : Da•Heat transfer capacity : β•Coolant temperature : θc

• Separation : zA,3• Reaction

• Adiabatic temperature rise : B• Activation energy : γ

Page 25: Design of Chemical Reactors

25

Steady-state classification (1)

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1B

γγγγ

(A)

(B)

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1ββββ

θθθθ c (I)

(II)

γ=20B =0.1

-0.4

-0.2

0

0.2

0 20 40 60 80 100ββββ

θθθθ c

(I)

(III)

γ=40B =0.3

(IV) (II)

Page 26: Design of Chemical Reactors

26

Steady-state classification (2)

0

0.01

0.02

0.001 0.1 10Da

X

γ=40B =0.3β =20θ c=-0.22

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10Da

Xγ=40B =0.3β =20θ c=0.05

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10Da

Xγ=40B =0.3β =20θ c=-0.05 0

0.2

0.4

0.6

0.8

1

0.001 0.1 10Da

Xγ=40B =0.3β =35θ c=0.02

(I)(II)

(III)(IV)

Page 27: Design of Chemical Reactors

27

Dynamic classification (1)Additional parameters:• Reactor : Le• Separation : τS

Stability• Steady state analysis (“slope condition”):

- Instability can be detected - Stability cannot be guaranteed

• “Dynamic condition” : Hopf bifurcation

Page 28: Design of Chemical Reactors

28

Dynamic classification (2)

0

0.05

0.1

0.15

0.2

0.25

10 100 1000B

θθθθ c

I1, ZH1I2, ZH2

DH2

DH1

ZH2

(I)(II)

(IV)

(V)

(I) (VI)

(VII)

0.075

0.08

0.085

0.09

65 70 75B

θθθθ c

DH1, ZH2

DH1, ZH2

DH2

I1,ZH1

ZH1

(I)

(VII)

(VIII)

(IX)(V)

(IV)

β

Page 29: Design of Chemical Reactors

29

Dynamic classification (3)

(I) (II) (III)

(IV) (V) (VI)

(VII) (VIII) (IX)

X

Da

Page 30: Design of Chemical Reactors

30

Conclusions

• Unfeasible steady state (reactant accumulation)

• Feasible steady states through bifurcations– Da > Dacr

• Unstable steady states– Lower limit on achievable conversion

• Avoid design close to critical points

Recycle systems with reaction-separation