Designing a Band Notch Filter for a UWB Antenna Using CST MWS

Embed Size (px)

DESCRIPTION

Designing_a_band_notch_filter_for_a_UWB_antenna_using_CST_MWS.pdf

Citation preview

  • Designing a band notch filter for a UWB antenna using CST MWSOptimization or not?Optimization or not?

    Ad Reniers

  • Introduction

    Ultra Wide-Band filter structures and analysis Simulation setup and results Conclusions

    / Electrical Engineering PAGE 19-4-2010

  • Ultra Wide-band

    Ultra wide-band frequencies between 3.1 GHz and 10.6 GHz

    To avoid interference between 5 GHz and 6 GHz reserved for WLAN we where asked to design a filter

    / Electrical Engineering PAGE 29-4-2010

  • Ultra Wide-band antenna

    A compact antenna was needed Evolution from a thin wire dipole to

    a printed pseudo monopoleD

    H3

    H2

    / Electrical Engineering PAGE 39-4-2010

    H2

    H1

    Top layer copperBottom layer copperSubstrate

    WsW

  • Ultra Wide-Band filter structures and analysis Simulation setup and results Conclusions

    / Electrical Engineering PAGE 49-4-2010

  • Notch filter analyses

    An U shaped gap for Notch filter characterization BIBII

    / Electrical Engineering PAGE 59-4-2010

    Top layer copperBottom layer copperSubstrateGap in the copper

    AIAIII

    AII

  • Spur filter analyses

    Spur line filter in the transmission line

    DII

    =

    / Electrical Engineering PAGE 69-4-2010

    DI

    Top layer copperBottom layer copperSubstrateGap in the copper

    CII

  • Notch and spur filter results

    BI

    DII

    BII

    S11 PARAMATERSHP8510

    Ad Reniers, 27 juni 2007

    -5

    0

    Results with the filters combined

    / Electrical Engineering PAGE 79-4-2010

    DI

    Top layer copperBottom layer copperSubstrateGap in the copper

    AIAIII

    AII

    CII

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    1

    .

    0

    1

    .

    2

    1

    .

    5

    1

    .

    7

    1

    .

    9

    2

    .

    2

    2

    .

    4

    2

    .

    6

    2

    .

    9

    3

    .

    1

    3

    .

    3

    3

    .

    6

    3

    .

    8

    4

    .

    0

    4

    .

    3

    4

    .

    5

    4

    .

    7

    5

    .

    0

    5

    .

    2

    5

    .

    4

    5

    .

    7

    5

    .

    9

    6

    .

    1

    6

    .

    4

    6

    .

    6

    6

    .

    8

    7

    .

    1

    7

    .

    3

    7

    .

    5

    7

    .

    8

    8

    .

    0

    8

    .

    2

    8

    .

    5

    8

    .

    7

    8

    .

    9

    9

    .

    2

    9

    .

    4

    9

    .

    6

    9

    .

    9

    1

    0

    .

    1

    1

    0

    .

    4

    1

    0

    .

    6

    1

    0

    .

    8

    1

    1

    .

    1

    1

    1

    .

    3

    1

    1

    .

    5

    1

    1

    .

    8

    1

    2

    .

    0

    Ferquency (GHz)

    A

    m

    p

    l

    i

    t

    u

    d

    e

    (

    d

    B

    )

    UWB Antenne U notch SpurSimulatie Notch & SpurIdeaal

  • Ultra Wide-Band filter structures and analysis Simulation setup and results Conclusions

    / Electrical Engineering PAGE 89-4-2010

  • Simulation setup in CST using the optimizer (1)

    BIBII

    Optimizer only used for the notch filter Parameter and goal settings:

    / Electrical Engineering PAGE 99-4-2010

    Top layer copperBottom layer copperSubstrateGap in the copper

    AIAIII

    AII

  • Simulation setup in CST using the optimizer (2)

    BIBII

    Reflectie ParametersSimulatie CST Microwave Studio

    Door Ad Reniers, Datum 6 juni 2007

    -20

    -15

    -10

    -5

    0

    S

    1

    1

    (

    d

    B

    )

    / Electrical Engineering PAGE 109-4-2010

    Top layer copperBottom layer copperSubstrateGap in the copper

    AIAIII

    AII

    -40

    -35

    -30

    -25

    0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000Frequency (GHz)

    S

    1

    1

    (

    d

    B

    )

    BCDEFGeen FilterIdeaal

    Sim. AI, AII and BII (mm)

    BI + BII(mm)

    AIII(mm)

    BW (GHz@ -10dB)

    Ampl.(dB)

    B 1.31 5.99 mm 7.30 4.34 ..6.28 -1.72

    C 1.19 5.93 7.46 4.38 .. 6.19 -1.83

    D 1.22 5.96 7.16 4.56 .. 5.96 -2.72

    E 0.99 5.96 8.60 4.28 .. 6.35 -1.68

    F 1.33 5.39 7.18 4.61 .. 5.75 -5.86

  • Simulation setup in CST not using the optimizer

    BI

    DII

    BII

    Reflectie ParametersSimulatie CST Microwave office

    Door Ad Reniers, 23 juni 2007

    -20

    -15

    -10

    -5

    0

    S

    1

    1

    (

    d

    B

    )

    / Electrical Engineering PAGE 119-4-2010

    DI

    Top layer copperBottom layer copperSubstrateGap in the copper

    AIAIII

    AII

    CII

    Sim. AI, AII and BII (mm)

    BI + BII(mm)

    AIII(mm)

    BW (GHz@ -10dB)

    Ampl.(dB)

    1ra 1.20 7.20 8.00 4.42 .. 5.80 -2.63

    1rb 1.20 7.20 6.80 4.85 .. 6.00 -3.51

    1rc 1.20 7.20 6.40 5.04 .. 6.08 -3.95

    1rd 1.20 7.20 6.00 5.22 .. 6.16 -4.49

    -40

    -35

    -30

    -25

    0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000Frequentie (GHz)

    S

    1

    1

    (

    d

    B

    )

    Ideaal1r1ra1rb1rc1rd

  • Results using the optimizer/iterative process

    BI

    DII

    BII

    Reflectie ParametersSimulatie CST Microwave office

    Door Ad Reniers, 23 juni 2007

    -20

    -15

    -10

    -5

    0

    S

    1

    1

    (

    d

    B

    )

    S11 PARAMATERSHP8510

    Ad Reniers, 27 juni 2007

    -20

    -15

    -10

    -5

    0

    A

    m

    p

    l

    i

    t

    u

    d

    e

    (

    d

    B

    )

    / Electrical Engineering PAGE 129-4-2010

    DI

    Top layer copperBottom layer copperSubstrateGap in the copper

    AIAIII

    AII

    CII-40

    -35

    -30

    -25

    -20

    0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000Frequentie (GHz)

    S

    1

    1

    (

    d

    B

    )

    Ideaal1rk1rl

    Sim. AI, AII and BII (mm)

    BI + BII(mm)

    AIII(mm)

    CI + CIII(mm)

    CII(mm)

    DI + DII(mm)

    BW (GHz@ -10dB)

    Ampl.(dB)

    1rk 1.20 7.20 6.00 0.84 0.6 5.6 4.70 .. 6.24 -2.36

    1d 1.22 5.96 7.16 NA NA NA 4.56 .. 5.96 -2.72

    -40

    -35

    -30

    -25

    -20

    1

    .

    0

    1

    .

    2

    1

    .

    5

    1

    .

    7

    1

    .

    9

    2

    .

    2

    2

    .

    4

    2

    .

    6

    2

    .

    9

    3

    .

    1

    3

    .

    3

    3

    .

    6

    3

    .

    8

    4

    .

    0

    4

    .

    3

    4

    .

    5

    4

    .

    7

    5

    .

    0

    5

    .

    2

    5

    .

    4

    5

    .

    7

    5

    .

    9

    6

    .

    1

    6

    .

    4

    6

    .

    6

    6

    .

    8

    7

    .

    1

    7

    .

    3

    7

    .

    5

    7

    .

    8

    8

    .

    0

    8

    .

    2

    8

    .

    5

    8

    .

    7

    8

    .

    9

    9

    .

    2

    9

    .

    4

    9

    .

    6

    9

    .

    9

    1

    0

    .

    1

    1

    0

    .

    4

    1

    0

    .

    6

    1

    0

    .

    8

    1

    1

    .

    1

    1

    1

    .

    3

    1

    1

    .

    5

    1

    1

    .

    8

    1

    2

    .

    0

    Ferquency (GHz)

    A

    m

    p

    l

    i

    t

    u

    d

    e

    (

    d

    B

    )

    UWB Antenne U notch SpurSimulatie Notch & SpurIdeaal

  • Ultra Wide-Band filter structures and analysis Simulation setup and results Conclusions

    / Electrical Engineering PAGE 139-4-2010

  • Conclusions

    Using the optimizer is a good starting point if there is no analytical model

    You should know what to expect Not the ultimate tool The iterative process gives more inside in

    / Electrical Engineering PAGE 149-4-2010

    Top layer copperBottom layer copperSubstrateGap in the copper

    The iterative process gives more inside in the working of the filter itself

    Combination of using the optimizer and a iterative process is the most efficient way to design.

    Thank you for your attention