27
www.fairchildsemi.com Designing the Power Train of a 200W Power Supply with PFC Michael Weirich Global Power Resource Center, Europe

Designing the Power Train of a 200W Power Supply with PFC · Transformer Forward Output 85V – 265VAC input 24V, 6A Buck Post-regulation Flyback Auxiliary Primary Side Flyback Transformer

Embed Size (px)

Citation preview

www.fairchildsemi.com

Designing the Power Train of a200W Power Supply with PFC

Michael WeirichGlobal Power Resource Center, Europe

2

Design issues for 200W PSU

System Specification• AC Input Voltage:

85 – 265 Vrms• Power-Factor: > 0.95• Total Output Power: 200W• Three DC Outputs:

• 5V/0.3A (standby)• 12V/6A,• 24V/5A

• Height limit: 25mm

Target application: LCD TV

Design Issues• System partitioning• Low profile boost inductor• PFC MOSFET dissipation• Using single switch forward

tools to design two-switch forward converters

• Two-switch forward drive• Second post-regulated output

for a forward converter• Auxiliary power supply• Layout

3

Control Component Overview

• PFC/two switch forward circuit• FAN4800 combined CCM PFC and current mode controller• FAN7382 dual high and low side driver

• Post regulation circuit• Low cost MC34063A controller with external MOSFET

• Auxiliary power supply• FSD210 Fairchild Power Switch

4

PFC StageTwo Switch

ForwardPrimary Side

Rectifier ForwardTransformer

ForwardOutput

85V – 265VAC input

24V,6A

BuckPost-

regulation

FlybackAuxiliary

Primary Side

FlybackTransformer

FlybackOutput

12V,5A

5V,0.3A

System Partitioning

Bias Power

PFC/PWMCombo controller

24V,2.5A

Isolation Boundary

5

Rectifier dimensioning and tips

Output powerOutput power is 200WEfficiency assumptions:

PFC stage: 90%Forward converter: 90%

Maximum input current (rms) is 2.9A

Bridge rectifierRectifiers with larger current ratings typically

have lower forward voltagesWe chose GBU6K (6A/800V): Vf=0.45VEstimate the equivalent resistance from the

datasheet: RS=0.03 ohm

Conclusion4.7W dissipation21ºC/W heatsink needed

WWPIn 2479.09.0

200=

⋅=

AVWI RMSIn 9.2

85247

, ==

W

I

VIRIVIP

RMSIn

RMSIn

DSDRMSDFDAVGBRLoss

7.4

)03.02

8.045.0(4)(4

2,

,

,2

,,,1,

=

Ω⋅⎟⎟⎠

⎞⎜⎜⎝

⎛+

⋅⋅⋅=

⋅+⋅⋅=

WWW

PTT

RBRLoss

AJBR

C12

C0.757.4

C50-C1501,

max,max,1,

°≈

°−

°°=

−=Θ

6

PFC inductor dimensioning

Pin = 247W, Input rms current = 2.9A

Inductor inductance valueFAN4800 PFC set to switch at 100kHz dI, the percentage current ripple isset to 20%

Inductor peak currentThe peak value of the input rms current isadded to half of the ripple current

Conclusion 1mH inductor4.5A peak current

( )

mHWkHzV

VVV

PdIfVVVV

LInSOut

InInOut

08.1247%20100400

85)285400(

2

2

2min,min,

1

=⋅⋅⋅⋅⋅−

=

⋅⋅⋅⋅⋅−

=

AI

II

III

RMSIn

RMSInRMSIn

RippleRMSInLPeak

5.41.12

222.02

22

,

,,

,1,

=

⋅⋅=

⋅⋅+⋅=

+⋅=

7

PFC inductor design (1)

Input rms current = 2.9A, peak = 4.5A

Wire thicknessCopper wire: 5A/mm2 for rms current0.58mm2 copper wire area (ACu)Three or four strands required: skin effectDesign used three strands of 0.5mm wire

Core sizeUse the area product Ap to estimate coresize from Ae (magnetic cross section) andAw (winding cross section)Bpeak is 0.35 Tesla for standard ferrite core

Conclusion Area product is 14914 mm4

σμμπδ

⋅⋅⋅⋅=

rf 0

1

4P mm14914A =

Skin depth:

Proximity effect: useful area of a conductor is reduced due to magnetic field generated by adjacent layers

CuPeak

CuPeakweP fB

AILAAA⋅⋅⋅

=⋅=

8

PFC inductor design (2)

Area product is 14914 mm4

General selectionNormally Ae and Aw are equal, so as astarting point, select Ae as 122mm2>> no 25mm height bobbins available

Specific selectionLook for cores meeting area product andsize requirements:EER3542 core (Ae=107mm2,Aw=154mm2)

TurnsAw is 154mm2, ACu is 0.58mm2Assuming a fill factor of 50%, we canget 130 turns..

GapA gap is needed to get the requiredInductance. AL = 1mH/130^2

s is the gap size, AL,0 is the AL value foran ungapped core

Adjust the turns to get a standard gap size

ConclusionGap is 2mm, 124 turns, 1mH inductance

⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅⋅π⋅≈

0,LLe A

1A1A4.0s

TAmHB 34.05.41=

⋅=

mm107124 2max ⋅

9

Low Profile Boost Inductor Specification

PFC Choke

Winding Details

Name Pins (Start →End) Layers Strands x Wire ø Turns Construction Material

W1 8 →16 6 3 x 0.5 mm 124 perfect solenoid CuLL

Electrical Characteristics

Parameter Pins Specification Conditions

Inductance 8 → 16 1000 uH +/- 5% 10kHz, 100mV

Core and BobbinCore: EER3542 Material: PC40 (TDK) or equivalentBobbin: EER3542 / 16 Pin / Horizontal e.g. Pin Shine P-3508Gap in center leg:approx. 2.0 mm for an AL of 65 nH/Turns2

10

PFC MOSFET Selection

Voltage and current ratings500V MOSFET needs external surge protection600V MOSFET preferredPeak current same as inductor (4.5A)

Power dissipation and heatsinkFCP16N60 chosen:RDSon=0.45ohm, Coss,eff=110pFCext=150pF, (estimated parasitic capacitance)

ConclusionsPower dissipation: 9W10ºC/W heatsink needed

AVVA

VV

IIOut

MinInRMSInQRMS

5.24003

852819.2

328

1 ,,1,

=⋅⋅⋅⋅

−⋅=

⋅⋅−⋅=

π

W

RIP QDSONQRMSCond

QLoss

8.21,

21,1, max

=

⋅=

( )

W.kHzns.VA..

ftVI.P

W.kHzVpF.

fVCC.P

ScrossoverOutRMS,InCross

Q,Loss

SOutexteff,OSSCap

Q,Loss

6210050504009290

6190

1210040026050

50

1

2

21

=⋅⋅⋅⋅⋅=

⋅⋅⋅⋅⋅≈

=⋅⋅⋅=

⋅⋅+⋅≈

WPrrQ,Loss 21 ≈

11

FAN4800 PFC Circuit

-+

~ ~

BR1GBU6K

D15FDLL4148

D1ISL9R460P2

R810K

D101N4148

D111N4148

C2470nF

D121N4148

Ieao1

Iac2

Isense3

Vrms4

Ss5

Vdc6

Ramp17

Ramp28 Ilim 9GND 10

Vo211

Vo1 12Vcc 13Ref 14Vfb 15

Veao16

IC1

FAN

4800

C62.2nFR1c

390K

R2427k

C16680pF

R3110K

R7b1MR1a

390K

D16

FDLL4148

C23100nF

R2a620K

R2b620K

+ C5c82uF450V

C12470nF50V

C14100nF25V

R1247K

C2680nF400V

C13470nF

NTC12R 12A

C2481nF

R7a620K

+ C5b82uF450V

R1b390K R4

18K

R11820K

C1

680nFX2

C7220pF

R234.7K

LF110mH

C1522nF

1 2

R50.152W

C8100nF

+ C5a82uF450V

R35100

816

L11.0mH

L3FERRITE BEAD

J1GSF1.1001.31

C3100nF

C910nF

R1522

Q1FCP16N60

Vcc

Vbus

0

12

Two-switch forward design with PFC front-end

• Use the forward design spreadsheet

• Enter 284V to emulate PFC input• Use a very large DC link capacitor

to account for the PFC stage• Set the maximum duty cycle to 0.45

to ensure demagnetisation• The ratio Np/Nr can be ignored as

there is no need for a reset winding

• A single switch forward would need 803V rating without any safety factor

• two-switch forward designs need half of this

For forward converter with reset winding

Blue cell is the input parametersRed cell is the output parameters

1. Define specifications of the SMPSMinimum Line voltage (V_line.min) 284 V.rmsMaximum Line voltage (V_line.max) 284 V.rmsLine frequency (fL) 50 Hz

Vo Io Po KL1st output for feedback 24 V 8.5 A 203 W 1002nd output 0 V 0 A 0 W 03rd output 0 V 0 A 0 W 04th output 0 V 0 A 0 W 0Maximum output power (Po) = 202.8 WEstimated efficiency (Eff) 90 %Maximum input power (Pin) = 225.3 W

2. Determine DC link capacitor and the DC voltage rangeDC link capacitor 1000 uFDC link voltage ripple = 4 VMinimum DC link voltage = 397 VMaximum DC link voltage = 402 V

3. Determine the maximum duty ratio (Dmax)Maximum duty ratio 0.45Turns ratio (Np/Nr) 1 >Maximum nominal MOSFET voltage = 803 V

0.82

13

Two Switch Forward Output Inductor

Output Inductor Design

• Current ripple should be small as possible to reduce the RMS and peak values of the primary and secondary currents.

• Small current ripple results in large inductors• Design compromise:

• Current ripple is set to 42% (Note KRF used in spreadsheet is half of the current ripple)• Output inductance 40uH

• The calculated windings will fill an EER2828 core completely.

Choke 40uH / 9A (L5)

Winding Details

Name Pins (Start →End) Layers Strands x Wire ø Turns Construction Material

W1 1,2,3,4,5 →8,9,10,11,12 6 5 x 0.71 mm 15 perfect solenoid CuL

Electrical Characteristics

Parameter Pins Specification Conditions

Inductance 1 → 5 40 uH +/- 5% 10kHz, 100mV

14

Two Switch Forward Transformer

Main Transformer Specification

Winding Details

Name Pins (Start →End) Layers Strands x Wire

ø Turns Construction Material

W1a 6 →3 1 1 x 0.5 mm 39 perfect solenoid CuLL

W3 10,11,12 →7 ,8,9 2 3 x 0.7 mm 11 perfect solenoid Triple insulated

W1b 3 →1 1 1 x 0.5 mm 38 perfect solenoid CuLL

6

1

Layers not to scale !

3W1a

W2

W1b

6 3

1

= 3 Layers of Tapee.g. 3M 1350

W1b

W1a

3

10,11,12 7,8,9

101112

789

Schematic Construction

Electrical Characteristics Parameter Pins Specification Conditions Primary Inductance 1 → 6 13 mH +/- 30% 10kHz, 100mV, all secondaries open Leakage Inductance 1 → 3 500 uH maximum 10kHz, 100mV, all secondaries short

Core and Bobbin Core: EER2834 Material: PC40 (TDK) or equivalent Bobbin: EER2834 / 12 Pin / Horizontal e.g. Pin Shine P-2809 Gap in center leg: 0 mm

15

Two-switch forward MOSFETs

From forward calculation spreadsheet:Peak current is 1.6A RMS current is 0.9A

Voltage and current ratings600V MOSFET preferredPeak current same as inductor (1.6A)

Power dissipation and heatsinkFCP7N60 chosen:Rdson=1.1ohm, 100ºCCoss,eff=60pFCext=60pF, (estimated)As tr=120ns and tf=75ns in datasheetare measured at 7A scale by 1.6A/7A

ConclusionsPower dissipation: 3.7W20ºC/W heatsink needed

( )

WP

W

kHznsVA

ftt

VIP

WkHzVpF

fVCCP

WA

RIP

TotQLoss

Sfr

OutQPeakCross

QLoss

SOutexteffOSSCap

QLoss

SwDSONSwRMSCond

SwLoss

7.3

4.1

10076.1

2751204006.1

2

2.11004001205.0

5.0

9.01.19.0

205,

205,205,

2

2,205,

2

,2

1,, max

=

⋅⋅+

⋅⋅=

+⋅⋅≈

=⋅⋅⋅=

⋅⋅+⋅≈

=Ω⋅=

⋅=

16

FAN4800 Two Switch Forward Converter

24V

R242n.a.

C2491nF

R24633

Q211FCP7N60

12

CONN5B2P-VH

R22522

R20513k

R20210k

C235100nF

R2451.5K

C1522nF

TR1Main Transformer

R241

n.a.

C16680pF

+

C247

n.a.1

2

R2330.47

R2427k

R240n.a.

D216RS1K

+ C246680uF

OC1FOD2741BTV

R234.7K

Ieao1

Iac2

Isense3

Vrms4

Ss5

Vdc6

Ramp17

Ramp28

Ilim9

GND10

Vo211

Vo112

Vcc13

Ref14

Vfb15

Veao16

IC1ML4800IS

R24733

D220FYP2010DN

R22622

D14FDLL4148

C23115nF

L540uH9A

D224n.a.

C238470pF

C239220nF

C2501nF

+ C245680uFQ212

FCP7N60

D217UF5407

Q210n.a.

+C244680uF

D218UF5407

D219FYP2010DN

C12470nF50V

D13FDLL4148

VCC1

HIN2

LIN3

COM4

LO5

VS6

HO7

VB8

IC4

FAN7382N

R204180K

R234220

C230n.a.

Vbus

Vcc

Vcc

17

Waveforms for low side switch and output diode

Low side switch voltage and current Output diode voltage and current

18

Detail of High Voltage Driver Circuit

Q211FCP7N60R225

22C235100nF

TR1Main Transformer

12

R2330.47

D216RS1K

R22622

D14FDLL4148

C238470pF

C239220nF

Q212FCP7N60

D217UF5407

D218UF5407

D13FDLL4148

VCC1

HIN2

LIN3

COM4

LO5

VS6

HO 7VB

8

IC4

FAN7382N

R234220

Vbus

Vcc

19

Rectifier diodes

From forward calculation spreadsheet:Diode reverse output voltage is 57VOutput current is 8.5A

Rs=0.04ohm (from datasheet curves)Vf=0.25V

Snubber networkSchottky diodes switch fast causing oscillationsRC snubber network needed to damp these

ConclusionsPower dissipation: 2.5W20ºC/W heatsink neededSnubber network needed

Voltage and current ratings100V Schottky diode used: FYP2010DN Average current: 4.7A

Power dissipation and heatsink AA

DII OutrectAvg

7.455.05.8

)1( max,

=⋅=

−⋅=

WAVA

RIVIP ctSrectRMSctFrectAvgrectLoss

5.204.07.525.07.4 2

Re,2

,Re,,,

=Ω⋅+⋅=

⋅+⋅≈

20

MC34063A Post-regulation Circuit

R26680

C252100nF

R32

Q212BC858C

Q211BC848B

12

CONN4

B2P-VH

1

2

3

45

6

7

8SWc

SWe

Ct

GndFB

Vcc

Ipk

DRc

IC5KA34063AD

+ C18680uF

R221.5K

C19100pF

L6100uH6A

1

23

Q209FQP47P06

R2513K

R29

D223MBR745

R21680

R330.12R

+ C251470uF35V

12V/6A

12V

24V

0

Hysteretic buck control (or ripple regulator)

21

Inductor for Post Regulated Output

Choke 100uH / 6A (L6)

Winding Details

Name Pins (Start →End) Layers Strands x Wire ø Turns Construction Material

W1 1,2,3,4,5 →8,9,10,11,12 5 x 0.56mm 25 perfect solenoid CuL

Electrical Characteristics

Parameter Pins Specification Conditions

Inductance 1 → 5 100 uH +/- 5% 10kHz, 100mV

Core and BobbinCore: EER2828Material: PC40 (TDK) or equivalentBobbin: EER2828 / 12 Pin / Horizontal e.g. Pin Shine P-2816Gap in center leg:approx. 0.45 mm for an AL of 205nH/Turns2

22

Auxiliary Power Supply using FSD210

D208SB380

C236220nF

OC3FOD2711BTV

R235

75

+ C214.7uF

1

23

4

OC2H11A817A.W

D61N4148

R2291K

1

34

5

6

8

TR2Stdby Transf ormer

C2222nF

R3147

R230

1.5K

D22518V0.5W

C237

220nF

+ C232100uF

R2271K

C202.2nF

12

CONN6

D5

UF

4007

R3075k

R2283.3K

C2534.7nF

VC

C5

DR

AIN

7V

ST

R8

GN

D1

GN

D2

GN

D3

VF

B4

IC6FSD210BM

12

CONN1

+ C233100uF

L422uH

Standby ON/OFF

5V

Vbus

0

Vcc

23

Flyback Transformer for Auxiliary Output

Standby Transformer Specification

Winding Details

Name Pins (Start →End) # of Layers Strands x Wire ø Turns Construction Material

W1a 3 →2 2 1 x 0.15 mm 91 spaced winding CuLL

W3 8 →6 1 1 x 0.5 mm 8 spaced winding Triple insulated

W1b 2 →1 2 1 x 0.15 mm 91 spaced winding CuLL

W2 4 →5 1 1 x 0.15 mm 24 spaced winding CuLL

W2

5

4

3

1

8

W3

2

W1b

W1a

6

= 3 Layers of Tapee.g. 3 M 1350

= 1 Layer Tapee.g. 3 M 1350

Layers not to scale !

W1a

W3

W1b

W2

3 2

1

4 5

8

2

6

Schematic Construction

Electrical Characteristics Parameter Pins Specification Conditions Primary Inductance 1 → 3 5.85 mH +/- 5% 10kHz, 100mV, all secondaries open Leakage inductance 1 → 3 290 uH maximum 10kHz, 100mV, all secondaries short

Core and Bobbin Core: EF 20 Material: FI325 (Vogt) or equivalent Bobbin: EF20 / 10 Pin / Horizontal / Increased creepage Gap in center leg: approx. 0.2 mm for AL of 177 nH/Turns2

24

Layout and Heatsink

• General Power Supply Layout Rules• the enclosed area of loops with high di/dt must be as small as possible• the copper area of nodes with high dv/dt must be as small as possible.• avoid common impedance coupling by using star connections to ground

• These rules conflict with other requirements• Heatsink construction at the edge of a board• Star connection of all ground lines would enlarge the PCB• Low cost solutions require single sided PCB’s which result in longer traces

• Compromise• Critical signals are routed to the shortest path• Less critical signals give way to the large ground plane which emulates star-like connection

• Heatsink• All devices except Q1 are connected to a simple heatsink made of

2mm aluminium bent into the form of a U• Q1 dissipates more power so needs an additional heatsink

25

Layout and photo of finished board

Dimensions: 170mm x 156mm x 25mm (L x W x H)

26

Standby power and efficiency

Less than 0.5W standbypower for 195V-265V

Overall efficiency targetof 81% (90%x90%) met

0.0

0.1

0.2

0.3

0.4

0.5

0.6

85 110 135 160 185 210 235 260

Input Voltage [Vrms]

Stan

dby

Pow

er [W

]

75.0

77.0

79.0

81.0

83.0

85.0

87.0

89.0

85 110 135 160 185 210 235 260

Input Voltage [Vrms]

Effic

ienc

y [%

]

27

Summary

Design Issues• System partitioning• Low profile boost inductor• PFC MOSFET dissipation• Using single switch forward tools to design two-switch

forward converters• Two-switch forward drive• Second output for a forward converter• Auxiliary power supply• Layout• Performance