14
Determination of m c from N f = 2 + 1 QCD with Wilson fermions Sjoerd Bouma University of Regensburg RQCD collaborators: Gunnar Bali, Sara Collins, Wolfgang S¨oldner 6 August 2020 QCD 1 / 14

Determination of mc from Nf = 2+1 QCD with Wilson fermions · 2020. 8. 6. · f = 2+1 QCD with Wilson fermions Sjoerd Bouma University of Regensburg RQCD collaborators: Gunnar Bali,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Determination of mc from Nf = 2 + 1 QCD with Wilsonfermions

    Sjoerd Bouma

    University of Regensburg

    RQCD collaborators: Gunnar Bali, Sara Collins, Wolfgang Söldner

    6 August 2020

    QCD

    1 / 14

  • Overview

    1 Introduction

    2 AnalysisPCAC massesChiral-continuum extrapolationEnsembles

    3 Preliminary results

    4 Conclusion and outlook

    2 / 14

  • Motivation

    • Quark masses are fundamental parametersof the standard model

    • Input for many phenomenologicalpredictions, including for BSM physics.

    • Not directly measurable (confinement) -values depend on renormalization scheme.

    • Charm observables difficult to simulate onthe lattice - in between relativistic andnon-relativistic regimes; amc large formany lattice spacings currently used.

    • We use 5 lattice spacings down to 0.04 fmto control discretization effects

    1.25 1.30 1.35 1.40

    � �=+

    �+�

    � �=+

    GeVPDG

    HPQCD 08BHPQCD 10QCD 14JLQCD 16Maezawa 16

    FLAG average for ��=+�

    ETM 14ETM 14AHPQCD 14A FNAL/MILC/TUMQCD 18HPQCD 18

    FLAG average for ��=+�+�

    ��(��)

    3 / 14

  • Motivation

    • Using the lattice PCAC relation:

    amij =∂0CA0P + cAa∂

    20CPP

    2CPP, (1)

    and the Vector-Ward Identity (VWI) quark masses:

    amq,ij =

    (1

    4κi+

    1

    4κj− 1

    2κcrit

    ), (2)

    we can determine the renormalization-group independent (RGI) mass:

    mRGIij = ZMmij[1 + (bA − bP)amq,ij + (b̃A − b̃P)aTr[Mq]

    ]+O(a2), (3)

    where, following Divitiis et al. 2019, Bulava et al. 2015, Campos et al.2018:

    ZM =M

    m(µhad)

    ZA(g20 )

    ZP(g 20 , aµhad),

    Tr[Mq] ≈ 2m` + ms ,

    COO′(t) = 〈O(t)O ′(0)〉,

    ∂0f (t) =f (t + a)− f (t − a)

    2a.

    4 / 14

  • Motivation

    • Renormalization-group independent (RGI) mass:

    mRGIij = ZMmij[1 + (bA − bP)amq,ij + (b̃A − b̃P)aTr[Mq]

    ]+O(a2), (3)

    • b̃A − b̃P is poorly constrained, but compatible with 0, and Tr[Mq]� mq,ijfor the charm quark → (for now) we take b̃A − b̃P = 0.

    5 / 14

  • PCAC masses

    0 20 40 60 80 100 120t/a

    0.2548

    0.2550

    0.2552

    0.2554

    0.2556

    0.2558

    0.2560am

    PCAC

    D200, = 3.55, ts = 37fit ( 2 = 751 / 760)fit limits:[64, 101]

    0 5 10 15 20 25 30(t ts)/a

    0.3494

    0.3496

    0.3498

    0.3500

    0.3502

    0.3504

    0.3506

    amPC

    AC

    B452, = 3.46fit ( 2 = 14 / 22)fit limits:[18, 32]

    • PCAC masses determined by fitting to a constant in a ’plateau’ region.• Ansatz for boundary effects and contact terms:

    amPCAC(t) ≈ amPCAC + c1e−b1t + c2e−b2(Tbd−t). (4)

    • Plateau defined as the region where

    4 ·(c1 · exp−b1t +c2e−b2(Tbd−t)

    )≤ ∆statamPCAC(t). (5)

    6 / 14

  • Error extrapolation

    • Have to deal with autocorrelationsin lattice and Monte-Carlo time

    • Strategy: estimate errors througha binned jackknife procedure

    • Bin in Monte-Carlo time andobtain jackknife error on mPCACat each bin size S .

    2.5 5.0 7.5 10.0 12.5 15.0 17.5bin size S

    0.25

    0.50

    0.75

    1.00

    1.25

    1.50

    1.75

    2 am(S

    )/2 am

    (1)

    3-param. fit ( 2 = 4.4 / 13)2 int = 1.623Variance (normalized)

    • Then extrapolate to infinite bin size using the formula:

    σ2[S ]

    σ2[1]≈ 2τint

    (1− cA

    S+

    dASe−S/τint

    ). (6)

    7 / 14

  • Chiral-continuum extrapolation

    • Once we have obtained the PCAC masses for all ensembles, want toextrapolate to the chiral and continuum limits.

    • Ansatz:

    fc(a2/(8t∗0 ),mπ,mK ) = fc(0,mπ,mK )

    ×(

    1 +a2

    t∗0(p1 + p2M

    2+ p3δM

    2) +a3

    (t∗0 )3/2

    p4

    ), (7)

    where

    mP =√

    8t0mP ,

    fc(0,mπ,mK ) = (c0 + c1M2

    + c2M2δM2),

    M2

    =2m2K + m

    3,

    δM2 = 2(m2K − m2π).• t0 is the Wilson flow parameter determined per ensemble• t∗0 defined by 12t∗0m2π = 1.110 at ms = m`.• Ensembles generated at fixed bare couplings g0 → extrapolation in t0

    times the masses ensures O(a) improvement.

    8 / 14

  • Chiral-continuum extrapolation

    • We fit the results from each ensemble to the fit function in (7)• As σ(mπ,K ) & σ(mc), we use a generalized chi-squared fit allowing also

    mπ,mK , t∗0 to vary from their expectation values.

    • We also take into account the (infinite bin size extrapolated) correlationsbetween the variables.

    9 / 14

  • Ensembles

    • CLS-generated ensemblesNf = 2 + 1 Wilson-Clover O(a)improved fermions.

    • 5 lattice spacings∼ 0.085 to 0.04 fm• Pion masses from 420 MeV down

    to the physical point• Three different chiral trajectories:

    • ms = mphyss• ms = m`• Tr[Mq ] = 2m` +ms = constant

    0

    0.5

    1

    1.5

    2

    0 0.2 0.4 0.6 0.8 1

    8t0(2M

    2 K−

    M2 π)∝

    ms

    8t0M2π ∝ ml

    ms = m̃physs

    ms = mℓ2ml +ms = const

    β = 3.40β = 3.46β = 3.55β = 3.70β = 3.85

    physical point

    • ⇒ we can adjust for any ’mistuning’ in the fit.• For each ensemble, simulated 2 heavy quark masses around mphysc and

    interpolate the PCAC mass to√

    8t0mDs :=√

    8tphys0 mphysDs

    .

    Coordinated Lattice Simulations (CLS): Berlin, CERN, Mainz, UA Madrid, MilanoBicocca, Münster, Odense, Regensburg, Rome I and II, Wuppertal, DESY-Zeuthen,Kraków.

    10 / 14

  • Preliminary results

    0.00 0.01 0.02 0.03 0.04 0.05a2/(8t *0 )

    2.8

    2.9

    3.0

    3.1

    3.2

    3.3

    3.4

    3.5

    8t0m

    c

    Heavy-HeavyHeavy-LightHeavy-StrangeFLAG

    0.00 0.01 0.02 0.03 0.04 0.05a2/(8t *0 )

    2.8

    2.9

    3.0

    3.1

    3.2

    3.3

    3.4

    3.5

    8t0m

    c

    Heavy-HeavyHeavy-LightHeavy-StrangeFLAG

    • Preliminary results• Left: c2 = 0, right: c2 6= 0.• Uncertainties due to fit parametrisation still need to be explored.• ∼ 1% errors due to scale determination (in ZM) and tphys0 need to be

    added to any final values.

    11 / 14

  • Preliminary Results

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.88t0m2

    3.10

    3.15

    3.20

    3.25

    3.30

    3.35

    8t0m

    c

    Heavy-HeavyHeavy-LightHeavy-StrangeFLAG

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.88t0m2

    3.075

    3.100

    3.125

    3.150

    3.175

    3.200

    3.225

    8t0m

    c

    Heavy-HeavyHeavy-LightHeavy-StrangeFLAG

    Left: c2 = 0, right: c2 6= 0.

    12 / 14

  • Conclusion and outlook

    • What’s next?• Combined fit for all three flavour combinations (heavy-heavy, heavy-light,

    heavy-strange)

    • Check for consistency with higher-order discretizations of the derivative inthe PCAC relation.

    • Perform the chiral-continuum extrapolation for the ratio mc/ms , where weare not affected by the uncertainties on tphys0 and ZM

    13 / 14

  • References

    Bulava, John et al. (2015). In: Nucl. Phys. B 896, pp. 555–568. doi:10.1016/j.nuclphysb.2015.05.003. arXiv: 1502.04999 [hep-lat].

    Campos, Isabel et al. (2018). In: Eur. Phys. J. C 78.5, p. 387. doi:10.1140/epjc/s10052-018-5870-5. arXiv: 1802.05243 [hep-lat].

    Divitiis, Giulia Maria de et al. (2019). In: Eur. Phys. J. C 79.9, p. 797. doi:10.1140/epjc/s10052-019-7287-1. arXiv: 1906.03445 [hep-lat].

    14 / 14

    https://doi.org/10.1016/j.nuclphysb.2015.05.003https://arxiv.org/abs/1502.04999https://doi.org/10.1140/epjc/s10052-018-5870-5https://arxiv.org/abs/1802.05243https://doi.org/10.1140/epjc/s10052-019-7287-1https://arxiv.org/abs/1906.03445

    IntroductionAnalysisPCAC massesChiral-continuum extrapolationEnsembles

    Preliminary resultsConclusion and outlookReferences