81
Non-linear QCD Dynamics and Wilson Lines Giovanni Antonio Chirilli The Ohio State University QCD evolution 2015 JLAB - Newport News, VA May 26 - 30, 2015 G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 1 / 43

Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Non-linear QCD Dynamics and Wilson Lines

Giovanni Antonio Chirilli

The Ohio State University

QCD evolution 2015

JLAB - Newport News, VA May 26 - 30, 2015

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 1 / 43

Page 2: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Outline

High-energy/high-density QCD scattering processes.

BFKL equation and violation of unitarity.

High-energy Operator Product Expansion at NLO: high-energy

QCD factorization.

LO and NLO non-linear BK/JIMWLK evolution equation.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 2 / 43

Page 3: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Problem: Structure of hadrons at high-energy

Understand the structure of hadrons at high energy.

Can parton density rise forever? Is there a saturation limit? The

cross section for scattering on a disc of radius R is bounded

σtot ≤ 2πR2.

What are the proper degrees of freedom at high-energy?

Can we calculate particles production cross-section in

high-energy nucleus-nucleus collisions?

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 3 / 43

Page 4: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Where do we probe high-energy/high-density QCD dynamics?

Nucleus-nucleus and proton-nucleus collisions

RHIC: Au-Au and p-Au collisions.

LHC: Pb-Pb and p-Pb collisions.

Future experiments:

Electron Ion Collider (EIC) at Brookhaven or JLAB.

Large Hadron electron Collider (LHeC) at CERN.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 4 / 43

Page 5: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Incoherent-vs-Coherent

Do DGLAP equations describe high parton-density dynamics?

DGLAP is evolution equation towards dilute regime.

Incoherent Interactions

Bjorken Limit

q

P

*

e

−q2 = Q2 → ∞, (P + q)2 = s → ∞

xB =Q2

s + Q2fixed

resum αs lnQ2

Λ2QCD

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 5 / 43

Page 6: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Incoherent-vs-Coherent

Do DGLAP equations describe high parton-density dynamics?

DGLAP is evolution equation towards dilute regime.

Incoherent Interactions

Bjorken Limit

q

P

*

e

−q2 = Q2 → ∞, (P + q)2 = s → ∞

xB =Q2

s + Q2fixed

resum αs lnQ2

Λ2QCD

VS.

Regge Limit

Coherent Interactions

q

Q2 fixed, s → ∞

xB =Q2

s→ 0

resum αs ln1

xB

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 5 / 43

Page 7: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

High Center of Mass Energy Limit

s Mandelstam variable for the C.M.E

ΛQCD: Scale at which perturbative expansion breaks down.

t Mandelstam variable for momentum transfer in scatt. processes.

Hig-energy (Regge limit) QCD

s ≫ ΛQCD, t αs ≪ 1

⇒ αs ln s ∼ 1 ⇒ ∀ n ∈ N (αs ln s)n ∼ 1 : Leading Log Approximation

Type of diagrams at Leading Log Approximation αs ln s ∼ 1

s ln s sln s)2

sln s)n} n

Need an evolution equation to resum αs ln s contributions: BFKL equation.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 6 / 43

Page 8: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Leading Log Approximation in scatt. process at high energy

electron-proton/nucleus Deep Inelastic Scattering (DIS)

s = (q + P)2

〈P|T jµ(x)jν(y)|P〉

q

*

P

energy suppressed

} n

P

q

*

n

( )s lnqs

2

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 7 / 43

Page 9: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS cross section at Leading Log Approximation

BFKL: Leading Logarithmic Approximation αs << 1 (αs ln s)n ∼ 1

s

PRE−ASYMPTOTIC BEHAVIOR

BFKL PREDICTS ONLY

sectioncrossDIS

NON LINEAR EFFECTS

BFKL

ln s Froissart bound2

pQCD at LLA: σtot ∝ s∆

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 8 / 43

Page 10: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS cross section at Leading Log Approximation

BFKL: Leading Logarithmic Approximation αs << 1 (αs ln s)n ∼ 1

s

PRE−ASYMPTOTIC BEHAVIOR

BFKL PREDICTS ONLY

sectioncrossDIS

NON LINEAR EFFECTS

BFKL

ln s Froissart bound2

pQCD at LLA: σtot ∝ s∆

Can parton density rise forever? Is there

a saturation limit?

Froissart bound: σtot ∝ ln2 s

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 8 / 43

Page 11: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS cross section at Leading Log Approximation

BFKL: Leading Logarithmic Approximation αs << 1 (αs ln s)n ∼ 1

s

PRE−ASYMPTOTIC BEHAVIOR

BFKL PREDICTS ONLY

sectioncrossDIS

NON LINEAR EFFECTS

BFKL

ln s Froissart bound2

pQCD at LLA: σtot ∝ s∆

Can parton density rise forever? Is there

a saturation limit?

Froissart bound: σtot ∝ ln2 s

At very high energy recombination begins to compensate gluonproduction. Gluon density reaches a limit and does not grow anymore.

So does the total DIS cross sections. Unitarity is restored!

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 8 / 43

Page 12: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS cross section at Leading Log Approximation

BFKL: Leading Logarithmic Approximation αs << 1 (αs ln s)n ∼ 1

s

PRE−ASYMPTOTIC BEHAVIOR

BFKL PREDICTS ONLY

sectioncrossDIS

NON LINEAR EFFECTS

BFKL

ln s Froissart bound2

pQCD at LLA: σtot ∝ s∆

Can parton density rise forever? Is there

a saturation limit?

Froissart bound: σtot ∝ ln2 s

At very high energy recombination begins to compensate gluonproduction. Gluon density reaches a limit and does not grow anymore.

So does the total DIS cross sections. Unitarity is restored!

In order to take in to account rgluons recombination the evolution

equation for the structure function has to be non-linear.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 8 / 43

Page 13: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS at high-energy: parton saturation Color Glass Condensate

*

xx

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 9 / 43

Page 14: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS at high-energy: parton saturation Color Glass Condensate

*

xx

coll.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 9 / 43

Page 15: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS at high-energy: parton saturation Color Glass Condensate

*

xx

coll. coll.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 9 / 43

Page 16: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS at high-energy: parton saturation Color Glass Condensate

*

xx

coll. coll.

coll.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 9 / 43

Page 17: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS at high-energy: parton saturation Color Glass Condensate

*

xx

coll. coll.

coll.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 9 / 43

Page 18: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS at high-energy: parton saturation Color Glass Condensate

*

xx

coll. coll.

coll.

higher energy

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 9 / 43

Page 19: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS at high-energy: parton saturation Color Glass Condensate

*

xx

coll. coll.

coll.

higher energyhigher energy

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 9 / 43

Page 20: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS at high-energy: parton saturation Color Glass Condensate

*

xx

coll. coll.

coll.

higher energyhigher energy higher energy

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 9 / 43

Page 21: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

DIS at high-energy: parton saturation Color Glass Condensate

*

xx

coll. coll.

coll.

higher energyhigher energy higher energy

Need a mechanism to stop the growth: parton-recombination

⇒ Non-linear evolution equation

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 9 / 43

Page 22: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Saturation Scale: euristic explanation

σonium−oniumtot ∝ α2

s x1⊥ x2⊥ e∆ Y

∆ =4αsNc

πln 2 > 0

Black − disk limit : σtot ≤ 2π R2

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 10 / 43

Page 23: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Saturation Scale: euristic explanation

σonium−oniumtot ∝ α2

s x1⊥ x2⊥ e∆ Y

∆ =4αsNc

πln 2 > 0

Black − disk limit : σtot ≤ 2π R2

DIS case:

x1⊥ ∼ 1Q

size of dipole generated by γ∗

x2⊥ ∼ R ∼ 1ΛQCD

radius of hadron

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 10 / 43

Page 24: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Saturation Scale: euristic explanation

σonium−oniumtot ∝ α2

s x1⊥ x2⊥ e∆ Y

∆ =4αsNc

πln 2 > 0

Black − disk limit : σtot ≤ 2π R2

DIS case:

x1⊥ ∼ 1Q

size of dipole generated by γ∗

x2⊥ ∼ R ∼ 1ΛQCD

radius of hadron

⇒ α2s

RQ

e∆Y ≤ 2π R2 With Y = log 1xB

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 10 / 43

Page 25: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Saturation Scale: euristic explanation

σonium−oniumtot ∝ α2

s x1⊥ x2⊥ e∆ Y

∆ =4αsNc

πln 2 > 0

Black − disk limit : σtot ≤ 2π R2

DIS case:

x1⊥ ∼ 1Q

size of dipole generated by γ∗

x2⊥ ∼ R ∼ 1ΛQCD

radius of hadron

⇒ α2s

RQ

e∆Y ≤ 2π R2 With Y = log 1xB

Qs ∼ α2s ΛQCD

(

1xB

)∆violation of unitarity for Q < Qs

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 10 / 43

Page 26: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Saturation Scale: euristic explanation

σonium−oniumtot ≃ α2

s x1⊥ x2⊥ e∆ Y

∆ =4αsNc

πln 2 > 0

Black − disk limit : σtot ≤ 2π R2

DIS case on large nucleus

Qs ∼ A1/3(

1xb

)∆

for high enough energy (small-xB) or large nucleus

Qs ≫ ΛQCD ⇒ pQCD allowed.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 11 / 43

Page 27: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

High-energy scattering in QCD

A(r,t)

phase factor for the high-energy scattering: Wilson-line operator

U(x⊥, v) = Pe−ig

c~

∫+∞

−∞dt xµAµ(x(t))

Pe∫+∞

−∞dtA(t) = 1 +

∫ +∞−∞ dt A(t) +

∫ +∞−∞ dt A(t)

∫ t

−∞ dt′ A(t′)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 12 / 43

Page 28: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Propagation in the shock wave: Wilson line (Spectator frame)

Boosted Field

Each path is weighted with the gauge factor Peig∫

dxµAµ

. Since the external

field exists only within the infinitely thin wall, quarks and gluons do not havetime to deviate in the transverse direction ⇒ we can replace the gauge factor

along the actual path with the one along the straight-line path.

x

z z’

yWilson Line x y

Uz = [∞p1 + z⊥,−∞p1 + z⊥]

[x, y] = Peig∫

1

0du(x−y)µAµ(ux+(1−u)y) pµ = αp

µ

1 + βpµ

2 + pµ

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 13 / 43

Page 29: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Propagation in the shock wave: Wilson line (Spectator frame)

Boosted Field

Each path is weighted with the gauge factor Peig∫

dxµAµ

. Since the external

field exists only within the infinitely thin wall, quarks and gluons do not havetime to deviate in the transverse direction ⇒ we can replace the gauge factor

along the actual path with the one along the straight-line path.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 14 / 43

Page 30: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Propagation in the shock wave: Wilson line (Spectator frame)

Boosted Field

Each path is weighted with the gauge factor Peig∫

dxµAµ

. Since the external

field exists only within the infinitely thin wall, quarks and gluons do not havetime to deviate in the transverse direction ⇒ we can replace the gauge factor

along the actual path with the one along the straight-line path.

η>Y

η<Y

+ +...

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 14 / 43

Page 31: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

High-energy Operator Product Expansion

η>Y

η<Y

+ +...

〈B|T{jµ(x)jν(y)}|B〉 ≃∫

d2z1d2z2 ILOµν (z1, z2; x, y)〈B|tr{Uη

z1U† η

z2}|B〉

+αs

π

d2z1d2z2d2z3 INLOµν (z1, z2, z3; x, y)〈B|tr{Uη

z1U†η

z3}tr{Uη

z3U†η

z2}|B〉

η = ln 1xB

|B〉 Target state

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 15 / 43

Page 32: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Leading Order

[

〈T {jµ(x)jν(y)}〉A

]LO=

d2z1d2z2

z412

ILOµν (x, y; z1, z2)tr{Uη

z1U†η

z2}

z1

z2

y x

〈B|T {jµ(x)jν(y)}|B〉 =∫

d2z1d2z2

z412

ILOµν (x, y; z1, z2)〈B|tr{Uη

z1U†η

z2}|B〉+ . . .

If we use a model to evaluate 〈B|tr{Uηz1

U†ηz2}|B〉 we can calculate the DIS

cross-section.

If we want to include energy dependence to the DIS cross section, we

need to find the evolution of 〈B|tr{Uηz1

U†ηz2}|B〉 with respect to the rapidity

parameter η.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 16 / 43

Page 33: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

LO Impact Factor

Conformal invariance: (x+, x⊥)2 = −x2

⊥ ⇒ after the inversion x⊥ → x⊥/x2⊥ and

x+ → x+/x2⊥ x+ = x0+x3

√2

z1

y x

z2

Conformal vectors:

κ =1√sx+

(p1

s− x2p2 + x⊥)−

1√sy+

(p1

s− y2p2 + y⊥)

ζ1 =(p1

s+ z2

1⊥p2 + z1⊥)

, ζ2 =(p1

s+ z2

2⊥p2 + z2⊥)

Here x2 = −x2⊥; R = κ2(ζ1·ζ2)

2(κ·ζ1)(κ·ζ2)

ILOµν (z1, z2) =

R2

π6(κ · ζ1)(κ · ζ2)

∂2

∂xµ∂yν

[

(κ · ζ1)(κ · ζ2)−1

2κ2(ζ1 · ζ2)

]

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 17 / 43

Page 34: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Regularization of the rapidity divergence

〈T {jµ(x)jν(y)}〉A ≃∫

d2z1d2z2 ILO(z1, z2)〈tr{Uη1z1

U† η1z2

}〉A

Matrix elements of Wilson lines: 〈tr{U(x)U†(y)}〉A are divergent

η1 η

1For light-like Wilson lines loop integrals

are divergent in the longitudinal

direction∫ ∞

0

α=

∫ ∞

−∞dη = ∞

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 18 / 43

Page 35: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Regularization of the rapidity divergence

Matrix elements of Wilson lines: 〈tr{U(x)U†(y)}〉A are divergent

η2 η

2For light-like Wilson lines loop integrals

are divergent in the longitudinal

direction∫ ∞

0

α=

∫ ∞

−∞dη = ∞

Regularization by: slope

Uη(x⊥) = Pexp{

ig

∫ ∞

−∞du nµ Aµ(un + x⊥)

}

nµ = pµ1 + e−2ηp

µ2

At NLO the regularization by rigid cut-off is more convenient.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 19 / 43

Page 36: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Evolution Equation

η2

η1 αs(η1 − η2)Kevol ⊗

η2 η

2

Separate fields in quantum and classical according to low and large rapidity.

Formally we may write:

〈B|Oη1 |B〉 → 〈Oη1〉A → 〈O′η2 ⊗O′η1〉A

Integrate over the quantum fields and get one-loop rapidity evolution of the

operator O

〈Oη1〉A = αs(η1 − η2)Kevol ⊗ 〈O′η2〉A

Where in principle O and O′ are different operators.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 20 / 43

Page 37: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Non-linear evolution equation

Linear case Oη1 = αs∆η Kevol ⊗ Oη2

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 21 / 43

Page 38: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Non-linear evolution equation

Linear case Oη1 = αs∆η Kevol ⊗ Oη2

Non-linear case Oη1 = αs∆η Kevol ⊗ {Oη2Oη2}

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 21 / 43

Page 39: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Non-linear evolution equation

Linear case Oη1 = αs∆η Kevol ⊗ Oη2

Non-linear case Oη1 = αs∆η Kevol ⊗ {Oη2Oη2}

〈{Uη1x }ij〉A =

αs

2π2∆η

d2z⊥(x − z)2

[

〈tr{Uη2x Uη2†

z }{Uη2z }ij〉A − 〈 1

Nc

{Uη2x }ij〉A

]

∆ = η1 − η2

{U†η1x }ij, {Uη1

x Uη1y }ij, {Uη1

x U†η1y }ij, {U†η1

x U†η1y }ij

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 21 / 43

Page 40: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Non-linear evolution equation

Linear case Oη1 = αs∆η Kevol ⊗ Oη2

Non-linear case Oη1 = αs∆η Kevol ⊗ {Oη2Oη2}

〈{Uη1x }ij〉A =

αs

2π2∆η

d2z⊥(x − z)2

[

〈tr{Uη2x Uη2†

z }{Uη2z }ij〉A − 〈 1

Nc

{Uη2x }ij〉A

]

∆ = η1 − η2

{U†η1x }ij, {Uη1

x Uη1y }ij, {Uη1

x U†η1y }ij, {U†η1

x U†η1y }ij

Obtain a set of rules that allow one to get the LO evolution of any trace

or product of traces of Wilson linesG. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 21 / 43

Page 41: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Leading order: BK equation

d

dηtr{UxU†

y} = KLOtr{UxU†y}+ ... ⇒

d

dη〈tr{UxU†

y}〉shockwave = 〈KLOtr{UxU†y}〉shockwave

x

a

b

b

a a

a

b

b

y(a) (b) (c) (d)

x xx* xx* x*x x*

x• =√

s2x− x∗ =

s2x+

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 22 / 43

Page 42: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Non-linear evolution equation: BK equation

Uabz = 2tr{taUzt

bU†z} ⇒ (UxU†

y)η1 → (UxU†

y)η2 + αs(η1 − η2)(UxU†

z UzU†y)

η2

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 23 / 43

Page 43: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Non-linear evolution equation: BK equation

Uabz = 2tr{taUzt

bU†z} ⇒ (UxU†

y)η1 → (UxU†

y)η2 + αs(η1 − η2)(UxU†

z UzU†y)

η2

U(x, y) ≡ 1 − 1

Nc

tr{U(x⊥)U†(y⊥)}

BK equation: Ian Balitsky (1996), Yu. Kovchegov (1999)

d

dηU(x, y) =

αsNc

2π2

d2z (x − y)2

(x − z)2(y − z)2

{

U(x, z) + U(z, y) − U(x, y) − U(x, z)U (z, y)}

Alternative approach: JIMWLK (1997-2000)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 23 / 43

Page 44: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Non-linear evolution equation: BK equation

Uabz = 2tr{taUzt

bU†z} ⇒ (UxU†

y)η1 → (UxU†

y)η2 + αs(η1 − η2)(UxU†

z UzU†y)

η2

U(x, y) ≡ 1 − 1

Nc

tr{U(x⊥)U†(y⊥)}

BK equation: Ian Balitsky (1996), Yu. Kovchegov (1999)

d

dηU(x, y) =

αsNc

2π2

d2z (x − y)2

(x − z)2(y − z)2

{

U(x, z) + U(z, y) − U(x, y) − U(x, z)U (z, y)}

Alternative approach: JIMWLK (1997-2000)

LLA for DIS in pQCD ⇒ BFKL (LLA: αs ≪ 1, αsη ∼ 1)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 23 / 43

Page 45: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Non linear evolution equation: BK equation

Uabz = 2tr{taUzt

bU†z} ⇒ (UxU†

y)η1 → (UxU†

y)η2 + αs(η1 − η2)(UxU†

z UzU†y)

η2

U(x, y) ≡ 1 − 1

Nc

tr{U(x⊥)U†(y⊥)}

BK equation: Ian Balitsky (1996), Yu. Kovchegov (1999)

d

dηU(x, y) =

αsNc

2π2

d2z (x − y)2

(x − z)2(y − z)2

{

U(x, z) + U(z, y) − U(x, y) − U(x, z)U (z, y)}

Alternative approach: JIMWLK (1997-2000)

LLA for DIS in pQCD ⇒ BFKL (LLA: αs ≪ 1, αsη ∼ 1)

LLA for DIS in sQCD ⇒ BK eqn (LLA: αs ≪ 1, αsη ∼ 1, α2s A1/3 ∼ 1)

(s for semi-classical)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 23 / 43

Page 46: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Goal: Single-gluon cross-section in A-A collision

A1 and A2 are the atomic numbers of the two nuclei.

A2

A1

High−energy scatt.

Eventually one would like to obtain the classical gluon produced in

heavy-ion collisions: initial condition for Quark-Gluon-Plasma.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 24 / 43

Page 47: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Simplified problem: 1 ≪ A1 ≪ A2

Consider 1 ≪ A1 ≪ A2 ⇒ Qs1 ≪ Qs2

Nucleus A1 is considered as a dilute system: not densely packed as

nucleus A2.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 25 / 43

Page 48: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Simplified problem: 1 ≪ A1 ≪ A2

Consider 1 ≪ A1 ≪ A2 ⇒ Qs1 ≪ Qs2

Nucleus A1 is considered as a dilute system: not densely packed as

nucleus A2.

3-gluon vertex diagrams G.A.C., Yu. Kovchegov, D. Wertepny (2014)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 25 / 43

Page 49: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Simplified problem: 1 ≪ A1 ≪ A2

Box-type diagrams G.A.C., Yu. Kovchegov, D. Wertepny (2014)

More details and the result of the calculation in D. Wertepny’s talk on Friday

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 25 / 43

Page 50: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Motivation: Why NLO correction of evolution equations?

How to take higher-order corrections into account (either for BFKL

or non-linear evolution equation).

Higher-order corrections are needed to improve phenomenology:

Determine the argument of the coupling constant.

Gives precision of LO.

Get the region of application of the leading order evolution

equation.

Check conformal invariance (in N=4 SYM)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 26 / 43

Page 51: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

High-energy Operator Product Expansion

η>Y

η<Y

+ +...

〈B|jµ(x)jν(y)|B〉 ≃∫

d2z1d2z2 ILOµν (z1, z2; x, y)〈B|tr{Uη

z1U† η

z2}|B〉

+αs

π

d2z1d2z2d2z3 INLOµν (z1, z2, z3; x, y)〈B|tr{Uη

z1U†η

z3}tr{Uη

z3U†η

z2}|B〉

η = ln 1xB

|B〉 Target state

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 27 / 43

Page 52: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

LO and NLO Impact Factor

T{jµ(x)jν(y)} =

d2z1d2z2 ILOµν

(z1, z2, x, y)tr{Uη

z1U†η

z2}

+

d2z1d2z2d2z3 INLOµν

(z1, z2, z3, x, y)[tr{Uη

z1U†η

z3}tr{Uη

z3U†η

z2} − Nctr{Uη

z1U†η

z2}]

LO Impact Factor diagram: ILO

z1

y x

z2

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 28 / 43

Page 53: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

LO and NLO Impact Factor

T{jµ(x)jν(y)} =

d2z1d2z2 ILOµν

(z1, z2, x, y)tr{Uη

z1U†η

z2}

+

d2z1d2z2d2z3 INLOµν

(z1, z2, z3, x, y)[tr{Uη

z1U†η

z3}tr{Uη

z3U†η

z2} − Nctr{Uη

z1U†η

z2}]

LO Impact Factor diagram: ILO

z1

y x

z2

NLO Impact Factor diagrams: INLO

z2

z’z1

y xz3

z2

zz’z1

y xz3

z

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 28 / 43

Page 54: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

NLO Photon Impact Factor

[

〈T {jµ(x)jν(y)}〉A

]LO=

d2z1d2z2

z412

ILOµν (x, y; z1, z2)〈tr{Uη

z1U†η

z2}〉A

[

〈T {jµ(x)jν(y)}〉A

]NLO=

d2z1d2z2

z412

d2z3

[

Iµν1 (z1, z2, z3) + I

µν2 (z1, z2, z3)

]

×[tr{Uz1U†

z3}tr{Uz3

U†z2} − Nctr{Uz1

U†z2}]

where Iµν2 (z1, z2, z3) is finite and conformal, while

Iµν1 (z1, z2, z3) =

αs

2π2ILOµν

z212

z213z2

23

∫ +∞

0

αei sα

4Z3

is rapidity divergent.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 29 / 43

Page 55: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

NLO Impact Factor

z2

z’z1

y xz3

z2

zz’z1

y xz3

zZ3 ≡ (x−z3)

2⊥

x+− (y−z3)

2⊥

y+

INLOµν (x, y; z1, z2, z3; η) = − ILO

µν × αs

z213

z212z2

23

lnσs

4Z3 + conf.

The NLO impact factor is not conformal (Möbius) invariant ⇒ the color dipole

with the cutoff η = lnσ is not invariant.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 30 / 43

Page 56: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

NLO Impact Factor

z2

z’z1

y xz3

z2

zz’z1

y xz3

zZ3 ≡ (x−z3)

2⊥

x+− (y−z3)

2⊥

y+

INLOµν (x, y; z1, z2, z3; η) = − ILO

µν × αs

z213

z212z2

23

lnσs

4Z3 + conf.

The NLO impact factor is not conformal (Möbius) invariant ⇒ the color dipole

with the cutoff η = lnσ is not invariant.

However, if we define a composite operator (a - analog of µ−2 for usual OPE)

[tr{Uηz1

U†ηz2}]conf

= tr{Uηz1

U†ηz2}

+αs

d2z3

z212

z213z2

23

[1

Nc

tr{Uηz1

U†ηz3}tr{Uη

z3U†η

z2} − tr{Uη

z1U†η

z2}] ln

az212

z213z2

23

+ O(α2s )

the impact factor becomes conformal in the NLO.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 30 / 43

Page 57: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

NLO Photon Impact Factor for BFKL pomeron in momentum space

G.A.C. and I. Balitsky (2013)

Iµν(q, k⊥)

=Nc

32

πν

sinh πν

(1 + ν2) cosh2 πν

(k2⊥

Q2

)12−iν{[(9

4+ ν2

)(

1 +αs

π+

αsNc

2πF1(ν)

)

Pµν1

+(11

4+ 3ν2

)(

1 +αs

π+

αsNc

2πF2(ν)

)

Pµν2

]

+14+ ν2

2k2⊥

(

1 +αs

π+

αsNc

2πF3(ν)

)

[

Pµν k2 + Pµν k2]

}

Pµν1 = gµν − qµqν

q2

Pµν2 =

1

q2

(

qµ − pµ2 q2

q · p2

)(

qν − pν2 q2

q · p2

)

Pµν =(

gµ1 − igµ2 − pµ2

q

q · p2

)(

gν1 − igν2 − pν2q

q · p2

)

Pµν =(

gµ1 + igµ2 − pµ2

q

q · p2

)(

gν1 + igν2 − pν2q

q · p2

)

The NLO Impact Factor in conventional pQCD took more then 10 years of

calculation by several groups and the result is not in a form useful for

phenomenology.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 31 / 43

Page 58: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Non-linear evolution equation at NLO G.A.C. and I. Balitsky

d

dηTr{UxU†

y} =

d2z

2π2

(

αs

(x − y)2

(x − z)2(z − y)2+ α2

s KNLO(x, y, z)

)

[Tr{UxU†z}Tr{UzU

†y} − NcTr{UxU†

y}] +

α2s

d2zd2z′

(

K4(x, y, z, z′){Ux,U†z′,Uz,U†

y}+ K6(x, y, z, z′){Ux,U†z′,Uz′ ,Uz,U†

z ,U†y})

KNLO is the next-to-leading order correction to the dipole kernel and K4 and K6 are the

coefficients in front of the (tree) four- and six-Wilson line operators with arbitrary white

arrangements of color indices.

We need to calculate some diagrams analytically (pen and paper).

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 32 / 43

Page 59: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Definition of the NLO kernel

In general

d

dηtr{UxU†

y} = αsKLOtr{UxU†y}+ α2

s KNLOtr{UxU†y}+ O(α3

s )

α2s KNLOtr{UxU†

y} =d

dηtr{UxU†

y} − αsKLOtr{UxU†y}+ O(α3

s )

We calculate the “matrix element” of the r.h.s. in the shock-wave background

〈α2s KNLOtr{UxU†

y}〉 =d

dη〈tr{UxU†

y}〉 − 〈αsKLOtr{UxU†y}〉+ O(α3

s )

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 33 / 43

Page 60: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Diagrams of the NLO gluon contribution

Diagrams with 2 gluons interaction

(II) (III) (IV) (V)

(VI) (VII) (VIII) (IX) (X)

(I)

(XIV)(XI) (XIII)(XII) (XV)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 34 / 43

Page 61: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Diagrams of the NLO gluon contribution

Diagrams with 2 gluons interaction

(XXVI) (XXVII)

(XVI) (XVII) (XVIII) (XIX) (XX)

(XXI) (XXIV) (XV)(XXII) (XXIII)

(XVIII) (XXIX) (XXX)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 34 / 43

Page 62: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Diagrams of the NLO gluon contribution

Diagrams with 2 gluons interaction

(XXXI) (XXXIII) (XXXIV)(XXXII)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 34 / 43

Page 63: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Diagrams of the NLO gluon contribution

"Running coupling" diagrams

(I) (II) (III) (IV) (V)

y

x

(VI) (VII) (VIII) (IX) (X)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 34 / 43

Page 64: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Diagrams of the NLO gluon contribution

1 → 2 dipole transition diagrams

q

k’

k

k’

k

q q

k’ kk’

q

k k

k’

q

k’

kk’

qq

k

k’

k’

qk

q

k’k

(c)(b)(a) (d) (e)

(f) (g) (h) (i) (j)

x x*

x*x

x*

x x* x

*x

*x

*

x x x x*x

*x

*

x x x x

k

q

a

b

c

a

b

cd

a

b

cd

a

bc

d

a

a aaaa

b b

b bc

c c c

cd

d

ddd

cb

b

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 34 / 43

Page 65: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Diagrams of the NLO gluon contribution

N = 4 SYM diagrams (scalar and gluino loops)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 34 / 43

Page 66: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Gluon contribution to the NLO kernel (I. Balitsky and G.A.C, 2007)

d

dηTr{UxU†

y} =αs

2π2

d2z(

[Tr{UxU†z}Tr{UzU

†y} − NcTr{UxU†

y}]

×{(x − y)2

X2Y2

[

1 +αsNc

4π(11

3ln(x − y)2µ2 +

67

9− π2

3)]

−11

3

αsNc

X2 − Y2

X2Y2ln

X2

Y2− αsNc

(x − y)2

X2Y2ln

X2

(x − y)2ln

Y2

(x − y)2

}

+αs

4π2

d2z′{

[Tr{UxU†z}Tr{UzU

†z′}{Uz′U

†y} − Tr{UxU†

z Uz′U†yUzU

†z′}

−(z′ → z)]1

(z − z′)4

[

− 2 +X′2Y2 + Y ′2X2 − 4(x − y)2(z − z′)2

2(X′2Y2 − Y ′2X2)ln

X′2Y2

Y ′2X2

]

+ [Tr{UxU†z}Tr{UzU

†z′}{Uz′U

†y} − Tr{UxU

†z′

UzU†yUz′U

†z} − (z′ → z)]

×[ (x − y)4

X2Y ′2(X2Y ′2 − X′2Y2)+

(x − y)2

(z − z′)2X2Y ′2

]

lnX2Y ′2

X′2Y2

})

Our result Agrees with NLO BFKL

It respects unitarity

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 35 / 43

Page 67: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Gluon contribution to the NLO kernel (I. Balitsky and G.A.C, 2007)

d

dηTr{UxU†

y} =αs

2π2

d2z(

[Tr{UxU†z}Tr{UzU

†y} − NcTr{UxU†

y}]

×{(x − y)2

X2Y2

[

1 +αsNc

4π(11

3ln(x − y)2µ2 +

67

9− π2

3)]

−11

3

αsNc

X2 − Y2

X2Y2ln

X2

Y2− αsNc

(x − y)2

X2Y2ln

X2

(x − y)2ln

Y2

(x − y)2

}

+αs

4π2

d2z′{

[Tr{UxU†z}Tr{UzU

†z′}{Uz′U

†y} − Tr{UxU†

z Uz′U†yUzU

†z′}

−(z′ → z)]1

(z − z′)4

[

− 2 +X′2Y2 + Y ′2X2 − 4(x − y)2(z − z′)2

2(X′2Y2 − Y ′2X2)ln

X′2Y2

Y ′2X2

]

+ [Tr{UxU†z}Tr{UzU

†z′}{Uz′U

†y} − Tr{UxU

†z′UzU

†yUz′U

†z} − (z′ → z)]

×[ (x − y)4

X2Y ′2(X2Y ′2 − X′2Y2)+

(x − y)2

(z − z′)2X2Y ′2

]

lnX2Y ′2

X′2Y2

})

NLO kernel = Running coupling terms + Non-conformal term + Conformal term

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 35 / 43

Page 68: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Evolution equation for color dipoles in N = 4

( I. Balitsky and G.A.C. 2009)

d

dηTr{Uη

z1U†η

z2}

=αs

π2

d2z3

z212

z213z2

23

{

1 − αsNc

[π2

3+2 ln

z213

z212

lnz2

23

z212

]}

× [Tr{TaUηz1

U†ηz3

TaUηz3

U†ηz2} − NcTr{Uη

z1U†η

z2}]

− α2s

4π4

d2z3d2z4

z434

z212z2

34

z213z2

24

[

1 +z2

12z234

z213z2

24 − z223z2

14

]

lnz2

13z224

z214z2

23

× Tr{[Ta,Tb]Uηz1

Ta′Tb′U†ηz2

+ TbTaUηz1[Tb′ ,Ta′ ]U†η

z2}(Uη

z3)aa′(Uη

z4− Uη

z3)bb′

NLO kernel = Non-conformal term + Conformal term.

Non-conformal term is due to the non-invariant cutoff α < σ = e2η in the rapidity

of Wilson lines.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 36 / 43

Page 69: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Evolution equation for color dipoles in N = 4

( I. Balitsky and G.A.C. 2009)

d

dηTr{Uη

z1U†η

z2}

=αs

π2

d2z3

z212

z213z2

23

{

1 − αsNc

[π2

3+2 ln

z213

z212

lnz2

23

z212

]}

× [Tr{TaUηz1

U†ηz3

TaUηz3

U†ηz2} − NcTr{Uη

z1U†η

z2}]

− α2s

4π4

d2z3d2z4

z434

z212z2

34

z213z2

24

[

1 +z2

12z234

z213z2

24 − z223z2

14

]

lnz2

13z224

z214z2

23

× Tr{[Ta,Tb]Uηz1

Ta′Tb′U†ηz2

+ TbTaUηz1[Tb′ ,Ta′ ]U†η

z2}(Uη

z3)aa′(Uη

z4− Uη

z3)bb′

NLO kernel = Non-conformal term + Conformal term.

Non-conformal term is due to the non-invariant cutoff α < σ = e2η in the rapidity

of Wilson lines.

For the conformal composite dipole the result is Möbius invariant

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 36 / 43

Page 70: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Evolution equation for composite conformal dipoles in N = 4 SYM

I. Balitsky and G.A.C (2009)

[Tr{Uηz1

U†ηz2}]conf

= Tr{Uηz1

U†ηz2}

+αs

d2z3

z212

z213z2

23

[1

Nc

tr{Uηz1

U†ηz3}tr{Uη

z3U†η

z2} − Tr{Uη

z1U†η

z2}] ln

az212

z213z2

23

+ O(α2s )

d

[

Tr{Uηz1

U†ηz2}]conf

=αs

π2

d2z3

z212

z213z2

23

[

1 − αsNc

π2

3

]

[

Tr{TaUηz1

U†ηz3

TaUz3U†η

z2} − NcTr{Uη

z1U†η

z2}]conf

− α2s

4π4

d2z3d2z4

z212

z213z2

24z234

{

2 lnz2

12z234

z214z2

23

+[

1 +z2

12z234

z213z2

24 − z214z2

23

]

lnz2

13z224

z214z2

23

}

× Tr{[Ta,Tb]Uηz1

Ta′Tb′U†ηz2

+ TbTaUηz1[Tb′ ,Ta′ ]U†η

z2}[(Uη

z3)aa′(Uη

z4)bb′ − (z4 → z3)]

Now Möbius invariant!

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 37 / 43

Page 71: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

NLO evolution of composite “conformal” dipoles in QCD

d

dη[tr{Uz1

U†z2}]conf =

αs

2π2

d2z3

(

[tr{Uz1U†

z3}tr{Uz3

U†z2} − Nctr{Uz1

U†z2}]conf

× z212

z213z2

23

[

1 +αsNc

(

b ln z212µ

2 + bz2

13 − z223

z213z2

23

lnz2

13

z223

+67

9− π2

3

)

]

+αs

4π2

d2z4

z434

{[

− 2 +z14

2z223 + z24

2z213 − 4z2

12z234

2(z142z2

23 − z242z2

13)ln

z142z2

23

z242z2

13

]

× [tr{Uz1U†

z3}tr{Uz3

U†z4}{Uz4

U†z2} − tr{Uz1

U†z3

Uz4U†

z2Uz3

U†z4} − (z4 → z3)]

+z2

12z234

z213z24

2

[

2 lnz2

12z234

z214z2

23

+(

1 +z2

12z234

z213z2

24 − z214z2

23

)

lnz2

13z242

z142z2

23

]

× [tr{Uz1U†

z3}tr{Uz3

U†z4}tr{Uz4

U†z2} − tr{Uz1

U†z4

Uz3U†

z2Uz4

U†z3} − (z4 → z3)]

})

b = 113

Nc − 23nf I. Balitsky and G.A.C

KNLO BK = Running coupling part + Conformal "non-analytic" (in j) part

+ Conformal analytic (N = 4) part

Linearized KNLO BK reproduces the known result for the forward NLO BFKL

kernel Fadin and Lipatov (1998).

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 38 / 43

Page 72: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

NLO Balitsky-JIMWLK evolution equation

Scattering amplitudes for proton-Nucleus and Nucleus-Nucleus collisions

are described by matrix elements made of multiple Wilson lines.

Typical matrix elements in pA and AA collisions is 〈tr{UxU†yUwU

†z}〉

quadrupole operator.

To include energy dependence ⇒ need NLO Balitsky-JIMWLK evolution

equation.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 39 / 43

Page 73: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

NLO Balitsky-JIMWLK evolution equation

a) b )

c) d)

e) f)

Sample of diagrams: a), b) are self-interactions; c), d) are pairwise interactions;

e), f) are triple interactions.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 39 / 43

Page 74: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Self interaction at NLO I. Balitsky and G.A.C. (2013)

a) b )

d

dη(U1)ij =

α2s

8π4

d2z4d2z5

z245

{

Udd′

4 (Uee′

5 − Uee′

4 )

×([

2I1 −4

z245

]

f adef bd′e′(taU1tb)ij +(z14, z15)

z214z2

15

lnz2

14

z215

[

if ad′e′({td, te}U1ta)ij − if ade(taU1{td′ , te′})ij

]

)

+α2

s Nc

4π3

d2z4 (Uab4 − Uab

1 )(taU1tb)ij ×1

z214

[11

3ln z2

14µ2 +

67

9− π2

3

]

I1 ≡ I(z1, z4, z5) =ln z2

14/z215

z214 − z2

15

[z214 + z2

15

z245

− (z14, z15)

z214

− (z14, z15)

z215

− 2]

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 40 / 43

Page 75: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Pairwise Interaction at NLO I. Balitsky and G.A.C. (2013)

c) d)

d

dη(U1)ij(U

†2)kl =

α2s

8π4

d2z4d2z5(A1 +A2 +A3) +α2

s Nc

8π3

d2z4(B1 + NcB2)

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 41 / 43

Page 76: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Pairwise Interaction at NLO I. Balitsky and G.A.C. (2013)

A1 =[

(taU1)ij(U2tb)kl + (U1tb)ij(taU2)kl

]

×[

f adef bd′e′Udd′

4 (Uee′

5 − Uee′

4 )(

− K − 4

z445

+I1

z245

+I2

z245

)]

K is the NLO BK kernel for N=4 SYM

A2 = 4(U4 − U1)dd′(U5 − U2)

ee′

{

i[

f ad′e′(tdU1ta)ij(teU2)kl − f ade(taU1td′)ij(U2te′)kl

]

J1245 lnz2

14

z215

+ i[

f ad′e′(tdU1)ij(teU2ta)kl − f ade(U1td′)ij(t

aU2te′)kl

]

J2154 lnz2

24

z225

}

J1245 ≡ J(z1, z2, z4, z5) =(z14, z25)

z214z2

25z245

− 2(z15, z45)(z15, z25)

z214z2

15z225z2

45

+ 2(z25, z45)

z214z2

25z245

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 41 / 43

Page 77: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Pairwise Interaction at NLO I. Balitsky and G.A.C. (2013)

A3 = 2Udd′

4

{

i[

f ad′e′(U1ta)ij(tdteU2)kl − f ade(taU1)ij(U2te′ td′)kl

]

×[

J1245 lnz2

14

z215

+ (J2145 − J2154) lnz2

24

z225

]

(U5 − U2)ee′

+ i[

f ad′e′(tdteU1)ij(U2ta)kl − f ade(U1te′ td′)ij(taU2)kl

]

×[

J2145 lnz2

24

z225

+ (J1245 − J1254) lnz2

14

z215

]

(U5 − U1)ee′}

J1245 ≡ J (z1, z2, z4, z5)

=(z24, z25)

z224z2

25z245

− 2(z24, z45)(z15, z25)

z224z2

25z215z2

45

+2(z25, z45)(z14, z24)

z214z2

24z225z2

45

− 2(z14, z24)(z15, z25)

z214z2

15z224z2

25

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 41 / 43

Page 78: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Pairwise Interaction at NLO I. Balitsky and G.A.C. (2013)

B1 = 2 lnz2

14

z212

lnz2

24

z212

×{

(U4 − U1)abi[

f bde(taU1td)ij(U2te)kl + f ade(teU1tb)ij(tdU2)kl

]

[(z14, z24)

z214z2

24

− 1

z214

]

+ (U4 − U2)abi[

f bde(U1te)ij(taU2td)kl + f ade(tdU1)ij(t

eU2tb)kl

]

[(z14, z24)

z214z2

24

− 1

z224

]}

B2 =[

2Uab4 − Uab

1 − Uab2

]

[(taU1)ij(U2tb)kl + (U1tb)ij(taU2)kl]

×{(z14, z24)

z214z2

24

[11

3ln z2

12µ2 +

67

9− π2

3

]

+11

3

( 1

2z214

lnz2

24

z212

+1

2z224

lnz2

14

z212

)

}

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 41 / 43

Page 79: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Triple interactions

I. Balitsky and G.A.C. (2013) (see also A. Grabovsky (2013))

e) f)

J12345 ≡ J (z1, z2, z3, z4, z5) = −2(z14, z34)(z25, z35)

z214z2

25z234z2

35

− 2(z14, z45)(z25, z35)

z214z2

25z235z2

45

+2(z25, z45)(z14, z34)

z214z2

25z234z2

45

+(z14, z25)

z214z2

25z245

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 42 / 43

Page 80: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Triple interactions

I. Balitsky and G.A.C. (2013)

d

dη(U1)ij(U2)kl(U3)mn

= iα2

s

2π4

d2z4d2z5

{

J12345 lnz2

34

z235

× f cde[

(taU1)ij(tbU2)kl(U3tc)mn(U4 − U1)

ad(U5 − U2)be

− (U1ta)ij(U2tb)kl(tcU3)mn(U4 − U1)

da(U5 − U2)eb]

+ J32145 lnz2

14

z215

× f ade[

(U1ta)ij(tbU2)kl(t

cU3)mn(U4 − U3)cd(U5 − U2)

be

− (taU1)ij ⊗ (U2tb)kl(U3tc)mn(Udc4 − Udc

3 )(Ueb5 − Ueb

2 )]

+ J13245 lnz2

24

z225

× f bde[

(taU1)ij(U2tb)kl(tcU3)mn(U4 − U1)

ad(U5 − U3)ce

− (U1ta)ij(tbU2)kl(U3tc)mn(U4 − U1)

da(U5 − U3)ec]

}

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 42 / 43

Page 81: Non-linear QCD Dynamics and Wilson Lines...a saturation limit? Froissart bound: σ tot ∝ ln2 s G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolutionMay 28, 2015

Conclusions

Linear evolution equation cannot describe the dynamics of high-energy

QCD.

Dynamics of QCD at high-energy is non-linear.

Calculations of BK/JIMWLK evolution equations at NLO.

NLO photon impact factor.

NLO BK/JIMWLK evolution equation.

G. A. Chirilli (The Ohio State Uni.) Non-linear QCD dynamics QCD evolution May 28, 2015 43 / 43