25
2014 Dormant Detroit A DPSIR ANALYSIS DANA MCMANAMON Figure 1 The Packard Plant

Detroit FINAL McManamon

Embed Size (px)

DESCRIPTION

Detroit

Citation preview

Page 1: Detroit FINAL McManamon

 

   

2014  

Dormant  Detroit  A  DPSIR  ANALYSIS  DANA  MCMANAMON  

Figure  1  The  Packard  Plant  

Page 2: Detroit FINAL McManamon

1    

Table  of  Contents  

1.  Executive  Summary  .............................................................................................................  2  

2.  Background  &  Context  ........................................................................................................  3  

3.  DPSIR  ..................................................................................................................................  9  

4.  Metrics,  Method,  and  Methodology  ..................................................................................  15  

5.  Analysis  ............................................................................................................................  16  

6.  Conclusion  ........................................................................................................................  20  

7.  References  ........................................................................................................................  21    

 

 

 

 

 

 

 

     

Page 3: Detroit FINAL McManamon

2    

1.  Executive  Summary  This   document   summarizes   the   Driver,   Pressure,   State,   Impact,   Response   (DPSIR)  

analysis  and  findings  for  the  city  of  Detroit,  Michigan,  with  a  focus  on  material  flows.  It  provides  insight   into   the  methods   and  methodologies   used   to   conduct   the   analysis,   quantify   impacts,  and  aid  in  the  visualization  of  data,  particularly  within  the  spatial  context.    

Following  decades  of  economic  stability  starting  in  the  early  1900’s  and  lasting  until  the  1990’s,   linked  closely  to  the  booming  success  of  US  Auto  Industry,  Detroit  ultimately  failed  to  keep   its   head   above   water,   filing   for   Chapter   9   Bankruptcy   in   2013.   Over   the   last   decade,  population   decline,   unemployment,   and   abandonment   of   properties   have   become   the   norm  throughout  a  city  that  was  once  a  bustling  and  vibrant  metropolis.  The  lack  of  taxpayer  money  and  the   increase   in  building  foreclosures  has   led  to  urban  decay,  stranded   infrastructure,  and  informal  material  recovery  pathways.  The  impacts  are  both  positive  and  negative.  Fewer  people  mean   fewer   cars   on   the   highway,   less   air   pollution,   lower   energy   consumption   and   fewer  resource   demands.   But   it   also   means   poorly   managed   abandoned   lots,   arson,   and   lack   of  funding  to  maintain  public  spaces,  improve  economic  vitality,  and  put  Detroit  back  on  the  map  as   one   of   America’s   strongest   cities.   Though   efforts   are   being   undertaken   to   remediate   and  rebuild   the   city,   Detroit   still   has   a   long   and   arduous   road   to   recovery   ahead,   with   an  unbelievable   price   tag.   The   following   document   takes   the   reader   through   a   material   flow  analysis  to  understand  how,  when,  and  why  Detroit  got  to  where  it  is.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 4: Detroit FINAL McManamon

3    

2.  Background  &  Context  Detroit,   Michigan  

sits   on   the   Detroit   River,  which   flows   from   Lake   St.  Clair   to   the  north   into  Lake  Erie  to  the  south.  Like  most  cities,  Detroit  does  not  exist  in  geographical  isolation.  Its  economic   activities,   or   lack  thereof,   affect   nearby  bodies  of  water  and  nearby  cities,   such   as   Windsor,  Canada,   which   sits   across  the   river.   Just   before   the  Auto   Industry   collapsed   in  2008,  Windsor,   also   known  as   the   “smog   capital   of  Canada”,   suffered   from  some  of   the  highest   instances  of   respiratory   illness   in  Canada,  directly   linked  to   the  pollution  generated  across  the  border  in  the  United  States  (Windsor,  2008).      

Detroit   is   approximately   143   square   miles.   The   cities   of   Boston,   Manhattan   and   San  Francisco  could  fit   inside  Detroit’s  borders.  The  cumulative  population  of  these  three  cities   in  2014  totaled  over  3.1  million,  with  Detroit  containing  only  688,700  inhabitants  within  the  same  space  (World  Atlas,  2014).  

 

Figure  3  Contextualizing  Detroit's  Size  

Figure  2  Map  of  Detroit  

Page 5: Detroit FINAL McManamon

4    

Detroit’s   economic   success   and   vitality   has   been   intrinsically   linked   to   the   US   automobile  industry  since  the  early  1900’s  when  “The  Big  Three”  manufacturers  Ford,  Chrysler,  and  General  Motors  were   founded  within   the  city   limits.  Throughout   the  majority  of   the  20th  century,   the  city  attracted  migrants  from  all  over  the  United  States  with  its  overflowing  job  opportunities  at  one  of  the  dozens  of  automobile  plants  throughout  the  city  (The  Henry  Ford,  2010).  The  city’s  committed  workforce,  thriving  on  unprecedented  wages,  specialized  in  one  thing  and  one  thing  only  –   the  assembly   line.  Detroit’s  economy,   therefore,   lacked  diversity  of   skills  and   industry,  and  was  overly  reliant  on  the  volatile  auto  industry.      

Despite   warning   signs   of   this   volatility   throughout   the   Great   Depression,   the   post   WW2  slump  and  the  transition  towards  increasing  popularity  of  foreign  auto  manufacturers,  the  city  failed   to  build  any  sort  of   resilience   through  economic  diversification.    Figures  4  and  5  below  show   the   transition   from   a   Detroit-­‐centric   auto   industry   to   a   foreign-­‐centric   auto   industry  following  the  2008  Financial  Crisis.  

 

Figure  4  Car  Production  Domestic  v.  Foreign  

 

   Figure  5  Auto  Manufacturing  Locations  &  Shut  Downs  2007-­‐2011  

Page 6: Detroit FINAL McManamon

5    

Though  the  US  Auto  Industry  has  made  slight  improvements  and  restructured  over  the  last  six  years,  Detroit’s  economy  has  lagged  in  its  ability  to  recuperate.    Still  unable  to  generate  enough  economic  activity  to  employ   its   inhabitants,  Detroit’s  2014  unemployment  rate  sits  at  an  astonishing  15%  compared  to  a  5.9%  average   in   the  US   (Bureau  of  Labor  Statistics,  2014).  The   ongoing   lack   of   a   robust   municipal   revenue   stream   caused   Detroit   to   file   Chapter   9  bankruptcy,  in  2013.  This  filing  was  the  largest  municipal  bankruptcy  of  its  kind  in  the  history  of  the  US,  at  an  estimated  $18-­‐24  billion  (Williams,  2013).    

Beneath   what   seemed   like   a  mutually   beneficial   exchange   between   the   20th   Century  Auto   Industry   and   Detroit’s   urban   population,   the   industry   negatively   contributed   to   racial  divides  and  a  socioeconomically  fractured  city.  The  process  of  Caucasians  leaving  the  inner  city,  known  as  “White  Flight”,  started  in  the  1950’s  and  60’s  after  the  white  middle  class,  equipped  with   solid   salaries,   personal   transportation   (cars)   and   the   accompanying   infrastructure   (the  interstate),  began  moving  to  the  suburbs  to  live  the  “American  Dream”  in  single  family  houses  with   private   backyards   and   attached   garages   (Wisely,   2011).   They   took   with   them   their  economic  activity,  tax  dollars,  and  property  values.  

Still  today,  on  the  northern  edge  of  Detroit’s  limits,  the  infamous  8  Mile  Road  marks  the  jarring   divide   between   poverty   and   the   middle   class.   Houses   transition   from   “abandoned  rubble”  to  “well  maintained  suburbs”  as  you  cross  the  concrete  “border”.  Within  the  city  limits  to  the  south  (Wayne  County,  predominantly  African  American),  the  annual  income  per  person  is   significantly   lower,   at   $22,125,   than   that   of   the   population   to   the   north   (Oakland   County,  predominantly  Caucasian)  where  the  annual   income  per  person  is  $61,907  (US  Census,  2010).  The  below  map  depicts  the  racial  composition  below  and  above  8  Mile.  

 

 

 

 

 

 

 

 

 

 

Unfortunately,  compounded  by  the  failing  auto  industry,  “white  flight”  was  responsible  for  much   of   Detroit’s   inner   city   demise.   From   1950   to   2014,   the   population   decreased   from  1,850,000   to   688,700,   a   63%   decline   (World   Population   Review,   2014).   The   below   chart  summarizes  the  population  transition  from  the  1940’s  to  today,  by  race.    

Figure  6  Mapping  the  Racial  Divide  

Page 7: Detroit FINAL McManamon

6    

 

Figure  7  Population  Shift  1940's-­‐Today  

    In  addition  to  contributing  to  the  socioeconomic  divide,  the  auto   industry  also  created  a   low-­‐density   sprawling   city  with   little   to   no  demand   for   public   transportation   infrastructure.    Detroit  was  home  to  one  of  the  nation’s  first  interstate  systems.  The  city’s  reliance  on  cars  and  individual  transport   meant   that   integrated   public   transport   systems   such   as   streetcars   were   phased   out  starting  in  the  late  1950’s  (The  City  of  Detroit,  2014).  Once  home  to  bumper-­‐to-­‐bumper  rush  hour  traffic,  the  City’s  highways  are  mostly  empty  today.    

  The   highways   are   not   the   only   infrastructure   left   empty.   Abandoned   residential   units   and  industrial  manufacturing  facilities  sit  on  almost  every  block  of  the  city  today.  There  are  more  than  70,000   abandoned   buildings,   31,000   empty   houses,   and   90,000   vacant   lots   throughout   Detroit  (Binelli,  2012).  Defaults  on  mortgage  payments  and  inability  to  pay  property  taxes  have  been  cited  as   the  primary   reasons   for  abandoned   infrastructure.  As  depicted   in  Figure  10,   the   transition  of  any  given  home  along  a  city  street  between  2007  and  2013  is  particularly  shocking,  looking  more  like  an  end  of  the  world  scenario  than  an  American  Dream.  

Figure  8  1950's  Highway  in  Detroit   Figure  9  Abandoned  I-­‐71  In  Detroit  

Page 8: Detroit FINAL McManamon

7    

With   over   20%   of   the   city   is   registered   as   vacant,   empty   is   a   choice   word   used   to  describe   most   of   the   city   (Kellogg,   2010).   The   maps   below   show   the   increase   in   residential  vacancy   from   the   2000   to   the   2010   census.   Dark   orange   represents   a   higher   percentage   of  vacancy  than  lighter  orange  areas.  

 Figure  11:  Change  Vacant  Housing  

Due   to   abandonment   and   ageing   infrastructure,   the   total   value   of   Detroit   properties   has  declined  79%   since   the  1960’s,   from  around  $45.2  billion  USD   in  1958   to  a  mere  $9.6  billion  USD  in  2012,  as  depicted  in  Figure  12.  

 

Figure  10  A  House  Falls:  2007-­‐  Today  

2007  

2009  

2011  

2013  

Page 9: Detroit FINAL McManamon

8    

 

Figure  12  Property  Values  Over  Time  

Abandoned   residential   units   are   only   part   of   the   story.   In   the   early   and   mid   1900’s  Detroit   boasted   some   of   the   largest   state-­‐of-­‐the-­‐art   manufacturing   facilities   in   the   world.  Today,  15  of  these  large  industrial  facilities  that  once  manufactured  hundreds  of  thousands  of  automobiles   per   year   sit   vacant.   They   are   infamous   destinations   for   raves,   graffiti   artists,  scrappers,   and  urban   explorers.   Valuable  materials   inside   the  buildings,   primarily  metals,   are  stranded  without  funds  for  demolition.  Waste  pickers  have  been  manually  collecting  and  selling  scraps  onto  the  market  for  recycling  over  the  years,  but  the  majority  of  materials  throughout  the  city  waits  to  be  reclaimed.  Figure  13   identifies  the   largest  and  most   infamous  abandoned  Auto  infrastructure  sites  throughout  the  city  today.  

 

Figure  13  Detroit  Abandoned  Auto  Manufacturing  Facilities  

Page 10: Detroit FINAL McManamon

9    

3.  DPSIR  The  background  of  Detroit  and  its  abandonment  brings  us  conveniently  to  the  DPSIR  Framework,  summarized  in  Figure  14.  The  following  section  will  review  each  stage  of  analysis.  

 

 

 

 

 

 

 

   

Figure  14  DPSIR  Framework  Detroit  

Page 11: Detroit FINAL McManamon

10    

3.1  Driver  

The  DPSIR  is  driven  by  a  shift  away  from  the  booming  20th  century  Auto  Industry  towards  a  more  stagnant  urban  economy.  As  discussed  in  Section  2,  Detroit  has  lacked  economic  diversity  since  the  start  of  the  auto  industry  in  1903  and  is  thus  highly  vulnerable  to  auto  industry  trends.  After  the  domestic  auto  industry  hit  an  all  time  low  following  the  2008  Financial  Crisis,  Detroit  never  recovered.  

3.2  Pressures  

Following  the  collapse  of  the  US  Auto  Industry,  the  majority  of  manufacturing  facilities  in  and  near  the  city  have  shut  down,  material  flows  into  and  out  of  the  city  have  entirely  shifted  and/or  decreased,  the  majority  of  the  urban  population  has  fled,  and  unemployment  rates  are  some  of  the  highest  in  the  United  States.    

3.3  State  

The  current  state   in  Detroit  portrays  a  combination  of  positive  and  negative  results  of  abandonment.    

3.3.1  Inability  to  maintain  infrastructure,  demolition,  and  arson  On   the   negative   side   is   the   city’s  

inability   to   maintain   infrastructure.  Companies   and   members   of   the   public  unable   to   pay   property   taxes   and  mortgages   have   left   the   burden   of   their  property  to  the  state,  which  is  also  unable  to   fund   and   adequately   manage   the  dissemination   of   infrastructure   at   this  time.    All  around  the  city  buildings  are  in  a  state   of   disrepair.   Figure   15   shows   the  properties   in   Detroit   earmarked   for  demolition  as  of  2014.  It  is  estimated  that  it  would   take  around  $850  million   to   tear  down   and   clean   up   the   abandoned  residential  units  and  a  further  $1  billion  to  do   the   same   for   manufacturing   and  industrial  facilities  (Davey,  2014).  Fires  are  also   a   big   issue   throughout   the   city.  Between   trouble-­‐maker   arsonists   looking  

for   a   fun   time,   and   mismanaged   abandoned   chemicals   spontaneously   combusting,   Detroit  suffers  from  over  14  fires  on  any  given  night  (Neavling,  2013).      

       

 

Figure  15  Buildings  Earmarked  for  Demolition  

Page 12: Detroit FINAL McManamon

11    

3.3.2  Renaturalization  On   the  positive   side,   due   to   abandonment,   the   city   is  more   “green”   than   it   has   been  

since   industrialization,   with   vegetation   slowly   reclaiming   street   blocks   and   sprouting   up  between  sidewalks  and  foundations.    Figure  16  shows  a  green  city  block,  once  the  site  of  John  A.  Owen  Elementary  School,  now  transitioned  into  an  urban  green  space.  

 

 

Figure  16  Detroit  From  Above  

While   regrowth   is   in   general   positive   for   the   environment   (carbon   sequestration,  cleaner  air),  blight,  a  plant  bacterial   infection,   is  attacking  and  killing  greenery  throughout  the  city.  Left  unmanaged,  much  of  the  city  has  fallen  into  a  blight  epidemic,  where  all  lots  infected  now  have  to  be  remediated  to  remove  the  infection  and  re-­‐establish  healthy  land.    The  city  has  established  a  Blight  Task  Force  to  survey  and  manage  the   issue.   In  2014  the  task   force   found  that   22%   of   buildings   surveyed   were   infected   with   blight   and   were   recommended   for  “immediate   demolition”   (Detroit   Blight   Task   Force,   2014).   Figure   17   identifies   properties  flagged  for  immediate  demolition  in  red  and  the  less  urgent  properties  in  orange  and  yellow.  

 

 Figure  17  Properties  Plagued  with  Blight  

Page 13: Detroit FINAL McManamon

12    

 3.3.3  Material  recovery  The   metal   scrappers   and   material   collectors   around   Detroit   are   slowly   (and   illegally)  

dismantling  valuable  embedded  resources  from  abandoned  lots  and  selling  them  to  scrap  yards  to  be  reprocessed  into  secondary  raw  materials.  An  entire  sub-­‐economy  has  been  built  on  the  waste  picking  industry  (Shriberg,  2014).  The  city  cannot  currently  afford  to  properly  dismantle  buildings   and   infrastructure   in   line   with   environmental   remediation   techniques,   so   instead,  individuals   are,   though   informal   scrapping   creates   added   risk   of   building   collapse   and  environmental   emissions.   The   quantity   and   value   of   materials   stranded   across   the   city   is  unknown,  though  the  “analysis”  section  of  this  report  attempts  to  quantify  embedded  materials  and  graphically  portray  the  journey  of  materials  over  time  and  space.  

 3.4  Impact  

3.4.1  Health  

Fires  cause  the  emissions  of  greenhouse  gases  (quantified  in  the  “analysis  section  of  this  report”),  particulate  matter,  carbon  monoxide,  atmospheric  mercury,  ozone-­‐forming  chemicals,  and  volatile  organic  compounds.  The  air  pollutants  associated  with  fires  have  not  been  quantified  because  not  enough  data  exists,  though  the  air  pollutants  generated  by  fires  are  known  to  cause  health  impacts  such  as  cancers  and  asthma.  Figure  18  visualizes  the  intensity  of  asthma  hospitalization  in  an  area  surrounding  a  poorly  managed  waste  incinerator  in  2008.  The  incinerator  can  be  used  as  a  proxy  for  urban  fires,  to  highlight  how  bad  for  health  fires  and  open  burning  are  in  an  urban  setting.  

 Figure  18  Hospitalization  from  Asthma  Near  an  Incinerator

 

Page 14: Detroit FINAL McManamon

13    

In  addition  to  health  impacts  from  air  pollution,  there  are  more  difficult  impacts  to  quantify  such  as  lead  poisoning  from  the  paint  of  abandoned  facilities.  Paint  peeling  from  abandoned  buildings  has  historically  lead  to  increased  instances  of  lead  poisoning  among  children  throughout  the  city  (EPA,  2009).  Groundwater  runoff  emissions  of  leakage  from  abandoned  facilities  and  fuels  also  pose  a  threat  to  health.  

3.4.2  Biodiversity  

Biodiversity,  too,  is  hard  to  quantify  but  as  discussed  in  the  “State”  section  of  this  report,  the  regrowth  of  urban  areas  into  green  spaces  is  improving  biodiversity,  and  will  continue  even  more  so  once  the  threat  of  blight  is  better  managed.  In  the  future,  I  hope  to  find  some  analysis  conducted  on  the  species  richness  and  diversity  of  animal  and  plant  life  in  Detroit  compared  to  when  it  was  fully  populated,  but  for  now  we  can  assume  that  it  is  “directionally  correct”  to  say  that  fewer  people  and  fewer  buildings  mean  more  biodiversity.  

3.4.3  Decrease  in  House  Prices,  Increase  in  Insurance.  

Housing  prices  have  decreased  and  insurance  premiums  have  increased  in  Detroit  as  population  declines  and  instances  of  fires  and  destruction  increase.  Figure  19  visualizes  whether  it  is  more  economically  viable  to  rent  or  buy  in  cities  across  the  US.  Detroit  is  one  of  two  places  where  it  is  absolutely  cheaper  to  buy  than  to  rent.  

 

 

Figure  19  Cheaper  to  Rent  or  Buy?  

3.4.4  Air  Pollutants  and  Greenhouse  Gas  Emissions  

As  discussed  briefly  in  section  3.4.1,  fires  and  demolition  contribute  to  changes  in  greenhouse  gas  emissions  and  air  pollutants  throughout  the  city.  A  decrease  in  economic  

Page 15: Detroit FINAL McManamon

14    

activity  and  industrial  energy  consumption  leads  to  fewer  emissions  related  to  energy  consumption  (Figure  20),  though  impacts  of  fires  and  demolition  negatively  affect  the  air.  

 

Figure  20  Energy  Consumption  Industrial  Sector  Detroit:  2000-­‐2011  

3.5  Response  

In   response   to   the  current   issues  Detroit   faces,   large-­‐scale   rehabilitation  efforts  are   in  the  works,  like  Hantz  Farms  plan  to  transform  thousands  of  acres  of  inner-­‐city  land  into  urban  farming   space.   Michigan   State   University   plans   to   spend   $100   million   on   a   100-­‐acre   urban  farming   center   for   researching   city   farming.   The   center   will   research   vertical   farming,   new  forms  of  energy  production,  and  water  management.  Locally,  a  nonprofit  called  The  Michigan  Urban   Farming   Initiative   oversees   more   than   2,000   community   gardens   throughout   the   city  (Roxborough,   2013).   Future   plans   for   different   types   of   land   use   have   been   submitted   by  various  consultancy  firms  and  urban  planning  organizations  which   layout  possible  alternatives  for  rebuilding  the  city.  Figure  21  depicts  different  options  for  land  use  depending  on  the  quality  of  the  land  (Desimini,  2013).    

 

Figure  21  Land  Use  Recommendations  

Page 16: Detroit FINAL McManamon

15    

4.  Metrics,  Method,  and  Methodology  Because   Detroit   is   such   a   captivating   and   eerie   story,   there   is   an   abundance   of  

information   in   the   form  of   visualizations,  mapping,   and   graphics   available   on   the   internet.   A  project  called  “Data  Driven  Detroit”  in  particular  publishes  dozens  of  GIS  maps,  which  aid  in  the  story   telling   of   this   DPSIR.   The   available   data,   however,   works   best   to   tell   the   “Driver”   and  “Pressures”   section   of   the   analysis   and   works   less   so   to   tell   the   “State”,   “Impact”,   and  “Response”   section,   primarily   due   to   the   unknown   datasets   associated   with   abandoned  properties.  

Datasets   that   were  widely   available   included  maps   of   change   in   population,  maps   of  change   in   employment,   instances   of   abandoned   property,  maps   of   properties   earmarked   for  demolition,  maps  of  population  distribution  by  ethnicity,  population  trends,  property  value  by  year,  images  of  abandoned  facilities,  images  of  abandoned  lots,  and  instances  of  blight.    

The   much   more   difficult   areas   to   quantify   and   visualize   were   things   like   quantity   of  materials   embedded   within   abandoned   buildings,   value   of   materials   embedded   within  abandoned  buildings,  health  impacts  of  leachate  from  abandoned  buildings,  and  air  pollutants  from  fires  and  arson.  

To  overcome  these  difficult  areas  I  used:  

1. A  material  flow  analysis  to  depict  a  high  level  visualization  of  how  materials  have  come  into  and  out  of  Detroit  over  time  

2. A  specific  material  flow  example  of  Copper  3. Estimated  values  of  embedded  materials  from  available  sources  (e.g.  number  of  

abandoned  buildings  x  quantity  of  a  given  material  within  an  average  single  family  home  =  estimated  total  materials  used)  

4. An  estimated  fire  GHG  emissions  calculation  5. A  case  study  of  The  Packard  Plant  to  summarize  the  current  state  

 

These  “drill  downs”  help  represent  snapshots  of  the  city  in  a  more  manageable  way  and  are  explained  in  the  following  Analysis  section  of  this  report.  

 

   

Page 17: Detroit FINAL McManamon

16    

5.  Analysis  5.1  Material  Flow  Analysis  

This  material  flow  chart  uses  a  “pile  and  pit”  approach  to  visualize  resource  extraction  and  use  throughout  each  stage  of  Detroit’s  modern   life.  Stages   include  “Material  Abstraction,  Value   Added,   Infrastructure   Construction”   1900-­‐1990’s,   “Abandonment”   1990’s-­‐2013,   and  “Bankruptcy  and  Restructuring”  2013-­‐Today.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  22  Material  Flow:  Infrastructure  

Page 18: Detroit FINAL McManamon

17    

5.2  A  Specific  Material  Flow:  Copper  

Copper  is  embedded  in  electricity  infrastructure  throughout  the  city.  It  is  estimated  that  Detroit  holds  around  13.5  million  pounds  of  copper,  worth  approximately  $40  million,  in  its  old  streetlight   system  alone   (Church,  2104).  Copper   is  of   interest  because   its   life   cycle  “then”  vs.  “now”  shows  the  transition  of  a  city  over  time,  from  when  copper  was  used  to  build  necessary  new   infrastructure,   to   now   when   it   is   left   abandoned   and   disused.   From   an   environmental  perspective,   it   is  a  positive  thing  for  infrastructure  to  be  manually  disassembled  and  scrapped  for  recycling,  because  collection  and  removal  requires  little  to  no  energy  and  all  pieces  can  be  valuable  to  someone.  The  recycling  of  these  materials  also  means  fewer  raw  materials  need  to  be  extracted  for  construction  elsewhere.  The  figure  below  shows  a  basic  flow  of  copper  through  the  city,  broken   into  2  timeframes.  Many  metals  and  recyclable  materials  throughout  the  city  will  undergo  a  similar  process  of  reclamation  and  recycling  for  use  elsewhere.  

 

Figure  23  The  Life  Cycle  of  Copper  

5.3  Estimated  Values  of  Embedded  Materials  

The  materials  embedded  within  infrastructure  are  hard  to  estimate  and  quantify,  as  are  the  costs  associated  with  demolition  and  material  recovery.   In  order  to  visualize  the  clean  up  costs  and  material  value  benefits  associated  with  buildings  and  materials  in  Detroit,  I  created  a  graphic  to  show  select  categories  in  relation  to  municipal  debt  in  Figure  24.      

 

 

 

 

Page 19: Detroit FINAL McManamon

18    

 

Figure  24  Costs  and  Benefits  of  Material  Recovery  and  Demolition  

Clean  up  costs  are  estimated  at  $1  billion  for  industrial  facilities  and  over  $850  million  for  residential  facilities  by  a  New  York  Times  reporter  who  interviewed  urban  demolition  specialists.    The  stranded  values  of  copper  and  steel  are  estimated  assuming  that  there  are  around  13.5  million  pounds  of  copper  in  the  utility  infrastructure  and  over  32,000  tons  of  steel  embedded  in  13  abandoned  manufacturing  facilities  (this  was  estimated  using  an  average  quantity  of  steel  used  per  square  foot  of  facility  and  assuming  that  each  facility  was  around  26.5  million  square  feet).    Each  quantity  of  metal  was  then  monetized  based  on  scrap  value  estimates.    

  Materials  less  likely  to  be  reclaimed  for  any  significant  market  value  include  concrete  and  wood.  With  over  40,000  homes  abandoned  and  scheduled  for  demolition  throughout  the  city,  and  an  estimated  13,000  feet  of  lumber  per  average  single  family  home  (National  Association  of  Home  Builders,  2014),  it  is  estimated  around  520,000,000  feet  of  lumber  is  embedded  in  homes  alone.  This  material  could  be  incinerated  for  energy  if  managed  properly  but  currently  sits  rotting.    

5.4 Estimated  Fire  Emissions    

A  New  Zealand  study  attempted  to  quantify  greenhouse  gas  (GHG)  emissions  associated  with  the  burning  of  an  average  single  family  home  (Robbins,  2012).  To  estimate  this,  the  study  looked  at  the  materials  that  comprise  a  home  and  the  burning  and  emissions  potential  of  each  material,  as  summarized  in  Figure  25.    

Page 20: Detroit FINAL McManamon

19    

 

Figure  25  Summary  of  the  CO2e  Yield  for  Structure  Materials  

Given  the  above  composition  assumptions,  an  average  home,  when  burned,  emits  around  27  metric  tons  of  CO2e.  Given  that  the  Detroit  fire  department  responds  to  about  30,000  fires  a  year  (Detroit  Fire  Department,  2014),  it  can  be  estimated  the  GHG  emissions  associated  with  arson  in  Detroit  total  around  810,000  metric  tons  of  CO2e  per  annum  (this  is  a  high-­‐end  estimate  since  each  home  does  not  burn  completely).  According  to  the  US  Environmental  Protection  Agency  (EPA,  2014)  a  typical  passenger  vehicle  emits  around  4.7  metric  tons  of  CO2e  a  year,  thus  the  emissions  from  fires  in  Detroit  each  year  is  the  equivalent  of  putting  over  172,000  cars  on  the  road  for  an  entire  year.  I  quickly  realized  that  the  savings  in  one  area  (emissions  savings  from  population  reduction  and  reduced  fuel  consumption)  can  be  made  up  in  others  (emissions  from  fires).  

5.5  A  Case  Study:  The  Packard  Plant  

A  case  study  of  the  Packard  Plant,  an  old  luxury  car  factory,  represents  a  snapshot  of  the  bigger  urban  issue  that  can  be  broken  down  and  analyzed.  During  its  prime,  the  Packard  Plant  was   home   to   the   production   of   automobiles   and   aircraft.     It   officially   shut   down   its  manufacturing  activities  in  1958  and  was  used  as  a  storage  facility  until  the  1990’s,  after  which  

Page 21: Detroit FINAL McManamon

20    

it   officially   fell   into   disrepair.   Today,   the   approximately   3.5   million   square   foot   facility   sits  empty,  bar  some  scrappers  and  squatters  (Boyle,  2012).    

 

Figure  26  The  Packard  Plant  Lobby,  2001  v.  2014  

In  October  2014,  the  Packard  Plant  was  bought  for  an  incredibly  low  $400,000  and  a  10-­‐15   year   rehabilitation   process   began   (Woolfolk,   2014).     The   process   entails   detailed  environmental   analyses   to   identify   risk   areas   and   will   focus   on   asbestos   remediation,  environmental  toxins,  and  debris  and  reinforced  concrete  removal.  This  process,  if  orchestrated  responsibly,  can  act  as  a  standard  against  which  future  remediation  projects  can  be  held.   It   is  estimated   that   materials   recovered   from   the   building   will   be   around   10%   steel   and   90%  concrete   (Dixon,   2012).     Unfortunately,  when  most   of   these   facilities  were   built   in   the   early  1900’s,  structural  composition  was  very  heavy  weight  and  dense  compared  to  more  efficiency  building  designs  today.  Because  of  this,  waste  concrete  and  rubble  that  cannot  be  recycled  for  high  value  like  metals  comprise  the  majority  of  the  building  materials.  The  rise  and  fall  of  the  Packard   Plant   is   a   haunting   representation   of   many   facilities   throughout   the   city,   but   the  rehabilitation  plan  is  a  step  in  the  right  direction  towards  recovery.  

6.  Conclusion  When   I   search   “Detroit”   on   Google,   the   first  

related  search  item  that  comes  up  is  “What  Happened  to  Detroit?”  (see  Figure  27).    

Through   the   application   of   the   DPSIR   Framework  and   an   extensive   semester   long   analysis,   I   think   I   can  

answer  this  question  now.  Using  a  material  flow  approach  to  better  understand  the  rise  and  fall  of  Motor  City,  I  have  

tracked   the   flow   of   metals,   wood,   and   concrete   from   the   construction   of   a   20th   century  powerhouse   to   a   2013   Bankrupt   rotting   ghost   town.   Though   today  much   of   the   city   and   its  infrastructure   remain   stranded   in   houses   and   facilities   without   funding   for   demolition   and  reclamation,  the  city  is  slowly  transitioning.  Detroit  is  starting  to  attract  start-­‐up  firms  who  are  pulled  in  by  cheap  rent,  tax  incentives,  space,  and  what  most  young  people  seek,  “the  next  big  thing”.  As  of  September  2014  there  were  more  than  100  start-­‐ups  registered  in  Detroit  (Startup  Detroit,  2014).  Private  buyers  investing  in  infrastructure  like  the  Packard  Plant  will  help  the  city  get   back   on   its   feet,   and   as   people   start   to   invest,   Detroit   can   do  what   it   never   did   before,  transform  into  a  multi-­‐industry  city  with  a  bright  future.    

Figure  27  Google  Search  Recommendations  

Page 22: Detroit FINAL McManamon

21    

7.  References  Binelli,  Mark  (2012ly).  "How  Detroit  Became  the  World  Capital  of  Staring  at  Abandoned  Old  Buildings".  The  New  York  Times.    Bomey,  Nathan.  (2013).  How  Detroit  went  broke.  http://archive.freep.com/interactive/article/20130915/NEWS01/130801004/Detroit-­‐Bankruptcy-­‐history-­‐1950-­‐debt-­‐pension-­‐revenue    Boyle,  Robin  (2012).  The  Last  Shift  http://archive.freep.com/article/20121202/NEWS01/312020186/Big-­‐Ugly-­‐Dangerous-­‐The-­‐region-­‐must-­‐work-­‐together-­‐to-­‐get-­‐rid-­‐of-­‐the-­‐Packard-­‐Plant    Bureau  of  Labor  Statistics  (2014).  Databases,  Tables  &  Calculators  by  Subject.  http://data.bls.gov/timeseries/LNS14000000    Church,  Steven  (2014).  Detroit  could  make  $25M  selling  copper  from  old  streetlightshttp://www.crainsdetroit.com/article/20141021/NEWS01/141029967/detroit-­‐could-­‐make-­‐25m-­‐selling-­‐copper-­‐from-­‐old-­‐streetlights    The  City  of  Detroit  (2014).  Transit  Operation.  http://www.detroitmi.gov/DepartmentsandAgencies/DetroitDepartmentofTransportation/AboutUs/TransitOperation.aspx    Davey,  Monica  (2014).  Detroit  Urged  to  Tear  Down  40,000  Buildings  http://www.nytimes.com/2014/05/28/us/detroit-­‐task-­‐force-­‐says-­‐blight-­‐cleanup-­‐will-­‐cost-­‐850-­‐million.html?_r=0    Davey,  Monica;  Walsh,  Mary  Williams  (July  18,  2013).  "Billions  in  Debt,  Detroit  Tumbles  Into  Insolvency".  The  New  York  Times.  Retrieved  October  23,  2014.    Desimini,  Jill  (2013).  Scenario  Journal,  Wild  Innovation:  Detroit.  http://scenariojournal.com/article/wild-­‐innovation-­‐stoss-­‐in-­‐detroit/    Detroit  Blight  Removal  Task  Force  (2014).  http://www.timetoendblight.com/    Detroit,  The.  (1999-­‐02-­‐10)  The  1943  Detroit  race  riots  -­‐  Michigan  History  -­‐  The  Detroit  News.  Blogs.detroitnews.com.  Retrieved  on  September  25,  2014.    Detroit  Fire  Department  (2014).  Fire  Stats.  http://www.detroitmi.gov/DepartmentsandAgencies/FireDepartment/FAQs.aspx    Dixon,  Jennifer  (2012)  Asbestos,  reinforced  concrete  would  make  demolishing  Packard  Plant  expensive,  lengthy.  http://archive.freep.com/article/20121202/NEWS01/312020154/Hazardous-­‐materials-­‐fortified-­‐building-­‐demolishing-­‐Packard-­‐expensive-­‐lengthy    

Page 23: Detroit FINAL McManamon

22    

EPA  (2009)  Lead  Poisoning  in  Detroit,  Michigan.  http://www.epa.gov/med/grosseile_site/indicators/lead.html    EPA  (2014).  Greenhouse  Gas  Emissions  from  a  Typical  Passenger  Vehicle.  http://www.epa.gov/otaq/climate/documents/420f14040.pdf    Grow  Detroit  (2014).  List  of  Startups  http://www.growdetroit.com/detroit-­‐startup-­‐list/    The  Henry  Ford.  (2010)  Moving  to  Michigan:  Migration,  immigration,  and  transportation.  http://www.thehenryford.org/education/erb/MovingtoMichiganDigiKit.pdf    Kellogg,  Alex  (2010)  Shoppers  8  Mile.  Detroit  Shrinks  Itself,  Historic  Homes  and  All.  http://www.wsj.com/news/articles/SB10001424052748703950804575242433435338728?mg=reno64-­‐wsj    National  Associate  of  Home  Builders  (2014).  Housing  Data.  http://www.nahb.org/page.aspx/landing/sectionID=113    Neavling,  Steve  (2013).  A  Detroit  Breaks  Down,  Scourge  of  Arson  Out  of  Control.  http://www.reuters.com/article/2013/07/13/us-­‐usa-­‐detroit-­‐arson-­‐idUSBRE96C06E20130713    Peter  Gavrilovich  &  Bill  McGraw  (2000)  The  Detroit  Almanac:  300  years  of  life  in  the  motor  city.  p.232    Robbins,  AP  (2012).  House  fire  GHG  emissions  Report.  http://www.branz.co.nz/cms_show_download.php?id=c39553fa6b631c9c4c3521d528dd40489d8ceef4    Roxborough,  Shannon  (2013).  In  Detroit,  Growtown  Blooms.  https://gardenvarietynews.wordpress.com/2013/10/29/in-­‐detroit-­‐growtown-­‐blooms/    Shriberg,  Mike  (2014)  Should  Scrappers  go  Mainstream  in  Detroit?  http://ns.umich.edu/new/releases/22388-­‐should-­‐scrappers-­‐go-­‐mainstream-­‐in-­‐detroit    US  Census  (2010).  http://www.census.gov/2010census/    Volpatti,  Theo  (2014).  Project  Detroit:  Stories.  http://projectdetroit1.blogspot.com/p/8-­‐mile-­‐road.html    Williams,  Corey  (July  19,  2013).  "In  Despair,  Detroit  Files  for  Bankruptcy"(PDF).  The  Express  (Washington,  DC).  Associated  Press.  p.  3.  Retrieved  September  25,  2014.    Windsor,  The  (2008-­‐04-­‐27).  "Windsor  'the  most  polluted  city  in  North  America':  RFK  Jr".  Canada.com.  October  23,  2014.    Wisely,  John;  Spangler,  Todd  (March  24,  2011).  "Motor  City  population  declines  25%".  USA  Today.  Retrieved  September  25,  2014.    

Page 24: Detroit FINAL McManamon

23    

Woolfold,  Mike  (2014).  Demolition  and  Rehb  begin  at  the  Packard  Plant.  http://www.wxyz.com/news/region/detroit/demolition-­‐and-­‐rehab-­‐begins-­‐at-­‐the-­‐packard-­‐plant    World  Atlas.  (2014)  City  Populations.  http://www.worldatlas.com/citypops.htm    World  Population  Review  (2014).  Detroit  Population.  http://worldpopulationreview.com/us-­‐cities/detroit-­‐population/    Sources:  Figures,  Images  and  Charts  Figure  1:  http://oppositelock.jalopnik.com/then-­‐and-­‐now-­‐picture-­‐packard-­‐plant-­‐1559148761  Figure  2:  http://www.planetizen.com/node/52021  Figure  3:  http://blog.thedetroithub.com/2010/08/12/comparing-­‐detroit-­‐to-­‐other-­‐cities-­‐look-­‐at-­‐the-­‐map/  Figure  4:  http://www.econosseur.com/2008/12/uaw-­‐not-­‐auto-­‐industry-­‐bailout.html  Figure  5:  By  Author  Figure  6:  http://www.huffingtonpost.com/2013/08/27/map-­‐segregation-­‐america-­‐race_n_3824693.html  Figure  7:  By  Author  Figure  8:  http://blog.hemmings.com/index.php/2012/03/15/detroit-­‐1950s/  Figure  9:  http://www.detroityes.com/mb/showthread.php?5481-­‐Abandoned-­‐Highway  Figure  10:  https://www.pinterest.com/pin/232357662000444073/  Figure  11:  http://d3.d3.opendata.arcgis.com/  Figure  12:  http://archive.freep.com/interactive/article/20130915/NEWS01/130801004/Detroit-­‐Bankruptcy-­‐history-­‐1950-­‐debt-­‐pension-­‐revenue  Figure  13:  By  Author,  adapted  from  http://www.detroityes.com/maps/mapfulldetroit.htm  Figure  14:  By  Author  Figure  15:  http://www.myfoxdetroit.com/story/25081067/interactive-­‐map-­‐is-­‐your-­‐house-­‐sitting-­‐next-­‐a-­‐home-­‐with-­‐earmarked-­‐money-­‐to-­‐be-­‐demolished-­‐or-­‐repaired  Figure  16:  http://www.nytimes.com/interactive/2014/12/07/opinion/sunday/exposures-­‐detroit-­‐by-­‐air-­‐alex-­‐maclean.html?action=click&contentCollection=Europe&module=MostEmailed&version=Full&region=Marginalia&src=me&pgtype=article  Figure  17:  http://www.nytimes.com/interactive/2014/05/27/us/Defining-­‐Blight-­‐in-­‐Detroit.html  Figure  18:  http://www.ecocenter.org/trash-­‐recycling/detroit-­‐waste-­‐incinerator-­‐dirty-­‐and-­‐expensive  Figure  19:  http://www.slate.com/blogs/moneybox/2012/09/14/rent_vs_buy_buying_is_very_likely_to_be_the_cheaper_option_.html  Figure  20:  By  Author  Figure  21:  http://scenariojournal.com/article/wild-­‐innovation-­‐stoss-­‐in-­‐detroit/  Figure  22:  By  Author  Figure  23:  By  Author  Figure  24:  By  Author  Figure  25:  http://www.branz.co.nz/cms_show_download.php?id=c39553fa6b631c9c4c3521d528dd40489d8ceef4  Figure  26:  http://sometimes-­‐interesting.com/2011/08/15/largest-­‐abandoned-­‐factory-­‐in-­‐the-­‐world-­‐the-­‐packard-­‐factory-­‐detroit/  Figure  27:  www.google.com

Page 25: Detroit FINAL McManamon