102
POLITECNICO DI TORINO Corso di Laurea Magistrale in Ingegneria Elettronica Tesi di Laurea Magistrale Development of a SMARC module for an ADAS system based on the i.MX8 processor Relatore: prof. Massimo Violante Candidato: Lorenzo Giraudi Ottobre 2018

Development of a SMARC module for an ADAS system based on

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

POLITECNICO DI TORINOCorso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Development of a SMARCmodule for an ADAS systembased on the i.MX8 processor

Relatore:prof. Massimo Violante

Candidato:

Lorenzo Giraudi

Ottobre 2018

Acknowledgements

My thanks goes to Ideas&Motion for letting me have this experience and also toall personnel for being nice and helpful. In particular, I am grateful to M. Elia forhaving taught me many useful things and for having always time for my questions.

My gratitude goes to my whole family, and in particular my parents for allowingme to take this path. Also to G. Imanone, for continuous support and assistance.

2

Summary

The thesis work places itself as part of a European Project called Autodrive. Thisproject includes several company of the automotive sector with the aim to advancein the Autonomous vehicle field. The thesis work has been hosted by an Italiancompany called Ideas&Motion, active in the automotive field by providing engi-neering services and consultancy. They have been assigned by one of the partnersto design and provide a developing and testing platform for ADAS systems.

The processor to be used was requested to be the i.MX8 Quad Max manufac-tured by NXP, that features 6 Arm Cores and 2 GPUs together with an automotivegrade and many modern interfaces. The developing platform has been split in twodifferent boards: a System On Module with the iMX8 (this thesis content) and acarrier board hosting it. During the first phases of the design, it has been chosento design a board that could be reused in other project than this one. It has beenchosen to adhere to an already defined standard of System On Module such thatinteroperability would be easier to satisfy.

Among several possibilities, the Smart Mobile ARChitecture (SMARC) hasbeen chosen. It is a free and open standard maintained by the Standard Group ofEmbedded Technologies (SGET). A complete SMARC module would be suitablefor the Autodrive project. Thus, the new purpose of the project has become thedesign of a SMARC board. The design started by studying and understanding allthe standard interfaces.

Then there has been a study and research of the other needed components, likethe DRAMs, the eMMC, the voltage regulators, the Ethernet PHYs, the USB HUBand the PCIe clock generator. The general architecture has been then defined: theModule will have 6GB of LPDDR4 SDRAM, 32 GB of storage from the eMMC,2 PCIe Gen 3.0 lanes, 2 Gigabit Ethernet ports, 5 USB ports, one DisplayPortor one HDMI, one on-module WiFi and Bluetooth adapter, one uSD socket onthe module and one SD interface to the carrier. The final result consists in theschematic of the board, developed with Mentor Xpedition keeping in mind therequirements of the iMX8, SMARC standard and interface standards.

3

Contents

1 Introduction 91.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.2 Hosting company: Ideas&Motion . . . . . . . . . . . . . . . . . . . 101.3 ADAS and Autonomous car . . . . . . . . . . . . . . . . . . . . . . 101.4 Autodrive: European Project . . . . . . . . . . . . . . . . . . . . . 12

2 Protocols and Standards 132.1 SMARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2 PCIe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2.2 Clock structure . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.3 Spread Spectrum Clock . . . . . . . . . . . . . . . . . . . . . 162.2.4 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 SATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.4 USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 182.5 LPDDR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.6 HDMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.6.2 TMDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.6.3 Resolutions and frequencies . . . . . . . . . . . . . . . . . . 22

2.7 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.7.1 Physical layers . . . . . . . . . . . . . . . . . . . . . . . . . 232.7.2 MDI and MII . . . . . . . . . . . . . . . . . . . . . . . . . . 232.7.3 MDIO/MDC . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 SD Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.8.1 SD Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 MIPI CSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.9.1 D-PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4

2.9.2 MIPI DSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.10 I2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.10.1 SAI and ESAI . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Components choice 293.1 Requirement analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 293.2 iMX8 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2.2 ARM core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.2.3 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 USB Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.3.1 USB Hub: USB5744 . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Power regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.4.1 PMIC: PF8100 . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.5.1 PHY: KSZ9031RNX . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Main memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.6.1 LPDDR4: MT53B768M32D4 . . . . . . . . . . . . . . . . . 38

3.7 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.7.1 eMMC: MTFC32GAK . . . . . . . . . . . . . . . . . . . . . 39

3.8 NOR Flash: MT35XU512ABA . . . . . . . . . . . . . . . . . . . . . 393.9 PCIe Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9.1 PL607041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.9.2 DSC557-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 Wireless communication: ATWILC3000 . . . . . . . . . . . . . . . . 413.11 Auxiliary connector . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Module Architecture 434.1 Top level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.2 Power regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Coin cell or SuperCapacitor . . . . . . . . . . . . . . . . . . 454.3 Boot sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.5 Power sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494.6 USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494.7 HDMI and DisplayPort . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7.1 Voltage levels . . . . . . . . . . . . . . . . . . . . . . . . . . 544.7.2 HDMI Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 PCIe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.9 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564.10 RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5

4.11 uSD socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584.12 Reset Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.13 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.14 MIPI CSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604.15 Wifi-Bluetooth Module . . . . . . . . . . . . . . . . . . . . . . . . . 614.16 LVDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Conclusions 635.1 Future implementations . . . . . . . . . . . . . . . . . . . . . . . . 63

A Schematic 65

6

Acronyms

ADAS Advanced driver-assistance systems

CSI Camera Serial Interface

DSI Display Serial Interface

ECU Electronic Control Unit

eMMC embedded MultiMedia Card

ESAI Enhanced SAI

FC-PBGA Flip Chip Plastic Ball Grid Array

GPU graphicals processing unit

HCSL High-speed Current Steering Logic

HDA High Definition Audio

HDMI High Definition Media Interface

I2C Inter Integrated Circuit

I2S Inter-IC Sound

LDO Low-Dropout Regulator

LPDDR low power double data rate

MAC Medium Access Control

MDI Media Dependent Interface

MIPI Mobile Industry processor interface

OpenGL Open Graphics Library

7

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PCIe PCI Express

PMIC Power Management Integrated Circuit

RGMII Reduced Gigabit Media Independent Interface

RTC Real Time Clock

SAE Society of Automotive Engineers

SAI Serail Audio Interface

SATA Serial AT Attachment

SCU System Controller Unit

SD Secure Digital

SGET Standard Group for Embedded Technologies

SMARC Smart Mobility Architecture

SNVS Secure Non Volatile Storage

SPDIF Sony/Philips Digital Interface Format

SRIS Separate Refclk Independent Spread

SSC Spread Spectrum Clock

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

USHDC Ultra Secured Digital Host Controller

VPU video processing unit

8

Chapter 1

Introduction

The thesis aid is to design a board for developing and testing Advanced Driving As-sistance Systems (ADAS). This work is part of the European Project ”Autodrive”which is composed of many leading companies in the automotive sector. Amongthem is Ideas&Motion, the company where the thesis work took place. The boardhas been split into two boards during design phase: a reusable general purposewhich performs the most computation-intensive tasks, and an application-specificone that powers and provides interface to the other one, while performing fail-safeoperations. This thesis focuses on the first, general purpose, board.

The Board must use the NXP processor i.MX8 Quad Max as requested by otherpartners in the project and the hosting company wants to design a reusable SystemOn Module. For this last reason, it has been decided to design a board compliantwith the Smart Mobility ARChitecture (SMARC) standard.

1.1 Thesis structure

The thesis is divided as follow:

• This first chapter presents general concepts about ADAS systems and au-tonomous levels.

• In the following chapter the main standards and interfaces studied are de-scribed briefly: the focus is often on the physical layer.

• Then, starting from the requirements, the list of the used components ispresented.

• After that, a chapter covers specific aspects of the designed system and howcomponents has been connected together.

9

1 – Introduction

1.2 Hosting company: Ideas&Motion

The design of the whole development platform has been assigned to Ideas&Motion,and the thesis work (regarding only the System On Module) has been performedin collaboration with their designers. It is a small Italian company that offersengineering services in the automotive sector and also produces small volumes ofElectronic Control Units for niche applications, as well as Intellectual Propertycores for integrated circuits. Despite being small company, they work and collab-orate for many of the leader of the Automotive sector.

1.3 ADAS and Autonomous car

The automotive industry is currently investing in the field of Advanced DrivingAssistance Systems. These are systems that aid the human driver with informationabout the environment or even takes actions on part of the vehicle, like the throttleor brakes. These systems are already commercially available in newest cars, likeFront Collision Warning or Adaptive Cruise Control (ACC).

The market is going toward the self-driving car through developement of sys-tems that enable the vehicle to work with partial human supervision in particularconditions. A completely autonomous system is an achievement still to reach.

The Society of Automotive Engineers (SAE Internationl) has defined six levelsof automation of a systems. They go from 0, absence of any automation, to 5, thatis a completely reliable system in any driving circumstance that does not need thehuman assistance.

• level 0: the vehicle may inform the driver, but all actions are made by thehuman. In this category falls every assistance that warn the driver withouttaking any action.

• level 1: the system may perform some actions on the either the steering wheelor the brake. This is just an assistance and the driver is driving most of thetime. An example is the Adaptive Cruise Control, where the car manage thespeed while measuring the distance from the next vehicle.

• level 2: the system can maneuver the steering wheel and brakes in particularconditions, while the driver must be vigilant and monitor the environment.

• level 3: the system is able to operate reliably in certain conditions whilemonitoring the driving environment for possible dangers. The driver maybe noticed to take action within a certain time, but he does not have to befocused on the environment the whole time.

10

1.3 – ADAS and Autonomous car

• level 4: the system has control and could operate without the driver exceptfrom some particular situations, where the intervention is needed. The drivermay still control the vehicle.

• level 5: full automation, where the system is 100% reliable and the steeringwheel and pedals could be removed, since the vehicle is autonomous in everycondition.

Nowadays the level 3 and 4 are being studied and experimented. This kind ofapplication is increasing the demand in automotive systems for high-speed inter-faces, able to transmit large amount of data from cameras and radar to the ECU.In fact, autonomous cars need several camera to get data from the environment.In fact, the number of sensor inside a vehicle is increasing, resulting in a need fora higher bandwidth.

Figure 1.1: Autonomous levels. Image taken from [19]

11

1 – Introduction

1.4 Autodrive: European Project

Autodrive is a broad european project with the aim to gather companies anduniversities with the purpose to develop autonomous driving systems. It has thelong term goal to develop level 5 systems like an autonomous shuttle bus. In themiddle there are several shorter term goals that will bring to that final system.

The thesis work takes part of the project and its purpose is to design a develop-ing platform for another company part of the Autodrive project. The system willbe placed in a testing vehicle with all needed cameras and radars for the develop-ment of several kinds of ADAS systems. So it needs to interface with all sensors,be able to exchange a large quantity of data, process it and then safely take ac-tion. The system will be the base for developing algorithms and the applicationsoftware.

12

Chapter 2

Protocols and Standards

Here is presented a quick overview of the main standard interfaces present in theproject along with other standards. Because of the type of project, the main focuswill be on the physical layer of these interfaces.

2.1 SMARC

In the early stages of the design, the system has been chosen to be compliant withSMARC form factor standard. From the specification [23]:

SMARC (Smart Mobility Architecture) is a computer Module standardmaintained by the SGeT (Standardization Group for Embedded Tech-nologies). SMARC Modules are small form factor (82mm x 50mm and82mm x 80mm), low power (typically <6W) computer Modules that areused on a Carrier board that utilizes a 314 pin 0.5mm pitch right-anglememory socket style connector to host the Module

In other words, this defines a System on Module (SoM) which can act as a standalone PC, that can be inserted on a carrier board with the appropriate connector.The standard defines the dimensions of the PCB together with the interfaces tothe carrier board.

These modules can be bought and inserted on a application-specific board de-signed for the particular project. The standard allows interchangeability betweenmodules.

2.1.1 Specifications

The SGeT defines several aspects of the module. Some of them are completelymandatory, other are optional and model-dependent.

13

2 – Protocols and Standards

The most important definition is probably about the form factor and connector:the board must be 82mmx50mm and must be compatible with MXM3 connector.This is a standard socket typically used for Graphic Processing Unit (GPU) cards,but the SMARC defines a different pin assignment.

Figure 2.1: Drawing of the SMARC form factor

The possible interfaces are already all defined on specific pins. Not all chan-nels have to be implemented, some of them are optional. Here a list of them ispresented:

• LVDS;

• HDMI/Display Port;

• 2x MIPI CSI;

• SDIO;

• SPI;

• I2S/HDA;

• I2C;

• UART;

• CAN;

• 5xUSB (of which 2 can be USB 3.0)

• PCIe;

14

2.2 – PCIe

• Gigabit Ethernet;

• SATA.

It is not possible to assign a new purpose to unused pins, so they are left uncon-nected: violating the standard means to not guarantee compatibility. This is aquite complete set of the commonly used interface, including some high-speed onelike PCIe and Ethernet. The exact pin assignment can be read in the specificationdocument [23].

The communication between the module and the carrier along with the powerpass over the edge connector, which on the module side consists in only gold-platedcontacts directly on the PCB. The module is inserted in the socket parallel to thecarrier, resulting in a low-profile solution.

The power is delivered at a voltage between 3.0V and 5.25V, letting the moduleto regulate the power based on its own needs. The module should tolerate thewhole range, but it is allowed to be functional only in a subset of that range.

2.2 PCIe

PCI Express is an evolution of the old Peripheral Component Interconnect bus.It abandons the parallel structure in favor of a point-to-point high speed serialconnection. Its generality made it popular in a variety of fields such as consumer,server and industrial applications.

2.2.1 Structure

As already stated, the protocol consists in a point-to-point serial connection. Thisremoves the constraints and complexities about time arrival of single lines withinthe bus, also reducing the number of pins needed. The link may consist of multiplelanes, which is a couple of simplex differential pairs. Thanks to its low voltage lev-els, it reaches higher speeds while keeping a low power profile. If larger bandwidthis needed, more lanes can be used in a link.

A PCIe Switch can be used to split a link into multiple ones. The resultingnetwork is hierarchical, where the Root Complex is the node that communicateswith the central CPU and all other nodes are Endpoints.

On the software side PCIe is very similar to its predecessors PCI, in fact itmaintains software compatibility with it.

The lowest bit rate is 2.5Gb/s, while Generation 3.0 introduce 8.0Gb/s perlane. As already said, using multiple lanes largely increases the bandwidth.

15

2 – Protocols and Standards

Device Device

Rx

Tx2x lane

Rx

Tx

Figure 2.2: Structure of a 2xlane link.

2.2.2 Clock structure

The PCIe exploit a 8b/10b coding. This increases the number of bit transmitted,but ensures a higher number of transitions so allowing the receiver to recover theclock embedded in the data. When working at 8.0Gb/s the encoding scheme is128b/130b. This reduce the encoding overhead.

The PCIe needs a 100MHz clock as reference and allows three topologies:

Common clock where the same clock is fed to both transmitter and receiver,which has an easier job to recover the clock from the data. This configurationis the most common, but can be difficult to distribute the clock over longdistances.

Data clock where the clock is fed only to the transmitter, while the receiver hasto rely solely on the data transitions. Thus, the receiver is more complex.

Separate clock where both the transmitter and receiver have their own referenceclock. This avoid the distribution of the clock, but imposes more stringentconstraints on the precision of the clock frequency and jitter.

2.2.3 Spread Spectrum Clock

The PCIe also support Spread Spectrum Clock (SSC). This technique consists inintroducing a wanted jitter on the clock: this leads to spectrum more distributedand with a lower peak. This is a benefit from the Electromagnetic Interferencepoint of view: in fact, the circuit will radiates on a wider spectrum, but the peakwill be much lower.[10, 21]

SSC can be easily implemented in Common Clock and Data clock configu-rations, because the jitter is present at both transmitter and receiver; while inSeparate clock configuration the implementation is not trivial. In this case it iscalled Separate Refclk Independent Spread (SRIS): two clocks are used, each with

16

2.2 – PCIe

Common Clock Rx Architecture

PCIe LinkPCIe

Device A

100 MHz ±300ppm

PCIe Device B

Data Clocked Rx Architecture

100 MHz ±300ppm

PCIe LinkPCIe

Device APCIe

Device B

Separate Clock Architecture

PCIe LinkPCIe

Device APCIe

Device B

100 MHz ±300ppm

100 MHz ±300ppm

Figure 2.3: Three clock topologies of PCIe

Carrier Frequency

Reduced Amplitude and

EMI

Clock with SSC Off

Clock with SSC On

(downspread)

f

Figure 2.4: Spectral content of SSC

his own SSC. This further complicates the receiver, that should be able to recoverthat data despite the different frequencies.

2.2.4 Physical Layer

The serial nature of PCIe simplifies layout work: in fact, every lane can be berouted independently, without matching the length of all of them. Every lane isa pair with differential impedance of 100Ω. Capacitors must be placed in serieswith Tx lanes, in order to get an AC coupled signal. Another useful feature isthe Polarity inversion of the lines: it is possible to swap the two signals withina differential pair, thus avoiding vias during routing phase. Before starting com-munication, the PCIe controller perfrorm a link training, so configuring the linkwidth, the line polarity and performing lane-to-lane de-skew.

17

2 – Protocols and Standards

2.3 SATA

The SATA (Serial AT Attachment) interface is a bus used to interface a computerto a storage device. At the physical level is a point to point full duplex connection,with 100Ω differential lines. It needs AC coupling capacitors on signals. Theencoding is 8b/10b, that is 8 bits are mapped to 10 bits. Also in this case there isthe possibility to use Spread Spectrum Clock.

During power on, Out Of Band signaling is used to configure the link. In thissituation the differential line is not driven differentiallly but they are driven withthe same voltage.

2.4 USB

Universal Serial Bus is a well known interface used in consumer electronics for awide variety of applications, typically for PC-peripheral communication. It allowsto access multiple devices using hubs, creating a tiered-star topology: one singlehost connected to several hubs and devices. At most there can be 5 hubs betweenthe Host and the device, thus resulting in 7 tiers (where Tier 1 is the Host, Tier 7is the device).

2.4.1 Physical Layer

Up to version 3.0, the interface relied solely on a half-duplex differential pair(composed by signals often called D+ and D-). All communications are managedby the host computer, and only one device at a time can communicate.

It should have a differential impedance of 90Ω. The clock is embedded in thedata, featuring bit stuffing to ensure enough transitions. In the cable are alsocarried GND and a 5V VBUS, that can feed up to 500mA to the devices.

The 3.0 standard changed the number of wires, introducing two differentialpair, dedicated to transmitting and receiving thus reaching full-duplex operation(Tx+, Tx-, Rx+, Rx-). Since they are not directly retro-compatible with previousversions, inside the cable are also present older signals (D+ and D -) that are alsoused for configuration.

The several versions defines speed grades, shown in Tab. 2.1.

2.5 LPDDR4

Mobile devices has to cope with a trade-off between power savings and high per-formances. Together with the higher and higher media-orientation of new devices,there is the need for large, fast and low power memory. Because of that, JEDEC

18

2.5 – LPDDR4

Table 2.1: USB speeds

Name Speed [Mbit/s] Version

Half Speed 1.5 1.0Full Speed 12 1.0High Speed 480 2.0Super Speed 5000 3.0

has defined a new branch of memory standards in order to satisfy this demand:the Low Power Double Data Rate SDRAM.

It specifies a class of devices with standard performances, behavior and inter-face.

2.5.1 Architecture

One of the first differences with previous kinds of memory is the architecture of thechannels. LPDDR3 in fact had one command bus and one 32 bit data bus. Thenew structure consist in splitting the data bus in two 16x buses and duplicatingcommand buses, so that there are two channels, each one with their own dataand command. Therefore the die is split into two almost identical replicas of thememory. [9]

CA

DQ

CADQ

CADQ

LPDDR3 LPDDR4ClockData

Figure 2.5: Comparison of the architecture between LPDDR3 and LPDDR4. CAis the command and address bus, while DQS is the data strobe.

This choice brings several improvements. First of all, the word and bit line areshorter since they do not have to cover the whole die: thus the amount of chargeneed to change voltage is smaller. Because of this, the performance are improvedwhile keeping low power consumption. Moreover having the strobe (DQS) and

19

2 – Protocols and Standards

clock pins on the same side reduces the power consuption: in fact, DQS is generatedstarting from the clock signal.

The two channels can be turned off independently, so giving the possibility tosave power if one of them is not used for long periods.

DMI signal (Data Mask inversion) was previously used only for data mask, butnow it has a double role.

Data mask is a useful feature to cope with the burst oriented nature of the device.It allows the controller to tell the RAM to discard some of the bytes sentduring the write burst. Writing not contiguous bytes create problem aboutparity bits used for Error Correction Code: they are calculated over the entirerange present in memory, including the bits not overwritten. In previousversion, this task was done by reading the range, modifying the wanted bits,recalculating the ECC and lastly writing the whole of it. In LPDDR4, thememory itself recalculate the new ECC even though some bytes have to beexcluded, thus saving transitions on bus.

Bus inversion allows to send an inverted replica of the data, and DMI signal isused to inform the receiver that the inversion has been made. If the numberof bits equal to 1 is greater than 4, the RAM or the controller will send theinverted data. This minimizes the number of 1s on the lines, thus reducingthe static power dissipated. In fact, the On Die Termination present on DQpins is connected to VSS, so current will flow through it only when the voltageis HIGH.

Like modern memories, this device features link training: it consists in a phasewhere the controller and the memory collaborates in order to find the optimalconfigurations for reference voltage, delays, signal strength and terminations. Anew feature regards the frequency set points. In fact, the LPDDR4 have a du-plicated set of configuration registers that can be used to store trained parameterof a higher frequency configuration. This allow to change configuration run-timewithout passing in an untrained state and possibly loosing the link. LPDDR4are designed for battery powered systems, so the possibility to switch between alow-power and a high-performance configuration is quite important.

2.6 HDMI

HDMI is a stanrdard interface used to send uncompressed video and audio datafrom a device to another. They are respectively called Source and Sink. Anexample is a PC as Source and a display as Sink.

At the core, it consists in 4 differential pair compliant with TMDS (TransitionMinimized Differential Signaling), but inside the cable there are also auxiliary

20

2.6 – HDMI

interfaces.

2.6.1 Architecture

Among the secondary interfaces there is an I2C interface called DDC (Digital DataControl) used by the source to read configuration data from a ROM mounted onthe Sink. For instance, the memory stores the supported frequencies, resolutionsand data formats.

Another optional part of the interface is the Consumer Electronic Control(CEC), a one-wire bidirectional connection between devices. This allows the userto control through the remote all the devices connected with HDMI cables.

Video

Audio

Control/Status

TMDS Channel 0

TMDS Channel 1

TMDS Channel 2

TMDS Clock Channel

HDMIReceiver

Video

Audio

Control/Status

Display Data Channel (DDC)EDIDROM

CEC Line

HEAC

CEC CEC

HDMITransmitter

detect

Video

Audio

Control/Status

TMDS Channel 0

TMDS Channel 1

TMDS Channel 2

TMDS Clock Channel

HDMIReceiver

Video

Audio

Control/Status

Display Data Channel (DDC)EDIDROM

CEC LineCEC CEC

HDMITransmitter

High / Lowdetect

Figure 2.6: HDMI structure

The video and audio data is sent through the 4 differential pairs. One of themis used as pixel clock, providing a timing reference. During one pixel clock cycle,10 bits are sent on each one of the three remaining pairs, thus sending 30 bits. Assubsequently explained, data is actually encoded from 8 bits to 10, so the actualnumber of bits is 24.

The Source also provides a 5V power line, from which the Sink can absorb atmost 500mA.

2.6.2 TMDS

TMDS stands for Transition Minimized Differential Signal, and it is the physicallayer upon which HDMI is based. It is composed by a low voltage differential pair.The driver is a current steering device, while the receiver has terminations to 3.3V,as shown in Fig. 2.7.

21

2 – Protocols and Standards

RTRT

AVcc

D D

Z0

Transmitter

ReceiverCurrentsource

Figure 2.7: TMDS architecture

The data is not sent as is, but it is encoded with a particular 8b/10b scheme(qis the encoded symbol, while D is the original byte):

• the LSB D[0] is not modified;

• the following fields is the result of the XOR or XNOR with the previous bit ofthat byte, in other words q[i] = D[i] XOR D[i− 1]. The operation is decidedin order to minimize transitions, and the 9th bit signals which operation hasbeen made;

• based on the previous bytes sent, the driver can decide to invert the wholesymbol q[0 : 8] and use q[9] to signal the inversion.

This type of encoding accomplishes two purposes: the first one is reducing thetotal number of transitions on the line, and it is done through the application ofXOR/XNOR functions. Less switching means less eletrco-magnetic radiation. Theother purpose is to try to balance the long term number of 1s and 0s sent, i.e. toreduce the running disparity. Through the inversion of the bus, the scheme ensurea low running disparity. Having signals with almost no DC component reduce theInter Symbolic Interference since, otherwise, during a long series of equal bits thelanes would get charged/discharged. [6]

2.6.3 Resolutions and frequencies

Depending on the link, several bit clocks are supported. This depends on bothSink and Source, as well as the cable used. Given a particular bandwidth, severalformats and resolutions can be supported.

There are several factors that affect the needed bandwidth. The first one isresolution: this is the total number of pixels that make up a frame of the video.The second one is the color depth: for each pixel the color is encoded into a fixed

22

2.7 – Ethernet

number of bits, that can vary from 24 to 36 bits. Moreover, the color scheme hasto be chosen: RGB ( Red, Green, Blue) and YCBCR (Luminance, Change of blue,Change of red) are supported. The last factor is the frame rate, that consists inhow many frames are sent every second.

So the total number of bits sent every second is:

resolution · colorDepth · frameRate

This workload is shared between the 3 data TMDS channels. For instance, witha resolution of 1280x720, a color depth of 24 bits and a frame rate of 30Hz, thetotal necessary bandwith is (1280 · 720) · 24 · 30 = 663MHz.

2.7 Ethernet

Ethernet is a collection of IEEE standards for Local Area Network. It definesseveral the lowest layers of the OSI (Open Model Interface) stack, from the Physicalto the Data Link layer.

2.7.1 Physical layers

The Ethernet can be transported over several kind of interconnections, from cop-per cables to optical fiber. The most common ones in consumer applications are10BASE-T, 100BASE-T and 1000BASE-T, where the first digits tell the overallspeed in Megabit/s. They are typically coupled with the RJ-45 standard plug.They all use 4 AC coupled twisted pair.

In the automotive sector 100BASE-T1 has become a popular solution. It cansend 100Mb/s over a single unshielded twisted pair. It keeps low costs while toler-ating harsh environment and coping with stringent Electromagnetic Compatibilityconstraints. It employs PAM3, that is three voltage levels are allowed. In automo-tive applications 100BASE-T1 can be used to deliver many kinds of data acrossthe vehicle.

2.7.2 MDI and MII

An Ethernet transceiver is composed by a MAC ( Medium Access Control) and aPHY (Physical Medium Transceiver). The first one is the controller that managethe second layer of the OSI stack so controlling the access to the shared medium,while the second one is the transceiver that translate the data to the right voltagelevels and the applying the needed encoding.

The two of them communicates with an 8 bit bi-directional bus called MII:Media Independent Interface. As the name says, it allows the exchange of databetween MAC and PHY regardless of the physical layer used.

23

2 – Protocols and Standards

The PHY generates a set of signals called MDI, that is a general name indi-cating the communication over the cable. These signals are sent to a magnetictransformer that electrically insulates the cable from the board. This brings ro-bustness from insulation, together with the common mode rejection needed fordifferential signaling.

MAC PHY MDI 4x Twisted pairsMII

Figure 2.8: Block diagram of an Ethernet interface

MII family

The MII is composed of 8 data signals: 4 for transmission and 4 for receiving, at afrequency of 25MHz, resulting in a total bandwith of 100Mb/s. Another 8 signalare used for control, so the interface comprehend 16 bits.

A new version of MII has been introduced in order to reduce the pin count ofMACs. It is called Reduced Media Independent Interface (RMII) and has only2 couples of data signal and 3 control signals. Since the number of lines hasbeen halved, the signaling frequency has been doubled up to 50MHz in order tomaintain the same performances.

The need for Gigabit Ethernet has brought to the born of another two inter-faces: Gigabit Media Independent Interface (GMII) and Reduced Gigabit MediaIndependent Interface (RGMII). The first one uses 8 transmitting and 8 receivingsignals at the frequency of 125MHz. The second one instead uses 4 transmittingand 4 receiving lanes, while working at the same frequency: this can be obtainedthanks to Double Data Rate signaling (thus sending a new data on every risingand falling edge of the clock). [3]

2.7.3 MDIO/MDC

There is another interface between the MAC and PHY called MDIO/MDC. It isused to write and read all configuration and status register of the transceiver. Itis a two wire interface able to connect up to 32 devices, each one with a uniqueaddress. It is composed by MDC that is the clock and MDIO that is the bidirectionaldata signal. The data rate is 2.5MHz. The standard defines a 1.5 kΩ pull-up onMDIO, and the drivers must be open drain ouptuts.

24

2.8 – SD Card

2.8 SD Card

Secure Digital Card are non volatile memory cards typically used in portable sys-tem as removable storage.

The standard defines the physical form factor as well as the interface bus. Thecard exposes 9 contacts, that can be used in two way: SPI interface or SD interface.

The SD interface uses 4 bidirectional signals for passing data together with twopins for timing and for commands: they are called CLK and CMD. The Host mayalso start the communication using the SPI interface instead of the SD bus. Thisis seleted by driving low DAT3 at power on.

Table 2.2: Signals of an SD card. I: input, O: output, S: supply.

Pin # SD Mode SPI mode

Name Type Description Name Type Description

1 CD/DAT3 I/O Card Detect/Data [Bit 3] CS I Chip Select2 CMD I/O Command/Response DI I Data In3 VSS1 S Ground VSS S Ground4 VDD S Supply voltage VDD S Supply voltage5 CLK I Clock SCLK I Clock6 VSS2 S Ground VSS2 S Ground7 DAT0 I/O Data [Bit 0] DO O Data Out8 DAT1 I/O Data [Bit 1] RSV9 DAT2 I/O Data [Bit 2] RSV

2.8.1 SD Family

Starting from base specifications, the standard has been extend to comprehendlarger capacities. So, today there are SDHC (SD High capacity) and SDXC (SDExtended Capacity). Also, there are label for speed performances, like UHS (UltraHigh Speed).

Starting from UHS-I, the card has the possibility to switch to a 1.8V signalinglevel in order to increase performances. So, after an initial negotiation with thehost at 3.3V, both the devices switch their voltage levels to 1.8V, while the SDcard is still powered by 3.3V.

25

2 – Protocols and Standards

Table 2.3: Capacity and speed of several versions

SD version Capacity

SDSC 128MB - 2GBSDHC 4GB - 32GBSDXC 64GB - 2TB

Speed Class Speed

Standard 25MB/sUHS-I 104MB/sUHS-II 312MB/s

2.9 MIPI CSI

The Camera Serial Interface is especially aided to the transmission of raw datafrom a camera to a microprocessor. It is maintained by Mobile Industry ProcessorInterface and has become quite popular in mobile systems. The communicationcan rely on several Physical layers also defined by MIPI, that differs on the topologyof the connection: the number of lines, the presence of clock signals and the typeof signal (single ended or differential).

Like for HDMI, for each pixel several bits have to be sent, depending on thecolor scheme. Also RAW data can be sent, before applying Bayer Filter. [1]

2.9.1 D-PHY

One of the most popular physical layer is the D-PHY. It relies on a scalable numberof differential lanes (1, 2 or 4). The data is source synchronous, meaning that onanother differential pair the clock is sent from the source. Since we are talkingabout a camera, the clock and the data are sent from the camera itself toward theprocessor.

One peculiar feature of this link is that it has two possible state: the first oneis the High-Speed state, where the lines are driven by differential drivers withan amplitude of 200mV. The other state is Low-Power, where instead the thedifferential pair is driven as two independent single ended signal, with a voltagelevel of 1.2V and they are not terminated. This state is used for control data sinceit can send only 10Mb/s, while the main data is sent in High-Speed state reachinga speed of 1Gb/s per line. Since in some case this physical layer could havebidirectional communication, a Contention Detector is used to detect collisionswhile sending data in low power state. [2]

2.9.2 MIPI DSI

The MIPI Alliance defines another standard called Display Serial Interface. Itserves the purpose of sending data from the processor to a display. While CSI and

26

2.10 – I2S

DSI may share the same physical layer, they differ in the protocol one, being twoindependent standards.

RX

Dp

Dn

TX

LP-TX

HS-RX

CD

RT

Data

Clock

Ctrl

Protocol Side

RTR T

Line Side

LP-RX

LP-CD

LaneControl

andInterface

Logic

HS-TX

contention Detector

Figure 2.9: D-PHY transceiver structure

2.10 I2S

The Inter-IC Sound bus is a serial bus interconnection intended for sending andreceiving audio data in a digital format. The basic mono-directional architectureis composed of 3 wires: the SCK is the bit-clock, WS stands for word select and SD

for serial data. The WS level indicates which audio channel is being transmitted:when low, the data is related to left channel; when high the data is related to rightchannel. The data is clocked by the SCK signal and it changes on the falling edge.

This bus is intended for always transmitting data at a constant rate, betweenintegrated circuits mounted on the same board. For instance, it can be used topass data from a codec to an audio Digital-Analog Converter.

SCK

WS

SD

WORD n–1RIGHT CHANNEL

WORD n+1RIGHT CHANNEL

WORD nLEFT CHANNEL

LSB MSBMSB

Figure 2.10: I2S timing diagram.

27

2 – Protocols and Standards

2.10.1 SAI and ESAI

The Synchronous Audio Interface is a peripheral of the iMX8 able to transmitaudio data in several formats and frames. Among the others, there is I2S. Thisperipherals has 6 total pins: 3 for transmitting data and 3 for receiving. The threesignals are SYNC (frame sync), BCLK (bit clock) and DAT (data). Those pins can bedriven in order to support I2S, where SYNC is connected to WS. Moreover, there isthe possibility to have receiver and transmitter working synchronously, i.e. usingonly one pair of control signals. This can be done if the input and output datahave the same sampling frequency.

The iMX8 also has two enhanced SAI : it basically a SAI but with six total datasignals. Those can be configured as both input and output.

28

Chapter 3

Components choice

This chapter focus is about the early design choices and a brief description of themost important components chosen is provided.

3.1 Requirement analysis

The Autodrive project require the development of a prototyping platform forADAS Systems. It must be able to acquire data from several cameras, be ableto communicate on a CAN network and it must have high-speed interfaces likeEthernet. The proposed structure is based on the separation of the system in tworegions: the first one should get and process the data, while the second one shouldbe the fail-safe part. This region is devoted to decision taking and should have ahigh safety level.

This work is focused on the data processing part. The iMX8 has been suggestedas microcontroller, due to his large number of interfaces, powerful cores and GPUtogether with its automotive grade.

Moreover, it has been chosen to design this part of the system like a separatephysical board. In the early stages of the project, it has been chosen to design aboard compliant with SMARC standard. The other board, devoted to safe decisionmaking, would host the SMARC module and has been design by another designerof the company Ideas&Motion.

Since a complete SMARC module based one the iMX8 would satisfy the re-quirement imposed, the new focus of the design has become the fulfillment of thestandard. In fact, many interfaces would probably be unused in the Autodriveproject, but they have been designed in order to get a complete System On Mod-ule. This is due to the whish of the company to get a module which could bereused in other projects with similar requirements.

In conclusion, the aim has been to fill as many interfaces of the SMARC module

29

3 – Components choice

as possible, trying to use as much as possible of the iMX8 peripherals.

3.2 iMX8 Processor

At the core of the project is the NXP processor called iMX8. It has various mul-timedia capabilities that along with automotive grade features makes it suitablefor infotainment applications. Beside that, it can also be used in industrial envi-ronment or in a single-board computer.[12, 14]

3.2.1 Overview

A general overview of the processor is given here:

• six ARM core architecture;

• two Graphical Processing Units (GPU) compatible with OpenGL library API;

• a Video Processing Unit (VPU) for video encoding and decoding;

• two controller for LPDDR4 SDRAM;

• SDIO 3.0 and eMMC 5.0 for storage interface;

• Quad-SPI;

• Display controller able to drive 1x4K or 4x Full HD displays;

• MIPI DSI, HDMI(Tx)/eDP and LVDS channel used to interface with displays;

• HDMI(Rx) and MIPI CSI in order to receive data from cameras;

• PCIe gen. 3.0;

• SATA 3.0;

• USB 3.0 and 2.0;

• two GigaBit Ethernet MAC RGMII;

• UART and I2C;

• SPDIF, SAI and ESAI for audio signals;

• CAN interfaces;

30

3.2 – iMX8 Processor

It is clear how the peripherals are mostly media-oriented. Also, many of theinterfaces includes high frequency signals ( greater than 1GHz).

Figure 3.1: Simplified block diagram taken from iMX8 datasheet [12]

31

3 – Components choice

3.2.2 ARM core

The processor is based on a multi-core architecture. All cores belongs to ARM-Cortex family. [13] In particular:

• 2x Cortex-A72 cores, used for compute-intensive tasks;

• 4x Cortex-A54 cores, used during low-power states;

• 2x Cortex-M4 cores, used to manage low-power general-purpose peripherals.

• a System Controller, providing an abstraction to the hardware peripherals,along with power and boot management.

These features allow the iMX8 to run a complete operating system, like Linux,Android or FreeRTOS.

Clusters

A set of homogeneous cores is called cluster. In this case there are two clusters:one composed by A72 and one by A54.

Each cluster can perform individual voltage and frequency scaling, while all theclusters can work together as a single multi-core processor. A L2 cache is sharedamong the cores in a cluster. Processes can be scheduled across cores of differenttypes.

Many other features are omitted, since they fall out of the scope of the thesis.

3.2.3 Package

The package is labeled as FC-PBGA that means ”Flip Chip Plastic Ball GridArray”. This means the die is flipped and soldered with his active surface on aplastic substrate. This is an alternative to the typical wire-bonding technique. Itbrings several advantages: the first is the possibility to place contact on the wholesurface of the die, in contrast to wire-bonding that needs the contacts on the edges:this allows a higher density of contacts. Moreover, the lack of a long wire reducesthe parasitic inductance, resulting in better high-frequency performances. Finally,the passive side can be used to transport heat to a heat-spreader, thus leading toa low junction to ambient thermal resistance.[11]

A plastic substrate is used to route signals from the die to the package contacts,connecting them through internal metal connections.

The contacts themselves are actually just solder bumps placed on the wholesurface of the substrate (this is the same concept seen before, between die andsubstrate). During the soldering process, the board is heated, so that bumps meltand create connections with the underlying pad, placed on the PCB.

32

3.3 – USB Hub

Underfill

Flip Chip Solder Bump

CapacitorLid / Heat SpreaderThermal Interface Material

Package SubstrateBGA Solder Ball

Lid Adhesive

Silicon Die

Figure 3.2: Section of FCPBGA. Image taken from NXP document.[11]

Collapsing and non collapsing connections

The contact between the bump and the pad can be classified into two groups.

The first one, called non collapsing, is the result of a Solder Mask Defined Pad,where the metal pad is larger than the soldermask opening. In this case the solderis touching only the top surface.

In the second case, the solder can create a bonding also with the side of themetal pad, since the solder mask opening is larger than the pad (non Solder MaskDefined). A section of the two can be seen in Fig. 3.3.

These two types have some pros and cons. The collapsing contact is typicallyused with pin pitch greater or equal to 0.65mm and bring a larger contact areawith the pad. Moreover, there is more space to route line between pads. On theother hand, tests show that this type of contact are mechanically weaker thanthe other type: in fact, the copper pad may detach from the substrate in caseof shock. The non-collapsing contact instead has less contact area, while it ismore mechanically robust since the solder mask overlap increases the pad adhesionto the PCB. This type is suitable for component with smaller pin-pitch where viain pad may be needed: in fact the larger copper area can suit more easily the via.

3.3 USB Hub

The iMX8 has one USB 2.0 OTG interface and a USB 3.0 interface (which com-prehends also a 2.0 bus); it also has another 2.0 controller connected to a HSIC(High Speed Inter Chip) interface: a single low voltage differential line intendedfor on-board communication. The SMARC module instead has 6 interfaces, twoof which that are capable of 3.0 operations.

In order to have as many buses as possible, a USB Hub has been chosen to be

33

3 – Components choice

SolderMask defined=

Non collapsing

NonSolderMask defined=

Collapsing

Figure 3.3: Section of bump contact, comparing collapsing and non-collapsing.

Table 3.1: SMARC USB capabilities

Name USB 2.0 USB 3.0 OTG

USB0 x xUSB1 xUSB2 x xUSB3 x x xUSB4 xUSB5 x

inserted. A Hub is an integrated circuit that split a USB port in more ports, or,in other words, convoys many ports into a single one allowing to connect manydevices to a single port. For the project the USB5744 has been chosen.

3.3.1 USB Hub: USB5744

The USB5744 by Microchip is a low power USB 3.1 HUB. It has one upstream port(the one connected to the USB controller) and 4 downstream ports, all with 3.1capabilities. All ports include a USB 2.0 bus for retro-compatibility. It is availablein an industrial grade version, able to work from −40 C to 85 C. Its configurationregister can be written through SMB or SPI. SMB is not directly supported byiMX8, but I2C and SMB are compatible in some conditions. It requires both a3.3V and a 1.2V power.

For each port there is a pin called PRT CTLx that has a double role: it canbe driven low by the Hub itself in order to disable the VBUS power of this port,but it is also an input, because if it is externally driven low, the Hub understandsit as an over-current condition. This functionality can be easily coupled with themain part of switches dedicated to USB power. In fact they typically have aninput signal called EN (enable) and an open drain output signal called OCS (over

34

3.4 – Power regulators

current). They could be connected together and to PRT CTLx from the Hub. SeeFig. 3.4.

A part from a 25MHz external crystals and its load capacitors, it does not needany external component.

USB Power Switch

PRTPWR

EN

OCS

OCS

Pull-Up Enable

5V

USB Device

PRT_CTLxDrive low

Figure 3.4: Behavior of the PRT CTLx pin of USB5744

This component has been chosen because of the 3.0 compatibility along withthe temperature range.

3.4 Power regulators

The SMARC labels 10 pins as VDD IN, that is the input power to the module. Itranges from 3V to 5.25V depending on the carrier board. It has been decided towork at 5V because it provides the highest power with a fixed maximum currentof 0.5A per pin. Thus the total current that the module can absorb is 5A.

The iMX8 itself requires several low voltages to power the ARM cores, theGPU and some other voltages. A part from peripherals with fixed power of 1.8Vor 3.3V, some part of the module need a dynamic scaling of the voltage dependingon the current workload. For instance, VDD_A72 are the pins powering the two A72cores; it may have three possible values: 0.9V, 1V and 1.1V. The higher voltagesallows a higher clock speed.

Moreover a particular power up sequence has to be respected to avoid damages.All this reasons has led to consider an integrated circuit that NXP sells as specificto power the iMX8 family: the PF8100.

3.4.1 PMIC: PF8100

This component is labeled as Power Management Integrated Circuit, since it isnot just a regulator.

It has seven high efficiency buck regulator (with integrated switches) and fourlinear regulators. The bucks provide up to 2.5A and the LDO up to 400mA. It is

35

3 – Components choice

highly configurable and its configuration registers can be copied into a One TimeProgrammable memory, that can be loaded at power on. The PMIC can talk tothe iMX8 through a I2C interface. Since the configurations are many, NXP sellsversion that are already programmed to work with a particular microcontroller.In order to power one iMX8 Quad Max you need two different PF8100, each onepre-programmed differently.

In Fig. 3.5 you can see the suggested connection. Some of the buck has beenconnected as bi-phase buck in order to double the output current.

aaa-028047

IMX8QM

PF8x00

VDD_SNVS

VDD_MAIN

CPU1(A72)

CPU0 (A53)

VDD_DDRIO0

1.8 V I/O

VDD_SCU

SDCARD0

3.3 V I/O

MISC

GPU1

GPU0

VDD_MEMC

VDD_DDRIO1

3.3 V I/O

VSNVS

BUCK7

BUCK6

BUCK5

BUCK4

BUCK3

BUCK2 VIN:2.7 V to5.5 V

VIN:2.7 V to5.5 V

BUCK1

VDD_SIM

SDCARD1

2.5 V I/O

MISC

LDO1

LDO2

LDO3

LDO4

PF8x00

VSNVS

BUCK7

BUCK6

BUCK5

BUCK4

BUCK3

BUCK2

BUCK1

LDO1

LDO2

LDO3

LDO4

INTERFACING ANDI2C COMMUNICATIONS

CONTROLSIGNALS

I2C

DRAMSD Card

Ethernet

eMMC Supply

SIMCARD

SD CardDRAM

CONTROLSIGNALS

I2C

LPDDR_0Memory

LPDDR_1Memory

MISCELLANEOUSPERIPHERALS

Figure 3.5: Suggested connection of iMX8 and PF8200. Image taken from PF8200datasheet.

It has many other features as monitoring under voltage and over voltage ofthe outputs, configurable power on sequencing, a fail-safe state to avoid cyclicfailures and other minor features. It features also a power good signal and a resetsignal to the micro-controller. The reset can be asserted triggering a watchdogevent through an input pin: the input pin WDI triggers a watchdog event, whichresets all configuration registers of PMIC and asserts the POR (power on reset)that resets the iMX8. The PMIC has a counter for watchdog events. If it getsover a certain thresholds, the PMIC moves to a fail-safe state and avoid furtherpower-on/reset cycles.

Since this is a complex topic and a mistake could bring permanent damage to thesystem, it has been chosen to rely on the pre-programmed versions of the device.This reduces the amount of work during the design, and also it removes complexity

36

3.5 – Ethernet

from the board, because the OTP memory does not need to be programmed onboard.

This device can be sold with code PF8200 which has a ASIL B safety level: thismeans that is safer with respect to failures; in fact it has an improved capabilityof self-testing.

3.5 Ethernet

The iMX8 Quad Max include 2 Gigabit Ethernet MACs with a RGMII interface.The SMARC standard requires to pass on the connector the MDI signals (the onegenerated by the PHY), and it provides two Ethernet interfaces.

It is clear that PHYs IC are needed on the module, in order to translate RGMIIto MDI. It must be compatible with GigaBit Ethernet and must have RGMIIinterface.

3.5.1 PHY: KSZ9031RNX

Amongst the commercial products, the KSZ9031RNX has been chosen. It providesthe required speed and RGMII interface, supporting 10BASE-T,100BASE-T and1000BASE-T. It is manufactured by Microchip which also offers an automotivealternative version of the chip. It has a 7x7mm QFN package with 48 pins and anexposed pad for thermal dissipation.

It needs both 3.3V and 1.2V to be powered. It provides a pin that can beconnected to the gate of an external PMOS in order to form an LDO to regulate1.2V from 3.3V. Also, an external crystal is needed for 25MHz clock. On theother hand, termination resistor for the MDI differential pairs are embedded onthe die.

Several strapping pins are present in order to set the MDIO address, enable allor part of its capabilities and set the LED pins behavior. Strapping pins are readat power on: the PHY detects if there are pull up or pull down resistor connected;after that, the pins are used as normal with their original function.

3.6 Main memory

The iMX8 has two memory controller to communicate with external RAM throughDDR4 or LPDDR4. On an evaluation board of the iMX8 by NXP, two of the samekind of LPDDR4 memory were used, with a capacity of 3GB each. The certaintythat this component is compatible with the iMX8, together with the possibilityto buy an automotive version of the memory, has lead to the choice of using

37

3 – Components choice

this component. A total capacity 6GB should be enough for a wide spectrum ofapplications.

3.6.1 LPDDR4: MT53B768M32D4

This LPDDR4 DRAM is manufactured by Micron. It is composed of four identicaldies with a capacity of 6Gb each, with a total of 24Gb, i.e. 3GB. The devicesupport a clock speed of 1600MHz and has an automotive grade, so it can workup to 125 C. As it is possible to see in Fig. 3.6, the dies are coupled in 2 pairs.The two dies inside a pair share the interface pin, and only one of them has OnDie Terminations. A part from these specific parameters, the component does notdiffer from the LPDDR4 standard.

LPDDR4

Die

RESET_n

CS0_BCKE0_B

CKE0_ACS0_A

CK_t_BCK_c_B

CA[5:0]_B

CK_t_ACK_c_A

CA[5:0]_A

DMI[1:0]_BDQ[15:0]_BDQS[1:0]_t_BDQS[1:0]_c_B

DMI[1:0]_ADQ[15:0]_ADQS[1:0]_t_ADQS[1:0]_c_A

ODT_CA_A

Die

Die

CS1_BCKE1_B

CKE1_ACS1_A

ODT_CA_B

LPDDR4

Die

VDD1 VDD2 VSS VDDQ

ZQ0RZQ

VDDQ

RZQ

VDDQ

ZQ1

LPDDR4

LPDDR4

ODT_CA

ODT_CA

ODT_CA

ODT_CA

VSS

VSS

Figure 3.6: Internal architecture of the DRAM. Image taken from component’sdatasheet.

3.7 Storage

The iMX8 has 2 SD card and one eMMC (embedded MultiMedia Card) interfaces.An eMMC is a cheap NAND flash card, in a package directly soldered to the board.It is widely used as integrated storage into costumer electronic systems.

38

3.8 – NOR Flash: MT35XU512ABA

3.7.1 eMMC: MTFC32GAK

This is a 5.0 eMMC compatible card that can be powered at 3.3V. It has a capacityof 32GB. It is packaged in three version of BGA: 100 balls, 153 balls and 169 balls.The eMMC interface consists in a 8 bit bi-directional data lines. In addition thereare CLK and CMD pins used for control and commands. Commands are sentserially on CMD from Host to device, as well as the response from device to Host.The data instead can be sent in both direction on DAT0-DAT7. Multiple blockcan be read or written in a burst, as Fig. 3.8. The interface is very similar to theSD one, but it has 8 bit interface.

Fromhost tocard(s)

CMD

DAT

Command

Data fromcard to host

Command Response

Fromcard to

host

Block read operation

Multiple block read operation

Response

Data stop operation

Data block crc Data block crcData block crc

Stop commandstops data transfer

Figure 3.7: Behavior of a eMMC bus. Image taken from JEDEC specifications.[8]

There are two possible speed states: HS200 and HS400. In the first one, one bitper each line is sent at every CLK cycle. The clock has a frequency of 200MHz,resulting in 200MB/s. The HS400 singaling instead adopts Double Data Rate, sowhile keeping 200MHz clock, it reaches 400MB/s. In this state, a Strobe is sentfrom the device to the host, easing the Host sampling of received data.

3.8 NOR Flash: MT35XU512ABA

The iMX8 can also boot from a NOR Flash with an SPI interface, with a capacityof 512 Mb. The chosen device is a Micron product. It can be interfaced both withoctal SPI (8 half-duplex lines) and DDR SPI. It must be powered at 1.8V.

3.9 PCIe Clock

As already seen in Section 2.2.1, an important part of the PCIe is the clock gen-eration and distribution. Every PCIe link needs a reference clock of 100MHz; inaddition, the Root complex ( i.e. the iMX8) also needs a reference clock. Thisclock is switching at a frequency high enough to have the need to avoid stubs andimpedance mismatches: thus it is a bad idea connecting several devices to the sameclock. Because of this, three clock signals are needed (2 links, 1 root complex).

Many PCIe specific clock generators have multiple outputs in order to satisfythis kind of needs.

39

3 – Components choice

Two possible components are considered, and later the second one has beenchosen.

3.9.1 PL607041

This clock generator is manufactured by Microchip. It has 4 HCSL output. Thisacronym stands for High Speed Current Steering Logic, which is a differentialsignaling where the two drivers are open emitter output. There is the need fora series resistor plus a terminator resistor to ground on both signals in order towork. At every time one of the two pins is sourcing a current of 14mA whichflows through the terminations. The lines need to have an impedance of 50Ω anda differential impedance of 100Ω.

Figure 3.8: Structure of the device. Image taken from component datasheet

The component needs an external 25MHz crystal as starting frequency thatgets multiplied by an internal PLL. Furthermore, it features a Spread Spectrumclock in order to reduce the electromagnetic radiations. There are configurationpins to select the amount of spread introduced: it can be -0.25% or -0.50%. Theselection can only be made by placing pull-up or pull-down on the configurationpins.

3.9.2 DSC557-04

This generator is also manufactured by Microchip. The first main difference withthe previous component is the absence of an external crystal. In fact this device hasinternal MEMS oscillator inside the package, reducing the needed area for externalcomponents. The output signal levels are HCSL like the other component.

There are two Output Enable signals: OE1 and OE2. The first one enables thefirst clock output, the second one enables the other two output. This is due to

40

3.10 – Wireless communication: ATWILC3000

the fact that CLK1 and CLK2 are derived from the same oscillator and they aresynchronous: so one pin turns them off at the same time.

This component has been chosen because it has the exact number of neededoutput, as well as having a reduced total footprint due to the absence of an externalcrystal. Moreover, having two OE pins, there is the possibility to disable theoutputs in a finer way, thus saving more power.

The only drawback of this component is the absence of the Spread SpectrumClocks. Since SSC is an aid to be compliant during Electro-Magnetic Emissiontests, the hosting company decided to try this first version of the board withoutit.

3.10 Wireless communication: ATWILC3000

Since it does not complicate the project and it does provides useful features, anATWILC3000 module has been added. This module provides a Bluetooth 4.0and a WiFi IEEE 802.11 b/g/n interfaces. The antennas are embedded on themodule, so no additional components are needed. It can be powered at both 1.8Vand 3.3V.

The WiFi module can communicate through a SPI or SDIO interface. Insteadthe Bluetooth submodule interface with a UART with handshake signals (ClearTo Send, Request To Send).

3.11 Auxiliary connector

Not all interfaces of the iMX8 can pass on the SMARC-defined connector. In orderto avoid waste of resources, an additional connector has been added on the bottomside of the module. It has been chosen in order to have a mating height (the heightwhen female and male are matched) equal to the height of the MXM3 connectorwhere the module is inserted. In this way, if the male connector is present on thecarrier at the right height, both connector will match during insertion.

This connector belongs to the FX8C by Hirose. The interfaces passing on thiscustom connector, i.e. not defined by SGET, are the least important: the modulehas an already complete set of features when only the standard SMARC connectoris used.

41

3 – Components choice

MXM3 connector

AUX connector

Carrier

Module

Power Supply&Ports

iMX8

TriCore

Figure 3.9: Summarizing top level diagram

42

Chapter 4

Module Architecture

A high-level description of the final structure of the system is here provided. Theexplanation is aided by blocks diagram illustrating the general concept.

4.1 Top level

As already said, the system will follow the SMARC standard. This means thatthere are 314 contacts that consist in the main interface of the system. Othersecondary signals are connected to the auxiliary connector. The iMX8 needs thePMIC for regulations, two LPDDR4 DRAM, the eMMC and a NOR-Flash. Inaddition, a uSD socket is placed directly on the module. For communication,there are two Ethernet PHYs, one USB Hub, one PCIe clock generator.

4.2 Power regulation

The only power input to the system is through the 10 pins labeled as VDD_IN onthe SMARC connector and they provide 5A at 5V. The two PMIC regulates allthe necessary voltage required by the iMX8; they also regulates two voltages thatboth power the processor and are used as general purpose power for on-modulecomponent: V 1P8 and V 3P3 (1.8V and 3.3V). Some of the bucks are paired ina multi-phase configuration, allowing more current to be sourced. A summary ofall the power supply generated by the PMICs is in Tab. 4.1.

The PMIC1 uses one if its LDOs to regulate V1P8_SCU: this voltage powersthe System Controller Unit of the iMX8 and its interfaces which comprehends thelowest level of the system: the SCU manages the boot selection, the reset andexchange of info with the PMICs. Since the starting voltage level is 5V, the totaldropout is 3.2V. Considering that declared maximum current absorbed by iMX8from V1P8_SCU is 390mA this would result in 1.248W dissipated by the PMIC,

43

4 – Module Architecture

iMX8

PMIC1

PMIC2

Buck 1.2V

PHY0

PHY1

USB HUBDRAM1 DRAM2

EMMC FLASH

PCIE clockuSD

SMARC connector (314 pin)

AUX connector (100 pin)

JTAGConnector

Non standard Connector, 100pin

WiFi & BT Module

Figure 4.1: Summarizing top level diagram

with a sensible problem of self-heating. In order to attenuate this problem, aballast diode has been placed in series before the LDO input. The chosen diode isPNS40010ER from NXP: it has a typical forward voltage of 0.89V when T=25 Cand a forward curruent of 0.5A. In this way, part of the voltage drops on thediode, splitting the power dissipation between the diode itself and the LDO insidethe PMIC. This additional component does not reduce the efficiency, just movesaway from the PMIC the power dissipation. The dissipation on the diode will beabout 0.89V · 390mA = 340mW, thus lowering to 0.858W the dissipation on thePMIC.

Actually VDD IN passes through a high side switch before powering the PMIC.This has been done because the SMARC standard requires that the whole moduleis not powered up to the de-assertion of _VIN_PWR_BAD, which signals that VDD_INin not stable yet. Therefore not even the PMIC will be powered until the voltageis at the right level.

There is one needed voltage that the PMIC cannot regulate: it is V_1P2 andis needed by the USB Hub and the two Ethernet PHYs. A synchronous buckconverter has been added in order to get V_1P2 (1.2V). It has been chosen witha high switching frequency, in order to have smaller external components to keep

44

4.2 – Power regulation

Table 4.1: Regulator assignement to power supply names.

PMIC number RegulatorPower Supplyname

Voltage range [V] Output current [A]

1 SW11 SW2

V MAIN 0.95 - 1.10 5

1 SW31 SW4

V CPU1 0.85 - 1.15 5

1 SW5 V CPU0 0.85 - 1.15 2.51 SW6 V DDRIO0 1.06 - 1.17 2.51 SW7 V 1P8 1.8 2.51 LDO1 V1P8 SCU 1.8 0.41 LDO2 V SD1 1.8 / 3.3 0.41 LDO3 - - -1 LDO4 - - -2 SW12 SW2

V GPU0 0.95 1.10 5

2 SW32 SW4

V GPU1 0.95 - 1.10 5

2 SW5 V MEMC 1.05 - 1.15 2.52 SW6 V DDRIO1 1.06 - 1.17 2.52 SW7 V 3P 3.3 2.52 LDO1 - - -2 LDO2 V SD2 1.8 / 3.3 0.42 LDO3 - - -2 LDO4 - - -

a low total footprint. The chosen converter is TPS6206 from Texas Instrument.It is an automotive regulator with a switching frequency of 3MHz and an outputcurrent of 2A. It is able to move to a power-save state when the load is reduced:it decreases the switching frequency and passes from Pulse Width Modulation toPulse Frequency Modulation. The purpose is to reduce the quiescent current tokeep a high efficiency.

4.2.1 Coin cell or SuperCapacitor

The SMARC defines a pin dedicated to be connected on the Carrier to a LithiumCell or a super capacitor, with the function of a backup power for keeping the timewhen the system is powered off. The PMIC has a particular regulator connected tothe SNVS region of the iMX8, which is the part that manages the RTC; moreover

45

4 – Module Architecture

the PMIC itself can also charge up the coin cell or the SuperCapacitor from thesame input pin when the main power is on. Since they have compatible features,they have been connected together. In this way, the coin cell on the carrier powersthe SNVS whenever the main power is off; instead when VDD_IN is present, currentflows from the PMIC toward the cell in order to charge it.

4.3 Boot sequence

When power is provided to the module, several events take place.

• First of all, VDD_IN powers the PMIC.

• The PMIC is connected in such a way that it is not enabled as soon as theinput voltage is present. Instead it waits for its pin PWRON pin to read ahigh voltage. So all its output are disabled, except for VSNVS that is alwaysenabled.

• The pin VSNVS is connected to VDD_SNVS of the iMX8 which powers a smallpart of the iMX8. This block contains ON_OFF_BUTTON and PMIC_ON_REQ.The first one is connected through a dedicated SMARC pin to a button onthe carrier.

• When the button on the carrier is pressed, the signal arrives to the iMX8.Then, it asserts PMIC_ON_REQ so requesting the PMIC to turn on.

• At that point, the PMIC finally turns on all its regulators thus powering theiMX8.

4.4 Boot modes

Upon the release of _POR the System Controller Unit of the iMX8 reads a set ofpins in order to decided from which peripherals it should load the program image.

The SMARC specifications defines 3 pins of the connector for boot selections,performed through switches on the carrier. For each of the 8 combination thereis a boot source, that can be PCIe, USB, SD etc. Some of this can be left notimplemented. The iMX8 instead has 6 bits for selecting the boot source withtotally different value. This means that a simple logic net is needed to translateSMARC values to the one understandable by the iMX8.

In addition to that, a FORCE_RECOV# pin is routed through the SMARC con-nector. The standard says that it is driven low by the carrier in order to overwritepart of the boot code, reading from a USB device connected to USB0. This re-quirement can be satisfied by the USB Serial Download of the iMX8. It allow to

46

4.4 – Boot modes

SMARCconnectorSMARCconnector PMICPMIC iMX8iMX8

VDD_IN

VDD_SNVS

ON_OFF_BUTTON

PMIC_ON_REQ

Turn on Regulators

Figure 4.2: Sequence diagram of the boot process. After the turning the regulatorson, the iMX8 will be fully powered.

boot from any USB interface and to download a program image to memory. Thisfunction is called in a particular configuration of the boot pins. Also, if the pinselects the fuses load option and they have not been programmed yet, the SerialDownload is automatically called.

In Tab. 4.2 is shown the wanted output related to the input possible configu-rations and the resulting boot mode. Notice that the modes left not implementedhas been considered as ”don’t care” configurations. Obviously the only concernwas to use the minimum number of logic gate in order to save space on the PCB.Here is the found solution( where x is the input i.e. _BOOT_SEL and y is the outputi.e. SCU_BOOT_MODE pins):

y0 = 0

y1 = x2 · x1

y2 = y3 · x1

y3 = y5

y4 = x1 · x0

y5 = x2 + x0

Notice that this equation does not consider FORCE_RECOV#: this feature has beenadded starting from this logical network, that satisfies the requirement when

47

4 – Module Architecture

Table 4.2: Ideal output of the logical net

Input Output

FORCE RECOV# BOOT SEL BOOT MODE Mode

2 1 0 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 0 USB Recovery

0 0 0 1 0 0 0 1 0 0 USB Recovery

0 0 1 0 0 0 0 1 0 0 USB Recovery

0 0 1 1 0 0 0 1 0 0 USB Recovery

0 1 0 0 0 0 0 1 0 0 USB Recovery

0 1 0 1 0 0 0 1 0 0 USB Recovery

0 1 1 0 0 0 0 1 0 0 USB Recovery

0 1 1 1 0 0 0 1 0 0 USB Recovery

1 0 0 0 1 0 0 0 0 0 Carrier SATA

1 0 0 1 0 0 1 1 0 0 Carrier SD

1 0 1 0 X X X X X X Carrier ESPI (CS0#)

1 0 1 1 X X X X X X Carrier SPI (CS0#)

1 1 0 0 0 0 1 1 1 0 Module SD

1 1 0 1 X X X X X X Remote

1 1 1 0 0 0 1 0 0 0 Module eMMC

1 1 1 1 0 1 1 0 0 0 Module NOR SPI

FORCE_RECOV# is not asserted.

In order to add this feature, it is necessary to notice that when FORCE_RECOV# =0 than SCU_BOOT_MODE = 000100: in other words all bits but SCU_BOOT_MODE2

are driven to 0. Remember that the USB Serial Download is enabled whenSCU_BOOT_MODE = 000100 but also when SCU_BOOT_MODE = 000000: this con-figuration load the fuses, but if they have not been programmed yet, the Serialdownload is executed instead. So a possible solution that minimizes the number oflogic gates is to use FORCE_RECOV# to pull down all signals that must be driven lowwhile leaving SCU_BOOT_MODE2 as is. This solution is shown in Fig. 4.4. Diodeshave been inserted in order to prevent current from flowing back to the carrier.

The actual and final output of the net is shown in Tab. 4.3. Rows in redare the one differing from the ideal output. Remember that the case where

48

4.5 – Power sequencing

Logical Net1K

1K

1K

1K

_FORCE_RECOV

GND

_BOOT_SEL0

_BOOT_SEL1

_BOOT_SEL2

OUT1

OUT2

OUT3

OUT4

OUT5

OUT0

Figure 4.3: FORCE RECOV# implementation. It shows how it affects the logical netoutput for the boot selection.

FORCE_RECOV# = 0 and the Fuse are loaded do not present a problem: if thethey have not been blown yet, the Serial Download will be executed. In case theFuse are already programmed, the switch on the carrier can be set in order to havethe correct configuration.

4.5 Power sequencing

As already said, the two used PMIC come already pre-programmed in order tobe compatible with the i.MX8, so all its power sequencing and voltage levels arealready satisfied. But there are other two components that need more than onepower supply and sequencing has to be considered: the Ethernet PHYs and theUSB Hub. The first ones need V 1P8 and V 1P2 (regulated by the additional buck)while the USB Hub is powered by V 3P3 and V 1P2. From the datasheets it possibleto read that the PHYs need V 1P8 before V 1P2, while the USB need V 1P2 andthen V 3P3. Since V 1P8 and V 3P3 are output at the same time by the two PMICs,these two requirements are in contrast. A workaround has been adopted:

• the buck that regulates V 1P2 is enabled only when V 1P8 is ready, so satis-fying the PHYs needs.

• V 1P2 enables a high side switch (made with a PMOS) that connect V 3P3 tothe USB Hub. Thus, it receives V 1P2 before V 3P3.

4.6 USB

A USB Hub has been added in order to increase the number of ports. The iMX8has three USB cores:

49

4 – Module Architecture

Table 4.3: Actual output of the logical net. Entries between brackets, like ”(1)”, differ from the ideal implementation. Fuse eventually load USB Recovery if notprogrammed.

Input Output

FORCE RECOV# BOOT SEL BOOT MODE Mode

2 1 0 5 4 3 2 1 0

0 0 0 0 0 0 0 (0) 0 0 (Fuse)

0 0 0 1 0 0 0 1 0 0 USB Recovery

0 0 1 0 0 0 0 (0) 0 0 (Fuse)

0 0 1 1 0 0 0 (0) 0 0 (Fuse)

0 1 0 0 0 0 0 1 0 0 USB Recovery

0 1 0 1 0 0 0 1 0 0 USB Recovery

0 1 1 0 0 0 0 (0) 0 0 (Fuse)

0 1 1 1 0 0 0 (0) 0 0 (Fuse)

1 0 0 0 1 0 0 0 0 0 Carrier SATA

1 0 0 1 0 0 1 1 0 0 Carrier SD

1 0 1 0 (1) (0) (0) (0) (0) (0) (Carrier SATA)

1 0 1 1 (0) (1) (1) (0) (0) (0) (Module NOR SPI)

1 1 0 0 0 0 1 1 1 0 Module SD

1 1 0 1 (0) (0) (1) (1) (1) (0) (Module SD)

1 1 1 0 0 0 1 0 0 0 Module eMMC

1 1 1 1 0 1 1 0 0 0 Module NOR SPI

• The first one is a USB 2.0 compliant controller, but it only interfaces witha physical layer called HSIC (High Speed Inter Chip), that is basically alow voltage differential pair intended for on-board communication betweenintegrated circuits. In fact, the total length must be less than 10 cm. Thishas not been used in the project since no useful purpose has been found forit.

• The second is full USB 2.0 core with OTG functionalities.

• The last one is USB 3.0 compatible, so it comprehends both Tx and Rx pairs,as well as the USB High Speed pair of signals.

50

4.6 – USB

SMARC Connector

5V

PMICs

Ethernet PHY 0

Ethernet PHY 1

USB Hub

1.8V

Buck 1.2V 1.2V

EN

EN

3.3V

Figure 4.4: Block diagram showing the power sequencing of the 1.2V power supply.The Buck is enabled by 1.8V and 1.2V lets the 3.3V supply to reach the USB Hub.

USB1 HSIC

USB1 OTG

USB2 OTG

USB3 SS

USB HUB[USB5744]

USB0 (2.0 OTG)

USB1

USB2 (3.0)

USB3 (3.0)

USB4

USB5

HSSS

USB SS

I2C (SMB)

Figure 4.5: USB connection of the iMX8, Hub and connectors.

The chosen USB Hub supports USB 3.0, thus it has been connected with theUSB 3.0 core of the iMX8. The OTG capable port of the processor has beendirectly connected to the SMARC connector. Since all the downstream port of theHub are USB 3.0 but the SMARC ports are not, the exceeding Tx and Rx pair has

51

4 – Module Architecture

been routed to the Auxiliary connector: in this way, the carrier may re-join the2.0 and the 3.0 signals of the same port, thus having a complete 3.0 port. If onlythe 2.0 signals are used, the related 3.0 pairs must be left unconnected.

The Hub presents a SMB interface for configuration register access from theprocessor. These pins have been connected to a I2C of the iMX8 since the controlleralso supports SMB.

For each USB port present on the SMARC connector there is a EN_OC signalthat has a double role: it is pulled up by the module in order to enable a switchconnecting +5V to the device; and it is pulled low by the switch to signal anover current condition. This feature is compatible with the pin of the Hub calledPRT_CTRL that has the exact same behavior; so they can be directly connected.The same thing can not be done for the USB connected directly to the SMARCconnector : in fact the processor presents one pin for enabling the power deliveryand one pin for detecting the over current condition. In order to get the rightbehaviour, the pins has been connected together to form a single line, with theaddition of a diode preventing sourcing current from the EN pin.

Table 4.4: USB Assignement

iMX8 peripheral HUB port SMARC port Aux Connector

USB OTG1 - USB0 -

USB OTG2

+

USB SS3

HS1USB2

-

SS1 -

HS2USB3

-

SS2 -

HS3 USB1 -

SS3 - HUB3

HS4 USB4 -

SS4 - HUB4

4.7 HDMI and DisplayPort

The iMX8 has multi-protocol core that can manage several protocols, one at atime. It can manage:

• HDMI, both version 1.4 and 2.

52

4.7 – HDMI and DisplayPort

• DispalyPort (DP) and embedded Display Port (eDP).

• High-bandwidth Digital Content Protection system (HDCP) on both DP andHDMI.

Despite the HDMI support, the output signals are low voltage differential signalscompatible with DP specification and while there is a TMDS encoder, there is nodriver. Because of this, if the target is HDMI, the signal from the iMX8 mustbe translated to the correct levels. There are commercial chips able to translatethe voltage levels, such as the SN75DP139 from Texas Instrument. NXP insteadsuggest to use a pull-down resistor as level shifter, to be placed on both positiveand negative signal of each pair in order to scale down the voltage level. This isshown in Fig. 4.6a. The N-MOSFET disconnects the resistors when the iMX8HDMI core is not powered.

iMX8

1.8V

1.8V

HDMI_D0+

HDMI_D0-

SMARCconnector

HDMI_D1+

HDMI_D1-

HDMI_D2+

HDMI_D2-

(a) HDMI level shifter made with discrete compo-nents.

HDMI Rx

HDMI / DP

HDMI Tx

Display Port

HDMI Rx Level Shifter

(b) HDMI/DP selection and redirection to the appropriate SMARCpins. It also shown the input HDMI to the iMX8 from the Auxiliaryconnector

Figure 4.6: These two diagrams shows the HDMI level shifter and the HDMI/DPselection

53

4 – Module Architecture

It has been chosen to allow the selection of HDMI over DP or viceversa bysoldering or desoldering some series resistor. In this way it is possible to connectthe iMX8 pins (shared between DP and HDMI) to the correct SMARC pins. Bothlines require 50Ω of characteristic impedance and 100 ohm differential. The seriesresistor must be placed in such a way to minimize impedance mismatches.

The DisplayPort standard defines DC blocking series capacitor on the datalanes. Those have not been placed on the module since the SMARC standardstates that they must be placed on the carrier close to the connector.

4.7.1 Voltage levels

Since the SMARC suppose a level shifter, the DDC and HPD signals are definedto be 1.8V. Instead the iMX8 pins are directly compatible with the HDMI andDisplay port standard. Because of this, they should be connected to 5V signals.Directly connecting the 1.8V signals coming from the SMARC connector mayresult in the processor not recognising the high logical level.

The HPD can be easly translated using a buffer, being an input signal. Theused buffer is the 74LV1T34GW, that can up-translate from 1.8V to 3.3V, thatis the standard voltage defined by DisplayPort for this signal and it is also higheneough for the HDMI.

Concerning the DDC channel, that is actually an I2C, it is necessary to keep inmind that this is a bidirectional channel. A known solution is often used to havean I2C with two different voltages: two mosfet can be placed like in Fig. 4.7. Ifthe lines are driven low on the 1.8V side, the Vgs of that mosfet become greaterthan the threshold voltage, conducting from drain to source and thus dischargingthe 3.3V side. If the 3.3V is driven low, the body diode start conducting anddischarge the the 1.8V side. Otherwise, the body diode is not conducting andVgs = 0.

Rp Rp RpRp

1.8V 3.3V

iMX8LevelShifter

1.8V

SMARCconnector

Figure 4.7: Level shifter implementation from 1.8V to 3.3V of the DDC channel.

4.7.2 HDMI Sink

The iMX8 also has an HDMI receiver, also called Sink (the same behavior of amonitor). Such interface is not present on the SMARC connector, so it has to be

54

4.8 – PCIe

connected to the Auxiliary connector. It receives the +5V passed on the cable,and use it to assert HPD in order to signal the connection to the Source. It is alsoused for the pullup on the SCL signal of the DDC channel for Sink, as defined bythe HDMI standard.

4.8 PCIe

The iMX8 has two PCIe controller and 3 PHYs: the last one can be used by theSATA controller. The SMARC defines 4 lanes that can be used independently orcan be grouped in 2x or 4x links. Only two lanes has been filled in this project.

It has been chosen to use a common clock configuration, where several copies ofthe same clock are sent both to the Root complex and to the devices. Two moreclocks are needed for the devices. The DSC557-04 has been used, connected asshown in Fig. 4.8. The two PCIe controller and the SATA controller all use thesame reference clock at 100MHz. Being the clock a HCSL signal, series resistorand pull-downs are needed on the output of the component.

In addition to the data signals, some more control signal are present: PERST#

and CLKREQ#. The first one works like a reset for the device and is generated by theRoot complex. The second one is an open drain signal that may be asserted eitherby the Root complex or by the device: it is used to enable the clock generator.While the first one passes on the SMARC connector, CLKREQ# doesn’t. Insteadthe WAKE# can be passed to the module and it has a similar effect of CLKREQ#: itturns on both the clock generation and power regulation.

iMX8

PCIe0

PCIe1

SATA

DSC557-04

SMARCconnector

PCIe APCIe BPCIe CPCIe DSATA

CLK1 CLK2 CLK0

Figure 4.8: PCIe connection and clock routing. The fourth clock generator outputis not used.

55

4 – Module Architecture

The signals CLKREQ has been connected only between the iMX8 and the clockgenerator. Remember that OE1 turns on only CLK0, while OE2 turns on both CLK1

and CLK2. The connection has been performed such that when only PCIeA of theSMARC is used, the clock is available only to the processor and the PCIeA port;if PCIeB is used, the clock is fed to the processor, PCIeA and PCIeB. This hasbeen done with the connection shown in Fig. 4.9.

When _PCIE0_CLKREQ is asserted, the lower MOSFET is turned off and andthe resistor pulls up OE2: the result of this is enabling CLK1 and CLK2, connectedrespectively to the iMX8 and PCIeA port. Meanwhile _PCIE1_CLKREQ has a highlevel, thus the diode is not conducting and the upper MOSFET is driving OE1 to0V. If instead _PCIE1_CLKREQ is asserted, the diode start conducting thus drivinglow also _PCIE0_CLKREQ. As a consequence, both OE1 and OE2 are enabled.

Actually the pull up resistor are not mounted because the DSC557 already hasinternal pull-up resistors on OEx, so if they are left floating the input as read ashigh level.

22

6

1

53

4

GND

GND

_PCIE0_CLKREQ

_PCIE1_CLKREQ

V_3P3V_3P3

OE1

OE21

CLK0

CLK1

CLK2

PCIeB

iMX8

PCIeA

Figure 4.9: PCIe connection and clock routing. The fourth clock generator outputis not used.

4.9 Ethernet

The iMX8 features two Ethernet MACs and two are the SMARC defined Ethernetports. The SMARC requires that the signals going to the carrier have to be MediaDependent Interface, so two PHYs has to be placed on the module and the chosencomponents is the KSZ9031RNX.

For each PHY there is one RGMII bus and its MDIO/MDC interface. Thesesecond one is a two wire management interface needed for the configuration of thePHY itself. While it can be routed as a I2C bus, so in a multi-slave topology,the iMX8 has one MDIO bus for each MAC. Thus each PHY has its independentinterface, resulting in a point-to-point connection.

Each PHY generates four differential pairs that make up the Media DependentInterface. The SMARC says that the needed magnetics and transformers must be

56

4.10 – RAM

placed on the carrier module, close to the connector RJ45.

iMX8

MDIO 0

Enet 0

SMARCconnector

GBE 0

GBE 1MDIO 1

Enet 1

PHY0

PHY1

RGMII

RGMII

Figure 4.10: Block diagram of the Ethernet connection. It shows how two PHYsare present, each one with a RGMII and MDIO interface.

The PHYs has several strapping pin used to enable or disable some if its features(like the different data rates). It also has two pins for turning on and off LEDssignaling the activity and the speed of the link. Such pins can be connected toLEDs placed on the carrier board, passing through the SMARC connector. Theyare configured to be connected to the cathode of a diode and absorb current.

The PHY needs several power supplies: 1.2V, 1.8V and 3.3V. The voltagelevel for the control pins is 1.8V, to make it compatible with the iMX8. The LEDpins are required by the SMARC to be 3.3V tolerant. Because of this, a buffer isinserted in order to make it tolerant to the right voltage level.

4.10 RAM

The iMX8 has two memory controller for DDR4 or LPDDR4 DRAM. An auto-motive grade LPDRR4 from Micron has been chosen. Two of this kind will bepresent. As already seen, each chip has 32 single ended data signals, and insidethe package there are four equal dies.

The RAMs are powered by both V 1P8 and V DDRIOx where x can be 0 or 1.The second supply,V DDRIOx, also power part of the iMX8: so the two devices hasthe input/output interface driver both powered by the same voltage. The iMX8has a set of pins that have a double role: they behave as control signal for DDR4or for LPDDR4, which differs in the number of command signals.

The layout of a DDR interface can be quite complex, due to a relatively highnumber of pins that must have matched length and have to sustain high frequencies(1600MHz). In order to simplify the design, it is possible to swap bits within a

57

4 – Module Architecture

byte, as well as swapping the bytes themselves: in this way it should be possibleto avoid vias and change of plane. Because of this, the connections of data signalsbetween iMX8 and RAM might change during the layout/routing phase.

4.11 uSD socket

An automotive uSD socket has been added to the module. It has double contactsfor each pad, resulting a more reliable and vibration-tolerant contact. Moreover,it has an internal switch that get closed when the card is inserted: if properlyconnected it drives low _CD, signaling the iMX8 that a card has been detected.

The uSD card is always powered by V 3P3, even if the signaling passes to 1.8V.A reset circuit allows to manage the power to the card: when _RST is asserted,the power going to the card is disconnected and the card itself is also dischargedthrough a MOSFET. When instead the card has to be operational, a P-MOSdeliver the power to the card. Since the _RST signal has the wrong polarity forthis behavior, an inverter has been used. Moreover, a resistor is needed to limitthe current while discharging: in fact the capacitance of the uSD card can besensible(max 5 µF) and it adds to bypass capacitors in parallel to it.

uSD

_CD

3.3V

_RST

C1

Figure 4.11: Diagram of the uSD socket. It is shown the internal switch forcard detection and its relative pull-up, together with the P-MOS and N-MOS forcharging and discharging the uSD card.

The capacitor C1 has been connected to the 3.3V supply. This is has beendone in order to have a reservoir of charge close to the MOSFET. In fact, when

58

4.12 – Reset Behaviour

the p-MOS starts conducting, a peak of in-rush current can be present, due tothe large load capacitance of about 10 µF. In this way, the charge needed is takenfrom C1 that is always connected to the power supply. This should prevent highpeaks of absorption from the 3.3V that may result in a temporary voltage drop.

4.12 Reset Behaviour

The reset structure has to be considered carefully. In fact there are several resetsources:

• The PMIC asserts the reset signals until all voltage levels are at their correctvalue.

• The iMX8 has to be able to reset itself together with all the other components.

• The SMARC defines a RST_IN driven by the carrier that should reset themodule

• A JTAG connector is present on the module for software development anddebugging: this interface comprehends a reset signal.

A general reset signal is present and it is called _RST. It can be driven lowby the PMIC, trough its pin RESETBMCU. It asserts this signal during power-on,as well as when a watchdog event is triggered. This happen if the iMX8 fails torefresh a countdown timer within a certain time. The processor can also triggerthe watchdog event asserting SCU_WDOG_OUT. In this way the iMX8 is able to resetitself in case of failure.

The SMARC signal _RST_IN and the TRST from JTAG connector as connectedwith a diode to _RST. In this way, when one of them is driven low, the correspondingdiode starts conducting thus discharging the line and asserting _RST. The effectof this is the resetting of the Ethernet PHYs, the NOR Flash and the iMX8. ThePHYs can also be reset independently using a GPIO of the processor.

The USB Hub instead is only reset by a GPIO, since it has its own internaltimer for power-on reset. On the other hand, the NOR Flash is reset only by the_POR since the processor can reset it through SPI commands.

4.13 JTAG

The JTAG interface (defined by the Joint Test Action Group) is an interface fortesting and debugging a whole system after manufacturing. Born for boundary-scan of the ICs in order to test connections to the PCB and package, has becomethe interface to use during software development. In fact, a simple 4 pin interface

59

4 – Module Architecture

_RST_INSMARC

JTAG

iMX8PMIC

WDI RESETBMCU

FlashPHY1PHY0

+ +

SCU_WDOG_OUT

Figure 4.12: Reset circuit.

gives access to all internal registers and also to boundary scan registers. These areregister that over-rides the normal funcionality of an IC pin in order to test PCBlevel connections: they can read or write a state to those pins. The 4-pin bus canbe connected in a daisy chain configuration with all JTAG capable devices. In ourcase, only the iMX8 has a JTAG interface.

This protocol allows the software designer to debug and trace execution of thefirmware, as well as programming the Flash memory with the program image.

On the module a 10 pin header has been placed and connected to the processoronly. The reset signal, as already said, has been added to all the other resetsources.

4.14 MIPI CSI

As already seen, the CSI interface is dedicated to raw image from a camera. Thedata rate is scalable with the number of lanes. The SMARC defines two CSIinterfaces: the first one CSI0 has 2 lanes, while CSI1 has four. It also defines apriority: CSI1 cannot be connected while leaving CSI0 unconnected.

The iMX8 has two interfaces with four lanes each. The chosen solution is toconnect 2 lanes of a bus to CSI0 and all 4 lanes of the other to CSI1. This solutionleaves 2 unconnected lanes of the iMX8. It has been chosen then to route this 2lanes to the auxiliary connector, and if needed, re-join the two lanes on the carrier,in order to get 4x interface. This of course complicates the layout design: datalanes must be matched with the clock signal within 0.15 ns.

This has been done because cameras interfaces are a key feature for the Auto-drive project. In a project where such a bandwith is not needed, it is still possibleto easily use a 2x and 4x interfaces.

60

4.15 – Wifi-Bluetooth Module

iMX8

CSI0

CSI1

SMARCconnector

AUXconnector

CAM0

CAM10:3

2:3

0:1

Figure 4.13: CSI connection diagram. CSI0 is split between the SMARC connectorand auxiliary one.

4.15 Wifi-Bluetooth Module

The ATWILC3000 has a pin called VBAT that must be tied to 3.3V and anothersupply pin called VDDIO. This second one can be tied to 1.8V,2.5V or 3.3V. Thefirst one has been chosen because it allows communication with the microcontroller.

The component has a UART interface dedicated to the Bluetooth and anSDIO/SPI interface for WiFi. The Bluetooth sub-module present a four-signalUART, complete of handshake signals. Since the iMX8 has only two availableUART port with _CTS and RTS and they are already connected to the SMARCconnector, a simple two wire interface has been used. The module datasheet statesthat the handshake signals are optional.

Also due to availability problems, SPI has been chosen over SDIO for WiFicommunication. In fact, the three available SD controller of the iMX8 are alreadyused.

The ATWILC3000 also needed an RTC clock at 32.768 kHz, that is providedby a pin of the iMX8.

61

4 – Module Architecture

NC_4NC_3NC_5NC_6

VBAT

RTC_CLK

BT_CTS/I2C_SCL_SBT_RTS/I2C_SDA_S

BT_RXDBT_TXD

_RESET

SD_CLK/GPIO8SD_CMD/SPI_SCKSD_DAT0/SPI_MISOSD_DAT1/SPI_SSNSD_DAT2/SPI_MOSISD_DAT3/GPIO7

EP_GND

GND_36GND_28GND_13GND_1

GND_21CHIP_EN

UART_RXDUART_TXD

VDDIO

_SDIO_CFG/SPI_CFG

GPIO0GPIO3GPIO4GPIO17GPIO18GPIO19GPIO20GPIO21

_IRQ

WiFi

BT

33

3532313029151434

2

12

1617

19211132836

37

272625242322

7

89

1011

20

18

6534

ATWILC3000-MR110CA GND

V_1P8

V_1P8

RTC_CK

_IRQ

_RST

EN

SPI2

SPI2_CS0

SPI2_SCKSPI2_SDI

SPI2_SDO

V_1P8

No more UART with CTS/RTS available:make the Chip see an always asserted"Request to send"

V_1P8

GNDGND

U13

V_3P3

Figure 4.14: Schematic of the ATWILC3000 connection.

4.16 LVDS

The SMARC has two LVDS (Low Voltage Differential Signaling) channel for driv-ing LCD displays, while the iMX8 potentially has 2 channel of eight bits each.Since both the SMARC channels are muxed with a DSI interface, it has beenchosen to implement one DSI and one LVDS channel. This interface does notrequire external components. Some additional GPIOs are present for enabling thesupply to the display and its back-light. Moreover, the back-light intensity can becontrolled through a PWM signal generated by the iMX8. One I2C bus is sharedbetween the LVDS and DSI for configuration of the displays.

The remaining LVDS channels of the iMX8 are connected to the Auxiliaryconnector, in case they might be needed in a different project.

62

Chapter 5

Conclusions

Starting from the non-strict requirements, a general purpose board has been de-veloped. The standard SMARC has been chosen to get interoperability with othermodules. The design started from the understanding of the i.MX8 capabilities andits interfaces. A study of all standard interfaces was needed. Then component hasbeen looked for and chosen to match both the processor and the SMARC standard.The project has been developed up to the schematic level.

5.1 Future implementations

The project will pass to the layout and routing phase. Particular attention will beneeded for the reduced board size and the high-speed interfaces. Having to dealwith frequencies above 1GHz, connections has to be considered as transmissionlines. Moreover, a simulator is needed for trouble shooting the connections duringdesign phase.

The first step is the definition of a stack-up, that is the definition of all layerscomposing the PCB. It must take in consideration the needed impedances: thedielectric thickness heavily influence the trace width given a target impedance.Moreover, ground and power planes will be defined during this phase. Since allhigh-speed traces need a return path, all traces are routed close to a ground plane,resulting in a microstrip or stripline structures. Because of this, several groundplanes will be inserted, interleaved with signal ones. The SMARC requires thatthe total PCB height must be 1.2mm so to be inserted in the MXM3 connector.

Moreover, the fine pitch BGA of the iMX8 impose a minimum number of layerfor the break-out of the signals. As a rule of thumb, the number of needed layercan be estimated considering the number of signals to be routed out of the BGAand the number of available ”channels”, which is the space between balls wherea trace can be routed. The formula is layers = signals

channels. Considering the iMX8

63

5 – Conclusions

package, the number of channels is 26 per side, so 26 · 4 = 104 and the numberof signal is total − powerP in = 1313 − 719 = 594. So, substituting in the firstformula:

layers =signals

channels=

594

104≃ 5.71 ≃ 6

Therefore, a stackup where 6 signal layers are present may be a good startingpoint.

Moreover, the required impedances has to be considered: the main part ofdifferential pairs need an impedance of 50Ω single ended and 100Ω differential,but also 85Ω and 90Ω are needed. Another aspect to consider of the stackupis the inter-plane capacitance that results from two parallel planes separted by adielectric. This phenomenon can be exploited to get a low inductance capacitancebetween a ground and a power planes adjacent to each other. This capacitanceadds to the bypass capacitors, thus reducing the noise on the power supply.

The routing phase has to be done respecting some indications. The returnpath of signals is an important concept to consider: it is the path that takes thecurrent flowing in the opposite direction of the signal propagation. The path takeninfluence the area of the loop of current: with a solid reference plane, the currentwould take the least impedance path. But if some split in the plane are present, thecurrent may be forced to take different path, increasing the loop area and than theElectromagnetic Emissions. [5] Moreover, the trace-width has to be kept constantin order to minimize impedance mismatches that would results in reflection andperformance degradation.

In order to keep the common mode rejection benefits of a differential signaling,the two signals has to have an exact phase difference of 180°, and this may notbe true in case of length mismatches, trace width differences or local dielectricdifferences. An example of this last cause is the Fiber Weave Effect, consisting indielectric constant differences based on the presence or absence of glass fiber inthe layer between the signal trace and the reference plane. If the two traces havedifferent impedances, the phase velocity will not be the same. This effect can beavoided by using a a material with tighter glass fiber weave.

All this considerations have to be kept in mind while trying to satisfy all thetiming specifications of the standard interfaces.

64

Appendix A

Schematic

Dra

wn

by:

Che

cked

:D

esig

n by

:

Proj

ect:

Shee

t Siz

e:

Page

Titl

e:

Shee

t:

Dat

e:

Vers

ion:

CAD

dra

win

g. F

ree

hand

cha

nges

are

not

per

mitt

ed.

Dis

egno

ese

guito

su

CAD

. Non

son

o am

mes

se m

odifi

che

man

uali.

This

dra

win

g is

a p

ropr

ieta

ry d

ocum

ent o

f Ide

as &

Mot

ion

s.r.l

. and

mus

t not

be

copi

ed o

r rel

ease

d to

third

par

ties

with

out a

utho

rizat

ion.

Que

sto

dise

gno

e' p

ropr

ieta

' di I

deas

& M

otio

n s.

r.l. e

non

puo

' ess

ere

ripro

dotto

o tr

asm

esso

a te

rzi s

enza

pre

via

auto

rizza

zion

e.

/A3

12

34

56

78

A B C D E F

Re

vie

we

r

Dra

ftm

an

iMX

8S

OM

L.

Gir

au

di

13

6

1.0

DD

/M

M/

YY

YY

Co

nn

ec

tor

ESAI

1_FS

R

ESAI

1_FS

TES

AI1_

SCKR

ESAI

1_SC

KT

ESAI

1_TX

0ES

AI1_

TX1

ESAI

1_TX

2_R

X3ES

AI1_

TX3_

RX2

ESAI

1_TX

4_R

X1ES

AI1_

TX5_

RX0

CAN

2_R

XC

AN2_

TX

VHD

MI_

RX_

5V

MIP

I_C

SI0_

DAT

A3_P

MIP

I_C

SI0_

DAT

A3_N

MIP

I_C

SI0_

DAT

A2_P

MIP

I_C

SI0_

DAT

A2_N

LVD

S1_C

H1_

TX3_

PLV

DS1

_CH

1_TX

3_N

LVD

S1_C

H1_

TX2_

PLV

DS1

_CH

1_TX

2_N

LVD

S1_C

H1_

TX1_

PLV

DS1

_CH

1_TX

1_N

LVD

S1_C

H1_

TX0_

PLV

DS1

_CH

1_TX

0_N

LVD

S1_C

H1_

CLK

_PLV

DS1

_CH

1_C

LK_N

LVD

S1_C

H0_

TX3_

PLV

DS1

_CH

0_TX

3_N

LVD

S1_C

H0_

TX2_

PLV

DS1

_CH

0_TX

2_N

LVD

S1_C

H0_

TX1_

PLV

DS1

_CH

0_TX

1_N

LVD

S1_C

H0_

TX0_

PLV

DS1

_CH

0_TX

0_N

LVD

S1_C

H0_

CLK

_PLV

DS1

_CH

0_C

LK_N

HD

MI_

RX_

HPD

HD

MI_

RX0

_AR

C_N

HD

MI_

RX0

_AR

C_P

HD

MI_

RX0

_CEC

HD

MI_

RX0

_CLK

_NH

DM

I_R

X0_C

LK_P

HD

MI_

RX0

_DAT

A0_N

HD

MI_

RX0

_DAT

A0_P

HD

MI_

RX0

_DAT

A1_N

HD

MI_

RX0

_DAT

A1_P

HD

MI_

RX0

_DAT

A2_N

HD

MI_

RX0

_DAT

A2_P

HD

MI_

RX0

_DD

C_S

CL

HD

MI_

RX0

_DD

C_S

DA

GN

D_6

GN

D_1

1G

ND

_12

GN

D_1

7G

ND

_18

GN

D_2

3G

ND

_24

GN

D_2

9G

ND

_30

GN

D_3

5G

ND

_36

GN

D_4

1G

ND

_42

GN

D_9

0G

ND

_84

GN

D_7

8G

ND

_72

GN

D_6

6G

ND

_60

GN

D_5

9G

ND

_54

GN

D_5

3G

ND

_48

GN

D_4

7G

ND

_5

MLB

_CLK

MLB

_CLK

_NM

LB_C

LK_P

MLB

_DAT

A

MLB

_DAT

A_N

MLB

_DAT

A_P

MLB

_SIG

MLB

_SIG

_NM

LB_S

IG_P

SNVS

_TAM

PER

_IN

0SN

VS_T

AMPE

R_I

N1

SNVS

_TAM

PER

_OU

T0SN

VS_T

AMPE

R_O

UT1

SPD

IF_E

XT_C

LKSP

DIF

_RX

SPD

IF_T

X

USB

3_H

UB3

_RXM

USB

3_H

UB3

_RXP

USB

3_H

UB3

_TXM

USB

3_H

UB3

_TXP

USB

3_H

UB4

_RXM

USB

3_H

UB4

_RXP

USB

3_H

UB4

_TXM

USB

3_H

UB4

_TXP

GN

D

LVD

S1_C

H0_

CLK

-LV

DS1

_CH

0_C

LK+

LVD

S1_C

H0_

TX0-

LVD

S1_C

H0_

TX0+

LVD

S1_C

H0_

TX1-

LVD

S1_C

H0_

TX1+

LVD

S1_C

H0_

TX2-

LVD

S1_C

H0_

TX2+

LVD

S1_C

H0_

TX3-

LVD

S1_C

H0_

TX3+

LVD

S1_C

H1_

CLK

-LV

DS1

_CH

1_C

LK+

LVD

S1_C

H1_

TX0-

LVD

S1_C

H1_

TX0+

LVD

S1_C

H1_

TX1-

LVD

S1_C

H1_

TX1+

LVD

S1_C

H1_

TX2-

LVD

S1_C

H1_

TX2+

LVD

S1_C

H1_

TX3-

LVD

S1_C

H1_

TX3+

CSI

0_AU

X

CSI

0_R

X3+

CSI

0_R

X3-

CSI

0_R

X2+

CSI

0_R

X2-

HD

MI_

RX

HD

MI_

RX0

_AR

C-

HD

MI_

RX0

_AR

C+

HD

MI_

RX0

_CEC

HD

MI_

RX0

_CLK

-H

DM

I_R

X0_C

LK+

HD

MI_

RX0

_DAT

A0-

HD

MI_

RX0

_DAT

A0+

HD

MI_

RX0

_DAT

A1-

HD

MI_

RX0

_DAT

A1+

HD

MI_

RX0

_DAT

A2-

HD

MI_

RX0

_DAT

A2+

HD

MI_

RX0

_DD

C_S

CL

HD

MI_

RX0

_DD

C_S

DA

HD

MI_

RX0

_HPD

HD

MI_

RX0

_MO

N_5

V

CAN

2_R

XC

AN2_

TX

ESAI

1

ESAI

1_FS

R

ESAI

1_FS

TES

AI1_

SCKR

ESAI

1_SC

KT

ESAI

1_TX

0ES

AI1_

TX1

ESAI

1_TX

2_R

X3ES

AI1_

TX3_

RX2

ESAI

1_TX

4_R

X1ES

AI1_

TX5_

RX0

MLB

_SE

MLB

_CLK

MLB

_DAT

AM

LB_S

IG

MLB

_DIF

F

MLB

_CLK

+M

LB_C

LK-

MLB

_DAT

A+M

LB_D

ATA-

MLB

_SIG

+M

LB_S

IG-

SNVS

_TAM

PER

_IN

0SN

VS_T

AMPE

R_I

N1

SNVS

_TAM

PER

_OU

T0SN

VS_T

AMPE

R_O

UT1

SPD

IF0_

EXT_

CLK

SPD

IF0_

RX

SPD

IF0_

TX

USB

_HU

B_SS

USB

_HU

B3_S

S_R

X-U

SB_H

UB3

_SS_

RX+

USB

_HU

B3_S

S_TX

-U

SB_H

UB3

_SS_

TX+

USB

_HU

B4_S

S_R

X-U

SB_H

UB4

_SS_

RX+

USB

_HU

B4_S

S_TX

-U

SB_H

UB4

_SS_

TX+

LVD

S1_C

H1

_CD

CM

DC

LK

DAT

3D

AT2

DAT

1D

AT0

_RST

WP

GN

D

VDD

_IN

VDD

_RTC

_BO

OT_

SEL0

_BO

OT_

SEL1

_BO

OT_

SEL2

ON

_OFF

_BU

TTO

N

_RST

_OU

T_W

DT_

TIM

E_O

UT

SCU

_PM

IC_I

2C_S

CL

SCU

_PM

IC_I

2C_S

DA

DSI

0

PCIE

0

PCIE

1

_PC

IE_W

AKE

SATA

0

_SAT

A0_A

CT

SATA

0_R

X+SA

TA0_

RX-

SATA

0_TX

+SA

TA0_

TX-

LCD

1_BK

LT_E

ND

SI0_

PWM

_OU

T

DM

A_I2

C3_

SCL

DM

A_I2

C3_

SDA

LCD

1_VD

D_E

N

PCIE

0_R

EFC

K+PC

IE0_

REF

CK-

_PC

IE0_

PER

STPC

IE0_

RX+

PCIE

0_R

X-PC

IE0_

TX+

PCIE

0_TX

-

_PC

IE1_

PER

STPC

IE1_

RX+

PCIE

1_R

X-PC

IE1_

TX+

PCIE

1_TX

-

_SD

2_R

ST

USD

HC

2

SD2_

DAT

1SD

2_D

AT2

SD2_

DAT

3

SD2_

CLK

SD2_

CM

D

_SD

2_C

DSD

2_W

P

HD

MI_

TX

HD

MI_

TX_C

K+H

DM

I_TX

_CK-

HD

MI_

TX_D

DC

_SC

LH

DM

I_TX

_DD

C_S

DA

HD

MI_

TX_D

0+H

DM

I_TX

_D0-

HD

MI_

TX_D

1-H

DM

I_TX

_D1+

HD

MI_

TX_D

2-H

DM

I_TX

_D2+

HD

MI_

TX_H

PD

SD2_

DAT

0

DP

DP0

_AU

X+D

P0_A

UX-

DP0

_AU

X_SE

LD

P0_H

PDD

P0_L

ANE0

+

DP0

_LAN

E3+

DP0

_LAN

E0-

DP0

_LAN

E1+

DP0

_LAN

E2-

DP0

_LAN

E2+

DP0

_LAN

E1-

DP0

_LAN

E3-

LVD

S0_C

H0

LVD

S0_C

H0_

CLK

-LV

DS0

_CH

0_C

LK+

LVD

S0_C

H0_

TX0-

LVD

S0_C

H0_

TX0+

LVD

S0_C

H0_

TX1-

LVD

S0_C

H0_

TX1+

LVD

S0_C

H0_

TX2-

LVD

S0_C

H0_

TX2+

LVD

S0_C

H0_

TX3-

LVD

S0_C

H0_

TX3+

CAN

1_TX

CAN

1_R

XC

AN0_

TXC

AN0_

RX

_SM

B_AL

ERT

SD_s

ocke

t

GN

D

CSI

_CAM

_MC

K

CSI

0_R

X0+

CSI

0_R

X0-

CSI

0_R

X1+

CSI

0_R

X1-

CSI

0_I2

C_S

CL

CSI

0_I2

C_S

DA

GPI

O4/

_HD

A_R

STG

PIO

5/PW

M_O

UT

GPI

O6/

TAC

HIN

GPI

O7

GPI

O8

GPI

O9

GPI

O10

GPI

O11

DM

A_I2

C2_

SCL

DM

A_I2

C2_

SDA

GBE

0

_GBE

0_LI

NK1

00_G

BE0_

LIN

K100

0

GBE

0_M

DI0

+G

BE0_

MD

I0-

GBE

0_M

DI1

+G

BE0_

MD

I1-

GBE

0_M

DI2

+G

BE0_

MD

I2-

GBE

0_M

DI3

+G

BE0_

MD

I3-

GBE

1

_GBE

1_LI

NK1

00_G

BE1_

LIN

K100

0

GBE

1_M

DI0

+G

BE1_

MD

I0-

GBE

1_M

DI1

+G

BE1_

MD

I1-

GBE

1_M

DI2

+G

BE1_

MD

I2-

GBE

1_M

DI3

+G

BE1_

MD

I3-

USB

0

USB

0+U

SB0-

_USB

0_EN

_OC

USB

0_O

TG_I

D

USB

_HU

B3U

SB_H

UB3

+U

SB_H

UB3

-_U

SB_H

UB3

_EN

_OC

USB

_HU

B1

USB

_HU

B1+

USB

_HU

B1-

_USB

_HU

B1_E

N_O

CU

SB_H

UB1

_SSR

X+U

SB_H

UB1

_SSR

X-U

SB_H

UB1

_SST

X+U

SB_H

UB1

_SST

X-

USB

_HU

B2

USB

_HU

B2+

USB

_HU

B2-

_USB

_HU

B2_E

N_O

C

USB

_HU

B2_S

SRX+

USB

_HU

B2_S

SRX-

USB

_HU

B2_S

STX+

USB

_HU

B2_S

STX-

USB

_HU

B4U

SB_H

UB4

+U

SB_H

UB4

-_U

SB_H

UB4

_EN

_OC

CSI

1

CSI

0_C

K-C

SI0_

CK+

CSI

0 USD

HC

1

SD1_

DAT

0SD

1_D

AT1

SD1_

DAT

2SD

1_D

AT3

SD1_

CLK

SD1_

CM

D

_SD

1_C

D

SD1_

WP

SD1_

PWR

_EN

AUD

IO_M

CK

SAI1

SAI1

_TXC

SAI1

_TXF

SSA

I1_R

XDSA

I1_T

XD

QSP

I1

QSP

I1A_

SCLK

QSP

I1A_

DAT

A1Q

SPI1

A_D

ATA2

QSP

I1A_

DAT

A3_Q

SPI1

A_R

ST

QSP

I1A_

DAT

A0_Q

SPI1

A_SS

1

USB

0_VB

US_

DET

SAI0

SAI0

_TXC

SAI0

_TXF

S

SAI0

_RXD

SAI0

_TXD

SPI3

UAR

T0U

ART0

_TX

UAR

T0_R

X_U

ART0

_RTS

_UAR

T0_C

TS

UAR

T3_R

XU

ART3

_TX

UAR

T4_T

XU

ART4

_RX

_UAR

T1_C

TS_U

ART1

_RTS

UAR

T1_R

XU

ART1

_TX

UAR

T1

CSI

1_C

K+C

SI1_

CK-

CSI

1_R

X0+

CSI

1_R

X0-

CSI

1_R

X1+

CSI

1_R

X1-

CSI

1_R

X2+

CSI

1_R

X2-

CSI

1_R

X3+

CSI

1_R

X3-

CSI

1_I2

C_S

CL

CSI

1_I2

C_S

DA

SMAR

C E

DG

E C

ON

NEC

TOR

AUX

CO

NN

ECTO

R

_RST

_IN

_VIN

_PW

R_B

AD

CAR

RIE

R_P

WR

_ON

_CAR

RIE

R_S

TBY

GN

D

V1P8

_SC

U

TMS

TCK

TDO

TDI

_RST

_DBG

V1P8

_SC

U

JTAG

1%

10

K0

40

2

R1

J3

6 10

897531

42

FTS

H-

10

5-

01

-F

-D

V

R2

1%

10

K0

40

21

%

R3

04

02

10

K

R3

6

04

02

1K

1%

GN

D

uSD

SOC

KET

JTAG

BOO

T_SE

L0#

BOO

T_SE

L1#

BOO

T_SE

L2#

CAN

0_R

XC

AN0_

TXC

AN1_

RX

CAN

1_TX

DP0

_AU

X+D

P0_A

UX-

DP0

_AU

X_SE

LD

P0_H

PDD

P0_L

ANE0

+D

P0_L

ANE0

-D

P0_L

ANE1

+D

P0_L

ANE1

-D

P0_L

ANE2

+D

P0_L

ANE2

-D

P0_L

ANE3

+D

P0_L

ANE3

-

DP1

_AU

X_SE

L

GN

D_P

79G

ND

_P82

GN

D_P

85G

ND

_P88

GN

D_P

91G

ND

_P94

GN

D_P

97G

ND

_P10

0G

ND

_P10

3G

ND

_P12

0G

ND

_P13

3G

ND

_P14

2G

ND

_S80

GN

D_S

83G

ND

_S86

GN

D_S

89G

ND

_S92

GN

D_S

101

GN

D_S

110

GN

D_S

119

GN

D_S

124

GN

D_S

130

GN

D_S

136

GN

D_S

143

GN

D_S

158

HD

MI_

CK+

/DP1

_LAN

E3+

HD

MI_

CK-

/DP1

_LAN

E3-

HD

MI_

CTR

L_C

K/D

P1_A

UX+

HD

MI_

CTR

L_D

AT/D

P1_A

UX-

HD

MI_

D0+

/DP1

_LAN

E2+

HD

MI_

D0-

/DP1

_LAN

E2-

HD

MI_

D1+

/DP1

_LAN

E1+

HD

MI_

D1-

/DP1

_LAN

E1-

HD

MI_

D2+

/DP1

_LAN

E0+

HD

MI_

D2-

/DP1

_LAN

E0-

HD

MI_

HPD

/DP1

_HPD

I2C

_LC

D_C

KI2

C_L

CD

_DAT

LCD

0_BK

LT_E

NLC

D0_

BKLT

_PW

MLC

D0_

VDD

_EN

LCD

1_BK

LT_E

NLC

D1_

BKLT

_PW

MLC

D1_

VDD

_EN

LVD

S0_0

+/eD

P0_T

X0+/

DSI

0_D

0+LV

DS0

_0-/e

DP0

_TX0

-/DSI

0_D

0-LV

DS0

_1+/

eDP0

_TX1

+/D

SI0_

D1+

LVD

S0_1

-/eD

P0_T

X1-/D

SI0_

D1-

LVD

S0_2

+/eD

P0_T

X2+/

DSI

0_D

2+LV

DS0

_2-/e

DP0

_TX2

-/DSI

0_D

2-LV

DS0

_3+/

eDP0

_TX3

+/D

SI0_

D3+

LVD

S0_3

-/eD

P0_T

X3-/D

SI0_

D3-

LVD

S0_C

K+/e

DP0

_AU

X+/D

SI0_

CLK

+LV

DS0

_CK-

/eD

P0_A

UX-

/DSI

0_C

LK

LVD

S1_0

+/eD

P1_T

X0+/

DSI

1_D

0+LV

DS1

_0-/e

DP1

_TX0

-/DSI

1_D

0-LV

DS1

_1+/

eDP1

_TX1

+/D

SI1_

D1+

LVD

S1_1

-/eD

P1_T

X1-/D

SI1_

D1-

LVD

S1_2

+/eD

P1_T

X2+/

DSI

1_D

2+LV

DS1

_2-/e

DP1

_TX2

-/DSI

1_D

2-LV

DS1

_3+/

eDP1

_TX3

+/D

SI1_

D3+

LVD

S1_3

-/eD

P1_T

X3-/D

SI1_

D3-

LVD

S1_C

K+/e

DP1

_AU

X+/D

SI1_

CLK

+

PCIE

_A_R

EFC

K+PC

IE_A

_REF

CK-

PCIE

_A_R

ST#

PCIE

_A_R

X+PC

IE_A

_RX-

PCIE

_A_T

X+PC

IE_A

_TX-

PCIE

_B_R

EFC

K-PC

IE_B

_REF

CK+

PCIE

_B_R

ST#

PCIE

_B_R

X-PC

IE_B

_RX+

PCIE

_B_T

X-PC

IE_B

_TX+

PCIE

_C_R

EFC

K+PC

IE_C

_REF

CK-

PCIE

_C_R

ST#

PCIE

_C_R

X-PC

IE_C

_RX+

PCIE

_C_T

X-PC

IE_C

_TX+

PCIE

_D_R

X-PC

IE_D

_RX+

PCIE

_D_T

X-PC

IE_D

_TX+

PCIE

_WAK

E#

RSV

D_P

77R

SVD

_P78

RSV

D_S

12R

SVD

_S14

SATA

_AC

T#SA

TA_R

X+SA

TA_R

X-SA

TA_T

X+SA

TA_T

X-

BATL

OW

#

CAR

RIE

R_P

WR

_ON

CAR

RIE

R_S

TBY#

CH

ARG

ER_P

RSN

T#C

HAR

GIN

G#

I2C

_PM

_CK

I2C

_PM

_DAT

LID

#

RES

ET_I

N#

RES

ET_O

UT#

SLEE

P#TE

ST#

VIN

_PW

R_B

AD#

WD

T_TI

ME_

OU

T#

VDD

_RTC

VDD

_IN

_P14

7VD

D_I

N_P

148

VDD

_IN

_P14

9VD

D_I

N_P

150

VDD

_IN

_P15

1VD

D_I

N_P

152

VDD

_IN

_P15

3VD

D_I

N_P

154

VDD

_IN

_P15

5VD

D_I

N_P

156

SMB_

ALER

T_1V

8#

POW

ER_B

TN#

FOR

CE_

REC

OV#

eDP1

_HPD

/DSI

1_TE

eDP0

_HPD

/DSI

0_TE

LVD

S1_C

K-/e

DP1

_AU

X-/D

SI1_

CLK

-

CAM

_MC

K

CSI

0_C

K-C

SI0_

CK+

CSI

0_R

X0+

CSI

0_R

X0-

CSI

0_R

X1+

CSI

0_R

X1-

CSI

0_TX

-/I2C

_CAM

0_D

ATC

SI0_

TX+/

I2C

_CAM

0_C

K

CSI

1_C

K+C

SI1_

CK-

CSI

1_R

X0+

CSI

1_R

X0-

CSI

1_R

X1+

CSI

1_R

X1-

CSI

1_R

X2+

CSI

1_R

X2-

CSI

1_R

X3+

CSI

1_R

X3-

CSI

1_TX

+/I2

C_C

AM1_

CK

CSI

1_TX

-/I2C

_CAM

1_D

AT

ESPI

_ALE

RT0

#ES

PI_A

LER

T1#

ESPI

_CK

ESPI

_CS0

#ES

PI_C

S1#

ESPI

_IO

_1ES

PI_I

O_0

ESPI

_IO

_2ES

PI_I

O_3

ESPI

_RES

ET#

GBE

0_C

TREF

GBE

0_LI

NK1

00#

GBE

0_LI

NK1

000#

GBE

0_LI

NK_

ACT#

GBE

0_M

DI0

+G

BE0_

MD

I0-

GBE

0_M

DI1

+G

BE0_

MD

I1-

GBE

0_M

DI2

+G

BE0_

MD

I2-

GBE

0_M

DI3

+G

BE0_

MD

I3-

GBE

0_SD

PG

BE1_

CTR

EFG

BE1_

LIN

K100

#G

BE1_

LIN

K100

0#G

BE1_

LIN

K_AC

T#G

BE1_

MD

I0+

GBE

1_M

DI0

-G

BE1_

MD

I1+

GBE

1_M

DI1

-G

BE1_

MD

I2+

GBE

1_M

DI2

-G

BE1_

MD

I3+

GBE

1_M

DI3

-G

BE1_

SDP

GN

D_S

3G

ND

_S25

GN

D_P

18G

ND

_P32

GN

D_P

15G

ND

_S73

GN

D_P

2G

ND

_P59

GN

D_P

9G

ND

_S34

GN

D_S

10G

ND

_P53

GN

D_P

50G

ND

_S47

GN

D_P

47G

ND

_S70

GN

D_S

38G

ND

_S61

GN

D_S

64G

ND

_P12

GN

D_S

67G

ND

_S13

GN

D_P

68G

ND

_S16

HD

A_C

K/I2

S2_C

KH

DA_

SDI/I

2S2_

SDIN

HD

A_SD

O/I2

S2_S

DO

UT

HD

A_SY

NC

/I2S2

_LR

CK

I2C

_GP_

CK

I2C

_GP_

DAT

I2S0

_CK

I2S0

_LR

CK

I2S0

_SD

INI2

S0_S

DO

UT

AUD

IO_M

CK

RSV

D_S

45R

SVD

_S4

RSV

D_S

46R

SVD

_P73

RSV

D_P

72

SDIO

_CD

#SD

IO_C

KSD

IO_C

MD

SDIO

_D0

SDIO

_D1

SDIO

_D2

SDIO

_D3

SDIO

_PW

R_E

NSD

IO_W

P

SPI0

_CK

SPI0

_CS0

#SP

I0_C

S1#

SPI0

_DIN

SPI0

_DO

USB

0+U

SB0-

USB

0_EN

_OC

#U

SB0_

OTG

_ID

USB

0_VB

US_

DET

USB

1+U

SB1-

USB

1_EN

_OC

#U

SB2+

USB

2-U

SB2_

EN_O

C#

USB

2_SS

RX+

USB

2_SS

TX+

USB

3+U

SB3-

USB

3_EN

_OC

#U

SB3_

OTG

_ID

USB

3_SS

RX+

USB

3_SS

TX+

USB

3_VB

US_

DET

USB

4+U

SB4-

USB

4_EN

_OC

#U

SB5+

USB

5-U

SB5_

EN_O

C#

SER

0_C

TS#

SER

0_R

TS#

SER

0_R

XSE

R0_

TXSE

R1_

RX

SER

1_TX

SER

2_C

TS#

SER

2_R

TS#

SER

2_R

XSE

R2_

TXSE

R3_

RX

SER

3_TX

GPI

O0/

CAM

0_PW

R#

GPI

O1/

CAM

1_PW

R#

GPI

O2/

CAM

0_R

ST#

GPI

O3/

CAM

1_R

ST#

GPI

O4/

HD

A_R

ST#

GPI

O5/

PWM

_OU

TG

PIO

6/TA

CH

ING

PIO

7G

PIO

8G

PIO

9G

PIO

10G

PIO

11

USB

2_SS

RX-

USB

2_SS

TX-

USB

3_SS

RX-

USB

3_SS

TX-

J1

S9

S63

S66

S72

S75

S5 S7

P119

P118

P117

P116

P115

P114

P113

P112

P111

P110

P109

P108

P140

P141

P136

P137

P138

P139

P134

P135

P129

P130

P131

P132

S55

S60

S59

P76

S36

S35

S37

S62

S65

S104

P74

S69

S68

S71

S74

P71

P70

P69

P67

P66

P65

P63

P64

P62

P61

P60

P46

P45

P31

P43

P44

P33

P37

P42

P41

P40

P39

P34

P36

P35

P72

P73

S46

S4S45

S38

S40

S41

S39

S42

S49

S48

S50

S51

S52

S53

S16

P68

S13

S67

P12

S64

S61

P38

S70

P47

S47

P50

P53

S10

S34

P9P59

P2S73

P15

P32

P18

S25

S3

P5S27

S26

S24

S23

S21

S20

S18

S17

S31

S22

S19

S28P6P19

P20

P23

P24

P26

P27

P29

P30

P25

P22

P21

P28

S58

S57

S56

P57

P58

P55

P54

P56

S44

S43

S2S1P17

P16

P14

P13

P11

P10P8P7P4P3S15

S14

S12

S11S8S6

SMAR

C-e

dge

J2

FX8C

-100

S-SV

83 14 1620 222 48 1085946373615874 7697 62 6493 68 7095 547485354596066727884904241363530292423181712116

717927 2521 1915 133 1679 76928264644525034324038 5557514943453739313382808886 5610089969887819275 6577

J1

SMAR

C-e

dge

S85

S109

S30

S33

S82

S79

S91

S88

S155

P128

P1

P156

P155

P154

P153

P152

P151

P150

P149

P148

P147

S147

S145

S150

S157

S149

P126

P127

S148

P122

P121

S151

S152

S153

S154

S156

P49

P48

P52

P51

S54

S142

S123P78

P77

S146

S29

S32

S81

S78

S77

P81

P80

S90

S87

S76

S84

P90

P89

P87

P86

P75

P84

P83

S108

S121

S120

S118

S117

S115

S114

S112

S111

S135

S134

S138

S137

S132

S131

S129

S128

S126

S125

S116

S122

S107

S133

S141

S127

S140

S139

P104P93

P92

P96

P95

P99

P98

P106

P105

P102

P101

S158

S143

S136

S130

S124

S119

S110

S101

S92

S89

S86

S83

S80

P142

P133

P120

P103

P100

P97

P94

P91

P88

P85

P82

P79

P107

S103

S102

S100S99

S97

S96

S94

S93

S98

S95

S106

S105

P145

P146

P143

P144

P125

P124

P123

9991

PCIE

1_R

EFC

K+PC

IE1_

REF

CK-

SPD

IF0

SPI3

_SC

K_S

PI3_

CS0

_SPI

3_C

S1SP

I3_S

DI

SPI3

_SD

O

_FO

RC

E_R

ECO

V

_QSP

I1A_

SS0

S144

S113

DSI

0_C

LK-

DSI

0_C

LK+

DSI

0_D

ATA0

-D

SI0_

DAT

A0+

DSI

0_D

ATA1

-D

SI0_

DAT

A1+

DSI

0_D

ATA2

-D

SI0_

DAT

A2+

DSI

0_D

ATA3

-D

SI0_

DAT

A3+

LVD

S1_C

H0

DSI

0_TE

GPI

O2/

_CAM

0_R

STG

PIO

3/_C

AM1_

RST

GPI

O1/

_CAM

1_PW

RG

PIO

0/_C

AM0_

PWR

LCD

0_BC

KLT_

EN

LCD

0_VD

D_E

NLV

DS0

_PW

M0_

OU

T

Figure A.1: Connectors

65

A – Schematic

DA

T1

VS

SV

DD

CLK

CM

D

CD

/DA

T3

DA

T2

DA

T0

SH

4S

H3

SH

2S

H1

CD

_S

W1

CD

_S

W2

GN

DG

ND

DA

T0

DA

T1

DA

T2

DA

T3

CLK

CM

D

_C

D

V_3P

3_S

D_S

OC

KE

T

V_3P

3_S

D_S

OC

KE

T

_R

ST

GN

D

SW

ITC

H P

OW

ER

TO

SD

CA

RD

card

dete

ct

GN

D

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/ A4

mette

re 1

00kc

onsid

era

re le

akage

Maxim

um

load c

apacita

nce

of a

mic

roS

D: 5

uF

the p

uls

e d

ura

tion s

hould

com

pensate

the te

mpera

ture

dera

ting

GN

D

dis

charg

e th

e S

D c

apacito

r

GN

D

GN

D

sto

re c

harg

e to

feed to

SD

durin

g h

ot in

sertio

nw

riting is

alw

yas e

nable

d

V_S

D2

PJS

008-2

005-0

-VE

J4

WP

Re

vie

we

r

L. G

irau

di

iMX

8S

OM

Dra

ftma

n

23

6

1.0

DD

/M

M/

YY

YY

SD

_s

oc

ke

t

R7

2

04

02

47

K

1%

C1

12

10

22

uF

16

V

C1

8

04

02

10

0n

F1

6V

M5

PM

V50E

PE

A

45m

30V

23

1

V_3P

3

_C

D

CM

DC

LK

DA

T3

DA

T2

DA

T1

DA

T0

_R

ST

R4

04

02

10

K

1%

25

V4

.7u

FC

67

06

03

3.3

V

GN

D

C2

12

10

22

uF

16

V

GN

D

R5

1

04

02

10

0K

1%

20

V

M1

PM

DT2

90

UN

E3

80

m2

61

20

V

M1

PM

DT2

90

UN

E3

80

m5

34

the re

sis

tor h

as to

dis

sip

ate

90m

W in

10m

s

12

1

1%

R7

1

06

03

Figu

reA.2:

uSD

Socket

66

A – Schematic

GB

E1

GB

E0

EN

ET

1_P

HY

_R

ST

EN

ET

0_P

HY

_R

ST

_R

ST

_E

NE

T1_P

HY

_IN

T_E

NE

T0_P

HY

_IN

T

US

B_H

UB

1

US

B_H

UB

2

US

B0

US

B_H

UB

4

US

B_H

UB

3

US

B_H

UB

_S

SH

UB

_R

ST

US

DH

C2

US

DH

C1_V

SE

L

US

DH

C1

US

DH

C2_V

SE

L

_S

D2_R

ST

eth

ern

et

usb

em

mc

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/A3

12

34

56

78

A B C D E F

Re

vie

we

r

Dra

ftm

an

iMX

8S

OM

L.

Gir

au

di

43

6

1.0

DD

/M

M/

YY

YY

Mo

du

le

_R

ST

QS

PI1

spi_

nor

LC

D1_B

KLT

_E

ND

SI0

_P

WM

_O

UT

LC

D1_V

DD

_E

N

DS

I0

_S

AT

A0_A

CT

imx8_dsi

GB

E1

GB

E0

SA

TA

0

PC

IE1

PC

IE0

SA

TA

0

PC

IE1

PC

IE0

_P

CIE

_W

AK

E_

PC

IE_

WA

KE

LC

D1

_B

KLT_

EN

DS

I0_

PW

M_

OU

TLC

D1

_V

DD

_E

N

DM

A_

I2C

3_

SD

A

DS

I0

US

B0

CS

I1

CS

I_C

AM

_M

CK

GP

IO2/_

CA

M0_R

ST

GP

IO3/_

CA

M1_R

ST

GP

IO1/_

CA

M1_P

WR

GP

IO0/_

CA

M0_P

WR

CS

I0C

SI0

_A

UX

imx8_csi

CS

I1

CS

I_C

AM

_M

CK

CS

I0

US

DH

C2

US

DH

C1

US

DH

C2_V

SE

LU

SD

HC

1_V

SE

L

_S

D2

_R

ST

HD

MI_

TX

DP

HD

MI_

RX

imx8_hdm

i

DP

HD

MI_

TX

DP

0_A

UX

_S

EL

GP

IO4/_

HD

A_R

ST

PG

_1P

2

imx8_adc

LV

DS

1_C

H0

LV

DS

0_C

H0

UA

RT

2_T

XU

AR

T2_R

X

LV

DS

1_C

H1

LV

DS

0_P

WM

0_O

UT

LC

D0_B

KLT

_E

NLC

D0_V

DD

_E

N

LV

DS

0_

CH

0

LV

DS

0_

PW

M0

_O

UT

LC

D0

_V

DD

_E

NLC

D0

_B

KLT_

EN

imx8_lv

ds

SA

I0

SA

I1

SP

I3

AU

DIO

_M

CK

ES

AI1

EN

ET

1_P

HY

_R

ST

EN

ET

0_P

HY

_R

ST

HU

B_R

ST

_E

NE

T1_P

HY

_IN

T_E

NE

T0_P

HY

_IN

T

SP

I2

_W

IFI_

INT

_W

IFI_

RS

TW

IFI_

EN

SP

DIF

0

imx8_esai_

spdi_

spi

SA

I0

SA

I1

QS

PI1

SP

I3

CA

N0

_R

XC

AN

0_

TX

CA

N1

_R

XC

AN

1_

TX

CA

N0_R

XC

AN

0_T

X

CA

N1_R

XC

AN

1_T

X

CA

N2_T

XC

AN

2_R

X

imx8_can

UA

RT

0

UA

RT

1

UA

RT

4_R

XU

AR

T4_T

X

UA

RT

3_T

XU

AR

T3_R

X

DM

A_I2

C2_S

CL

DM

A_I2

C2_S

DA

GP

IO5/P

WM

_O

UT

_S

MB

_A

LE

RT

GP

IO6/T

AC

HIN

GP

IO10

imx8_m

4_gpt_

uart

UA

RT4

_R

XU

AR

T4

_TX

UA

RT3

_TX

UA

RT3

_R

X

UA

RT0

UA

RT1

DM

A_

I2C

2_

SC

LD

MA

_I2

C2

_S

DA

GP

IO5

/P

WM

_O

UT

AU

DIO

_M

CK

GP

IO1

1

GP

IO1

0

GP

IO9

GP

IO8

GP

IO7

GP

IO6

/TA

CH

IN

GP

IO4

/_

HD

A_

RS

T

GP

IO11

GP

IO9

GP

IO8

GP

IO7

DM

A_I2

C3_S

CL

DM

A_I2

C3_S

DA

imx8_sim

CS

I0_

AU

X

MLB

_D

IFF

MLB

_S

E

MLB

_D

IFF

MLB

_S

E

imx8_m

lb

HD

MI_

RX

ES

AI1

CA

N2

_R

XC

AN

2_

TX

_S

MB

_A

LE

RT

_S

AT

A0_A

CT

_R

ST

HU

B_R

ST

EN

ET

0_P

HY

_R

ST

EN

ET

1_P

HY

_R

ST

HU

B_R

ST

EN

ET

0_P

HY

_R

ST

EN

ET

1_P

HY

_R

ST

_E

NE

T0_P

HY

_IN

T_E

NE

T1_P

HY

_IN

T

_E

NE

T0_P

HY

_IN

T_E

NE

T1_P

HY

_IN

T

_S

AT

A0_A

CT

_R

ST

SP

I2

UA

RT

2_T

XU

AR

T2_R

X

WIF

I_E

N_W

IFI_

RS

T_W

IFI_

INT

Hig

h S

peed

Genera

l P

urp

ose

Media

Inte

rfaces

Low

Speed

Inte

rfaces

to G

PIO

in D

SI blo

ck

SP

DIF

0

LV

DS

1_

CH

0LV

DS

1_

CH

1

DM

A_

I2C

3_

SC

L

PG

_1P

2

DP

0_A

UX

_S

EL

DP

0_A

UX

_S

EL

US

B_

HU

B1

US

B_

HU

B2

US

B_

HU

B3

US

B_

HU

B4

US

B_

HU

B_

SS

imx8_pcie

_sata

GP

IO2

/_

CA

M0

_R

ST

GP

IO0

/_

CA

M0

_P

WR

GP

IO3

/_

CA

M1

_R

ST

GP

IO1

/_

CA

M1

_P

WR

Figure

A.3:First

partof

Top

Level

67

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/ A3

12

34

56

78

ABCDEF

Re

vie

we

r

Dra

ftma

n

iMX

8S

OM

L. G

irau

di

53

6

1.0

DD

/M

M/

YY

YY

eM

MC

C3

11

04

02

2.2

uF

10

V

C3

1

04

02

10

0n

F1

6V

C3

12

04

02

2.2

uF

10

V

C3

2

04

02

10

0n

F1

6V

V_3P

3

V_3P

3

US

DH

C2

US

DH

C2

SD

2_D

AT

0S

D2_D

AT

1S

D2_D

AT

2S

D2_D

AT

3

SD

2_C

LK

SD

2_C

MD

_S

D2_C

D

US

DH

C1

SD

1_D

AT

0S

D1_D

AT

1S

D1_D

AT

2S

D1_D

AT

3

SD

1_C

LK

SD

1_C

MD

_S

D1_C

DS

D1_W

P

US

DH

C1

V_3P

3

US

DH

C1

_V

SE

L

C1

20

04

02

1u

F1

0V

GN

D

GN

D

C1

21

04

02

1u

F1

0V

SD

2_W

P

_S

D2

_R

ST

US

DH

C2

_V

SE

L

VS

EL m

akes th

e P

MIC

to c

hange v

olta

ge le

vel:

that v

olta

ge a

ctu

ally

pow

ers

only

the in

terfa

ce s

ectio

n o

f iMX

8

V_S

D1

V_S

D2

C3

31

00

nF

04

02

16

V1

0V

1u

F

04

02

C1

22

C1

23

04

02

1u

F1

0V

10

V1

uF

04

02

C1

24

GN

D

GN

D

R9

04

02

10

K

1% V

_3P

3

SD

1_P

WR

_E

N

EM

MC

0_D

AT

A0

EM

MC

0_D

AT

A1

EM

MC

0_D

AT

A2

EM

MC

0_D

AT

A3

EM

MC

0_D

AT

A4

EM

MC

0_D

AT

A5

EM

MC

0_D

AT

A6

EM

MC

0_D

AT

A7

_E

MM

C0_R

ES

ET

EM

MC

0_S

TR

OB

E

EM

MC

0_C

LK

EM

MC

0_C

MD

_E

MM

C0_R

ES

ET

EM

MC

0_D

AT

A0

EM

MC

0_D

AT

A1

EM

MC

0_D

AT

A2

EM

MC

0_D

AT

A3

EM

MC

0_D

AT

A4

EM

MC

0_D

AT

A5

EM

MC

0_D

AT

A6

EM

MC

0_D

AT

A7

EM

MC

0_C

LK

EM

MC

0_C

MD

EM

MC

0_S

TR

OB

E

GN

D

set P

D a

lways n

o m

ount

V_3P

3GN

D

EM

MC

0_C

LK

EM

MC

0_C

MD

EM

MC

0_D

AT

A0

EM

MC

0_D

AT

A1

EM

MC

0_D

AT

A2

EM

MC

0_D

AT

A3

EM

MC

0_D

AT

A4

EM

MC

0_D

AT

A5

EM

MC

0_D

AT

A6

EM

MC

0_D

AT

A7

EM

MC

0_R

ES

ET

_B

EM

MC

0_S

TR

OB

E

US

DH

C1_C

LK

US

DH

C1_C

MD

US

DH

C1_D

AT

A0

US

DH

C1_D

AT

A1

US

DH

C1_D

AT

A2

US

DH

C1_D

AT

A3

US

DH

C1_D

AT

A4

US

DH

C1_D

AT

A5

US

DH

C1_D

AT

A6

US

DH

C1_D

AT

A7

US

DH

C1_R

ES

ET

_B

US

DH

C1_S

TR

OB

E

US

DH

C1_V

SE

LE

CT

US

DH

C2_C

D_B

US

DH

C2_C

LK

US

DH

C2_C

MD

US

DH

C2_D

AT

A0

US

DH

C2_D

AT

A1

US

DH

C2_D

AT

A2

US

DH

C2_D

AT

A3

US

DH

C2_R

ES

ET

_B

US

DH

C2_V

SE

LE

CT

US

DH

C2_W

P

VD

D_E

MM

C0_1P

8_3P

3

VD

D_U

SD

HC

1_1P

8_3P

3_M

36

VD

D_U

SD

HC

1_1P

8_3P

3_N

37

VD

D_U

SD

HC

2_1P

8_3P

3

VD

D_U

SD

HC

_V

SE

LE

CT

_1P

8_3P

3

+-

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

-+

|

A

LT

0

|

AL

T1

|

AL

T2

|

AL

T3

|

+-

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

-+

|

CO

NN

_E

MM

C0

_C

LK

|

CO

NN

_N

AN

D_

RE

AD

Y_

B

|

|

|

|

CO

NN

_E

MM

C0

_C

MD

|

CO

NN

_N

AN

D_

DQ

S

|

|

L

SI

O_

GP

IO

5_

IO

03

|

|

CO

NN

_E

MM

C0

_D

AT

A0

|

CO

NN

_N

AN

D_

DA

TA

00

|

CO

NN

_U

SD

HC

1_

CM

D

|

|

|

L

SI

O_

GP

IO

5_

IO

14

|

|

CO

NN

_U

SD

HC

1_

DA

TA

0

|

CO

NN

_N

AN

D_

RE

_N

|

|

L

SI

O_

GP

IO

5_

IO

15

|

|

CO

NN

_U

SD

HC

1_

DA

TA

1

|

CO

NN

_N

AN

D_

RE

_P

|

|

L

SI

O_

GP

IO

5_

IO

16

|

|

CO

NN

_U

SD

HC

1_

DA

TA

2

|

CO

NN

_N

AN

D_

DQ

S_

N

|

|

L

SI

O_

GP

IO

5_

IO

17

|

|

CO

NN

_U

SD

HC

1_

DA

TA

3

|

CO

NN

_N

AN

D_

DQ

S_

P

|

|

L

SI

O_

GP

IO

5_

IO

18

|

|

CO

NN

_U

SD

HC

1_

DA

TA

4

|

CO

NN

_N

AN

D_

CE

0_

B

|

|

L

SI

O_

GP

IO

5_

IO

19

|

|

CO

NN

_U

SD

HC

1_

DA

TA

5

|

CO

NN

_N

AN

D_

RE

_B

|

|

L

SI

O_

GP

IO

5_

IO

20

|

|

CO

NN

_U

SD

HC

1_

DA

TA

6

|

CO

NN

_N

AN

D_

WE

_B

|

CO

NN

_U

SD

HC

1_

WP

|

L

SI

O_

GP

IO

5_

IO

21

|

|

CO

NN

_U

SD

HC

1_

DA

TA

7

|

CO

NN

_N

AN

D_

AL

E

|

CO

NN

_U

SD

HC

1_

CD

_B

|

L

SI

O_

GP

IO

5_

IO

22

|

|

CO

NN

_U

SD

HC

1_

ST

RO

BE

|

CO

NN

_N

AN

D_

CE

1_

B

|

|

L

SI

O_

GP

IO

5_

IO

23

|

|

CO

NN

_U

SD

HC

2_

CL

K

|

AU

D_

MQ

S_

R

|

|

L

SI

O_

GP

IO

5_

IO

24

|

|

CO

NN

_U

SD

HC

2_

CM

D

|

AU

D_

MQ

S_

L

|

|

L

SI

O_

GP

IO

5_

IO

25

|

|

CO

NN

_U

SD

HC

2_

DA

TA

0

|

DM

A_

UA

RT

4_

RX

|

|

L

SI

O_

GP

IO

5_

IO

26

|

|

CO

NN

_U

SD

HC

2_

DA

TA

1

|

DM

A_

UA

RT

4_

TX

|

|

L

SI

O_

GP

IO

5_

IO

27

|

|

CO

NN

_U

SD

HC

2_

DA

TA

2

|

DM

A_

UA

RT

4_

CT

S_

B

|

|

L

SI

O_

GP

IO

5_

IO

28

|

|

CO

NN

_U

SD

HC

2_

DA

TA

3

|

DM

A_

UA

RT

4_

RT

S_

B

|

|

L

SI

O_

GP

IO

5_

IO

29

|

+-

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

-+

|

CO

NN

_U

SD

HC

1_

RE

SE

T_

B

|

|

|

L

SI

O_

GP

IO

4_

IO

07

|

|

CO

NN

_U

SD

HC

1_

VS

EL

EC

T

|

|

|

L

SI

O_

GP

IO

4_

IO

08

|

|

CO

NN

_U

SD

HC

2_

RE

SE

T_

B

|

|

|

L

SI

O_

GP

IO

4_

IO

09

|

|

CO

NN

_U

SD

HC

2_

VS

EL

EC

T

|

|

|

L

SI

O_

GP

IO

4_

IO

10

|

|

CO

NN

_U

SD

HC

2_

WP

|

|

|

L

SI

O_

GP

IO

4_

IO

11

|

|

CO

NN

_U

SD

HC

2_

CD

_B

|

|

|

L

SI

O_

GP

IO

4_

IO

12

|

1%

04

02

R1

01

0K

E37

F38

G41

J39

G37

H38

G35

H36

H34

J33

H32

G31

H30

G29

J27

H28

E39

F40

H40

G43

F42

H42

A5

J43

B4

B8

F46

H44

H48

G45

L45

J45

C7

A7

D8

N35

M36

N37

M38

T18

PIM

X8M

6A

VU

DD

1A

U1

do n

ot u

se th

ese p

ins a

s G

PIO

:th

eir s

upply

may c

hange ru

n-tim

ebetw

een 1

.8V

and 3

.3V

R1

1

04

02

10

K

1%

R1

2

04

02

10

K

1%

V_S

D1

V_S

D1

CLK

CM

D

DA

T0

DA

T1

DA

T2

DA

T3

DA

T4

DA

T5

DA

T6

DA

T7

DS

RS

T_n

VC

C_E

6V

CC

_F

5V

CC

_J10

VC

C_K

9

VC

CQ

_C

6V

CC

Q_M

4V

CC

Q_N

4V

CC

Q_P

3V

CC

Q_P

5

VD

DIM

VS

S_A

6V

SS

_E

7V

SS

_G

5V

SS

_H

10

VS

S_J5

VS

S_K

8V

SS

Q_C

4V

SS

Q_N

2V

SS

Q_N

5V

SS

Q_P

4V

SS

Q_P

6

U3

P6

P4

N5

N2

C4

K8

J5

H10

G5

E7

A6

C2

P5

P3

N4

M4

C6

K9

J10

F5

E6

K5

H5

B6

B5

B4

B3

B2

A5

A4

A3

M5

M6

MT

FC

32G

AK

AE

CN

-AIT

Not connected

NC

_A

1N

C_A

10

NC

_A

11

NC

_A

12

NC

_A

13

NC

_A

14

NC

_A

2R

FU

_A

7N

C_A

8N

C_A

9N

C_B

1N

C_B

10

NC

_B

11

NC

_B

12

NC

_B

13

NC

_B

14

NC

_B

7N

C_B

8N

C_B

9N

C_C

1N

C_C

10

NC

_C

11

NC

_C

12

NC

_C

13

NC

_C

14

NC

_C

3N

C_C

5N

C_C

7N

C_C

8N

C_C

9N

C_D

1N

C_D

12

NC

_D

13

NC

_D

14

NC

_D

2N

C_D

3N

C_D

4N

C_E

1R

FU

_E

10

NC

_E

12

NC

_E

13

NC

_E

14

NC

_E

2N

C_E

3R

FU

_E

5R

FU

_E

8R

FU

_E

9N

C_F

1R

FU

_F

10

NC

_F

12

NC

_F

13

NC

_F

14

NC

_F

2N

C_F

3N

C_G

1R

FU

_G

10

NC

_G

12

NC

_G

13

NC

_G

14

NC

_G

2R

FU

_G

3N

C_H

1N

C_H

12

NC

_H

13

NC

_H

14

NC

_H

2N

C_H

3N

C_J1

NC

_J12

NC

_J13

NC

_J14

NC

_J2

NC

_J3

NC

_K

1R

FU

_K

10

NC

_K

12

NC

_K

13

NC

_K

14

NC

_K

2N

C_K

3R

FU

_K

6R

FU

_K

7N

C_L1

NC

_L12

NC

_L13

NC

_L14

NC

_L2

NC

_L3

NC

_M

1N

C_M

10

NC

_M

11

NC

_M

12

NC

_M

13

NC

_M

14

NC

_M

2N

C_M

3N

C_M

7N

C_M

8N

C_M

9N

C_N

1N

C_N

10

NC

_N

11

NC

_N

12

NC

_N

13

NC

_N

14

NC

_N

3N

C_N

6N

C_N

7N

C_N

8N

C_N

9N

C_P

1R

FU

_P

10

NC

_P

11

NC

_P

12

NC

_P

13

NC

_P

14

NC

_P

2N

C_P

7N

C_P

8N

C_P

9

U3

P9

P8

P7

P2

P14

P13

P12

P11

P10

P1

N9

N8

N7

N6

N3

N14

N13

N12

N11

N10

N1

M9

M8

M7

M3

M2

M14

M13

M12

M11

M10

M1

L3

L2

L14

L13

L12

L1

K7

K6

K3

K2

K14

K13

K12

K10

K1

J3

J2

J14

J13

J12

J1

H3

H2

H14

H13

H12

H1

G3

G2

G14

G13

G12

G10

G1

F3

F2

F14

F13

F12

F10

F1

E9

E8

E5

E3

E2

E14

E13

E12

E10

E1

D4

D3

D2

D14

D13

D12

D1

C9

C8

C7

C5

C3

C14

C13

C12

C11

C10

C1

B9

B8

B7

B14

B13

B12

B11

B10

B1

A9

A8

A7

A2

A14

A13

A12

A11

A10

A1

MT

FC

32G

AK

AE

CN

-AIT

153p, -4

0 to

105C

Figu

reA.4:

eMMC

andSD

interface

68

A – Schematic

EN

ET

0_M

DC

EN

ET

0_M

DIO

EN

ET

0_R

EF

CLK

_125M

_25M

EN

ET

0_R

GM

II_R

X_C

TL

EN

ET

0_R

GM

II_R

XC

EN

ET

0_R

GM

II_R

XD

0E

NE

T0_R

GM

II_R

XD

1E

NE

T0_R

GM

II_R

XD

2E

NE

T0_R

GM

II_R

XD

3

EN

ET

0_R

GM

II_T

X_C

TL

EN

ET

0_R

GM

II_T

XC

EN

ET

0_R

GM

II_T

XD

0E

NE

T0_R

GM

II_T

XD

1E

NE

T0_R

GM

II_T

XD

2E

NE

T0_R

GM

II_T

XD

3

EN

ET

1_M

DC

EN

ET

1_M

DIO

EN

ET

1_R

EF

CLK

_125M

_25M

EN

ET

1_R

GM

II_R

X_C

TL

EN

ET

1_R

GM

II_R

XC

EN

ET

1_R

GM

II_R

XD

0E

NE

T1_R

GM

II_R

XD

1E

NE

T1_R

GM

II_R

XD

2E

NE

T1_R

GM

II_R

XD

3

EN

ET

1_R

GM

II_T

X_C

TL

EN

ET

1_R

GM

II_T

XC

EN

ET

1_R

GM

II_T

XD

0E

NE

T1_R

GM

II_T

XD

1E

NE

T1_R

GM

II_T

XD

2E

NE

T1_R

GM

II_T

XD

3

VD

D_E

NE

T0_1P

8_2P

5_3P

3_M

40

VD

D_E

NE

T_M

DIO

_1P

8_2P

5_3P

3

VD

D_E

NE

T1_1P

8_2P

5_3P

3

VD

D_E

NE

T0_1P

8_2P

5_3P

3_N

39

+-

--

--

--

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

A

LT

0

|

AL

T1

|

AL

T2

|

A

LT

3

|

+-

--

--

--

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

CO

NN

_E

NE

T0

_R

GM

II

_R

XC

|

|

|

LS

IO

_G

PI

O6

_I

O0

4

|

|

CO

NN

_E

NE

T0

_R

GM

II

_R

XD

0

|

|

|

LS

IO

_G

PI

O6

_I

O0

6

|

|

CO

NN

_E

NE

T0

_R

GM

II

_R

XD

1

|

|

|

LS

IO

_G

PI

O6

_I

O0

7

|

|

CO

NN

_E

NE

T0

_R

GM

II

_R

XD

2

|

C

ON

N_

EN

ET

0_

RM

II

_R

X_

ER

|

|

LS

IO

_G

PI

O6

_I

O0

8

|

|

CO

NN

_E

NE

T0

_R

GM

II

_R

XD

3

|

|

|

LS

IO

_G

PI

O6

_I

O0

9

|

|

CO

NN

_E

NE

T0

_R

GM

II

_R

X_

CT

L

|

|

|

LS

IO

_G

PI

O6

_I

O0

5

|

|

CO

NN

_E

NE

T0

_R

GM

II

_T

XC

|

C

ON

N_

EN

ET

0_

RC

LK

50

M_

OU

T

|

CO

NN

_E

NE

T0

_R

CL

K5

0M

_I

N

|

LS

IO

_G

PI

O5

_I

O3

0

|

|

CO

NN

_E

NE

T0

_R

GM

II

_T

XD

0

|

|

|

LS

IO

_G

PI

O6

_I

O0

0

|

|

CO

NN

_E

NE

T0

_R

GM

II

_T

XD

1

|

|

|

LS

IO

_G

PI

O6

_I

O0

1

|

|

CO

NN

_E

NE

T0

_R

GM

II

_T

XD

2

|

|

|

LS

IO

_G

PI

O6

_I

O0

2

|

|

CO

NN

_E

NE

T0

_R

GM

II

_T

XD

3

|

|

|

LS

IO

_G

PI

O6

_I

O0

3

|

|

CO

NN

_E

NE

T0

_R

GM

II

_T

X_

CT

L

|

|

|

LS

IO

_G

PI

O5

_I

O3

1

|

|

CO

NN

_E

NE

T0

_M

DC

|

D

MA

_I

2C

4_

SC

L

|

|

LS

IO

_G

PI

O4

_I

O1

4

|

|

CO

NN

_E

NE

T0

_M

DI

O

|

D

MA

_I

2C

4_

SD

A

|

|

LS

IO

_G

PI

O4

_I

O1

3

|

|

CO

NN

_E

NE

T0

_R

EF

CL

K_

12

5M

_2

5M

|

C

ON

N_

EN

ET

0_

PP

S

|

|

LS

IO

_G

PI

O4

_I

O1

5

|

|

CO

NN

_E

NE

T1

_M

DC

|

D

MA

_I

2C

4_

SC

L

|

|

LS

IO

_G

PI

O4

_I

O1

8

|

|

CO

NN

_E

NE

T1

_M

DI

O

|

D

MA

_I

2C

4_

SD

A

|

|

LS

IO

_G

PI

O4

_I

O1

7

|

|

CO

NN

_E

NE

T1

_R

EF

CL

K_

12

5M

_2

5M

|

C

ON

N_

EN

ET

1_

PP

S

|

|

LS

IO

_G

PI

O4

_I

O1

6

|

|

CO

NN

_E

NE

T1

_R

GM

II

_R

XC

|

D

MA

_U

AR

T3

_C

TS

_B

|

VP

U_

TS

I_

S1

_D

AT

A

|

LS

IO

_G

PI

O6

_I

O1

6

|

|

CO

NN

_E

NE

T1

_R

GM

II

_R

XD

0

|

|

VP

U_

TS

I_

S0

_S

YN

C

|

LS

IO

_G

PI

O6

_I

O1

8

|

|

CO

NN

_E

NE

T1

_R

GM

II

_R

XD

1

|

|

VP

U_

TS

I_

S0

_D

AT

A

|

LS

IO

_G

PI

O6

_I

O1

9

|

|

CO

NN

_E

NE

T1

_R

GM

II

_R

XD

2

|

C

ON

N_

EN

ET

1_

RM

II

_R

X_

ER

|

VP

U_

TS

I_

S0

_C

LK

|

LS

IO

_G

PI

O6

_I

O2

0

|

|

CO

NN

_E

NE

T1

_R

GM

II

_R

XD

3

|

D

MA

_U

AR

T3

_R

X

|

VP

U_

TS

I_

S1

_C

LK

|

LS

IO

_G

PI

O6

_I

O2

1

|

|

CO

NN

_E

NE

T1

_R

GM

II

_R

X_

CT

L

|

|

VP

U_

TS

I_

S0

_V

ID

|

LS

IO

_G

PI

O6

_I

O1

7

|

|

CO

NN

_E

NE

T1

_R

GM

II

_T

XC

|

C

ON

N_

EN

ET

1_

RC

LK

50

M_

OU

T

|

CO

NN

_E

NE

T1

_R

CL

K5

0M

_I

N

|

LS

IO

_G

PI

O6

_I

O1

0

|

|

CO

NN

_E

NE

T1

_R

GM

II

_T

XD

0

|

|

|

LS

IO

_G

PI

O6

_I

O1

2

|

|

CO

NN

_E

NE

T1

_R

GM

II

_T

XD

1

|

|

|

LS

IO

_G

PI

O6

_I

O1

3

|

|

CO

NN

_E

NE

T1

_R

GM

II

_T

XD

2

|

D

MA

_U

AR

T3

_T

X

|

VP

U_

TS

I_

S1

_V

ID

|

LS

IO

_G

PI

O6

_I

O1

4

|

|

CO

NN

_E

NE

T1

_R

GM

II

_T

XD

3

|

D

MA

_U

AR

T3

_R

TS

_B

|

VP

U_

TS

I_

S1

_S

YN

C

|

LS

IO

_G

PI

O6

_I

O1

5

|

|

CO

NN

_E

NE

T1

_R

GM

II

_T

X_

CT

L

|

|

|

LS

IO

_G

PI

O6

_I

O1

1

|

+-

--

--

--

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/A3

12

34

56

78

A B C D E F

GN

D

EN

ET

0_R

GM

II_R

X_C

TL

EN

ET

0_R

GM

II_R

XC

EN

ET

0_R

GM

II_R

XD

0E

NE

T0_R

GM

II_R

XD

1E

NE

T0_R

GM

II_R

XD

2E

NE

T0_R

GM

II_R

XD

3

EN

ET

0_R

GM

II_T

X

_C

TL

EN

ET

0_R

GM

II_T

XC

EN

ET

0_R

GM

II_T

XD

0E

NE

T0_R

GM

II_T

XD

1E

NE

T0_R

GM

II_T

XD

2E

NE

T0_R

GM

II_T

XD

3

EN

ET

0_M

DC

EN

ET

0_M

DIO

RG

MII_T

XD

3R

GM

II_T

XD

2R

GM

II_T

XD

1R

GM

II_T

XD

0R

GM

II_T

XC

RG

MII_T

X

_C

TL

RG

MII_R

XD

3R

GM

II_R

XD

2

RG

MII_R

XD

0R

GM

II_R

XD

1

RG

MII_R

XC

RG

MII_R

X_C

TL

MD

IOM

DC

_P

HY

_R

ST

_P

HY

_IN

T

_LIN

K100

_LIN

K1000

MD

I0+

MD

I0-

MD

I1+

MD

I1-

MD

I2+

MD

I2-

MD

I3+

MD

I3-

GB

E0

_E

NE

T0_P

HY

_R

ST

EN

ET

1_R

GM

II_R

X_C

TL

EN

ET

1_R

GM

II_R

XC

EN

ET

1_R

GM

II_R

XD

1E

NE

T1_R

GM

II_R

XD

0

EN

ET

1_R

GM

II_R

XD

2E

NE

T1_R

GM

II_R

XD

3

EN

ET

1_R

GM

II_T

X

_C

TL

EN

ET

1_R

GM

II_T

XC

EN

ET

1_R

GM

II_T

XD

0E

NE

T1_R

GM

II_T

XD

1E

NE

T1_R

GM

II_T

XD

2E

NE

T1_R

GM

II_T

XD

3

GB

E1

EN

ET

1_M

DC

EN

ET

1_M

DIO

_E

NE

T1_P

HY

_R

ST

GN

D

GN

D

Genera

l re

set (f

rom

PM

IC)

Fro

m im

x8 G

PIO

(esai0

)

Fro

m im

x8 G

PIO

(esai0

)

Unsold

er

this

resis

tor

to d

isconnect P

HY

RS

T fro

m g

enera

l one

GN

D

1.8

V

1.8

V

_E

NE

T0_P

HY

_R

ST

_E

NE

T1_P

HY

_R

ST

_G

BE

0_LIN

K100

_G

BE

0_LIN

K1000

GB

E0_M

DI0

+G

BE

0_M

DI0

-

GB

E0_M

DI1

+G

BE

0_M

DI1

-

GB

E0_M

DI2

+G

BE

0_M

DI2

-

GB

E0_M

DI3

+G

BE

0_M

DI3

-

RG

MII_T

XD

3R

GM

II_T

XD

2R

GM

II_T

XD

1R

GM

II_T

XD

0R

GM

II_T

XC

RG

MII_T

X

_C

TL

RG

MII_R

XD

3R

GM

II_R

XD

2

RG

MII_R

XD

0R

GM

II_R

XD

1

RG

MII_R

XC

RG

MII_R

X_C

TL

MD

IOM

DC

_P

HY

_R

ST

_P

HY

_IN

T

_LIN

K100

_LIN

K1000

MD

I0+

MD

I0-

MD

I1+

MD

I1-

MD

I2+

MD

I2-

MD

I3+

MD

I3-

_G

BE

1_LIN

K100

_G

BE

1_LIN

K1000

GB

E1_M

DI0

+G

BE

1_M

DI0

-

GB

E1_M

DI1

+G

BE

1_M

DI1

-

GB

E1_M

DI2

+G

BE

1_M

DI2

-

GB

E1_M

DI3

+G

BE

1_M

DI3

-

U1

PIM

X8M

6A

VU

DD

1A

N39

T38

N17

M40

D48

G47

C47

A49

D46

B48

E53

D52

C51

E51

B50

E49

A11

C13

A13

D42

A45

B42

A43

A41

E41

E45

C45

D44

A47

B44

E43

B10

D10

A9

V_1P

8

Re

vie

we

r

Dra

ftm

an

iMX

8S

OM

L.

Gir

au

di

63

6

1.0

DD

/M

M/

YY

YY

Eth

ern

et

GB

E1

GB

E0

V_1P

8

_R

ST

V_1P

8

C8

5

04

02

10

0n

F5

0V

C1

17

04

02

1u

F1

0V

V_1P

8

V_1P

8

C8

6

04

02

10

0n

F5

0V

V_1P8

EN

ET1

_P

HY

_R

ST

EN

ET0

_P

HY

_R

ST

_E

NE

T1

_P

HY

_IN

T

_E

NE

T0

_P

HY

_IN

T

R8

10

40

20 1

%

C8

7

04

02

10

0n

F5

0V

1%

1.5

K0

40

2R

76

10

V1

uF

04

02

C1

18

V_1P8

10

V1

uF

04

02

C1

16

Eth

ern

et_

Phy1

1%

1.5

K0

40

2R

75

Eth

ern

et_

Phy0

04

02

R7

7

1%

1.5

K

04

02

R7

8

1%

1.5

K

Q1

43

5P

EM

H9

50

V

GN

D

GN

D

Q1

16

2P

EM

H9

50

V

K

A1A2 DS

1B

AS

40

-0

5W

Figure

A.5:Ethernet

block

ofiM

X8

69

A – Schematic

TX

RX

M_A

TX

RX

M_B

TX

RX

M_C

TX

RX

M_D

TX

RX

P_A

TX

RX

P_B

TX

RX

P_C

TX

RX

P_D

CLK

125_N

DO

/LE

D_M

OD

E

LE

D1/P

HY

AD

0/P

ME

_N

1LE

D2/P

HY

AD

1

EP

GN

D

AV

DD

H_1

AV

DD

H_12

DV

DD

H_40

DV

DD

H_34

DV

DD

H_16

AV

DD

L_4

AV

DD

L_9

DV

DD

L_18

DV

DD

L_14

DV

DD

L_39

DV

DD

L_30

DV

DD

L_26

DV

DD

L_23

LD

O_O

RX

_C

LK

/PH

YA

D2

RX

_D

V/C

LK

125_E

NR

XD

0/M

OD

E0

RX

D1/M

OD

E1

RX

D2/M

OD

E2

RX

D3/M

OD

E3

TX

_E

NT

XD

0T

XD

1T

XD

2T

XD

3

MD

CM

DIO

GT

X_C

LK

NC

_13

NC

_47

VS

S

XI

XO

AV

DD

L_P

LL

INT

_N

/PM

E_N

2

ISE

T

RE

SE

T_N

connect to

gate

of

PM

OS

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

D

GN

DG

ND

GN

DG

ND

GN

D

Ferrite

Ferrite

connecte

d to

GP

T0 o

n E

VB

clo

se to

pin

sclo

se to

the p

in

PH

Y a

ddre

ss

Mode

Clo

ck 1

25M

enable

Led M

ode

MD

I0+

MD

I0-

MD

I1+

MD

I1-

MD

I2+

MD

I2-

MD

I3+

MD

I3-

DV

DD

H

AV

DD

H

DV

DD

H

AV

DD

H

RG

MII_

RX

_C

TL

RG

MII_

RX

C

RG

MII_

RX

D1

RG

MII_

RX

D0

RG

MII_

RX

D2

RG

MII_

RX

D3

RG

MII_

TX

_C

TL

RG

MII_

TX

C

RG

MII_

TX

D0

RG

MII_

TX

D1

RG

MII_

TX

D2

RG

MII_

TX

D3

MD

CM

DIO

CLK

125_N

DO

/LE

D_M

OD

E

AV

DD

L_P

LL

PH

Y_LE

D0

DV

DD

H

PH

Y_LE

D0

PH

Y_LE

D1

RG

MII_

RX

C

RG

MII_

RX

D0

RG

MII_

RX

D1

RG

MII_

RX

D2

RG

MII_

RX

D3

RG

MII_

RX

_C

TL

CLK

125_N

DO

/LE

D_M

OD

E

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/ A3

12

34

56

78

ABCDEF

_P

HY

_IN

T_P

HY

_R

ST

GN

DG

ND

GN

D

GN

D

PH

Y_LE

D1

up tra

nsla

te fro

m 1

.8V

to 3

.3V

100 o

hm

diffe

rentia

l impedance

Config

ura

tion

Set v

alu

e

OF

F

Tric

olo

r Dual-L

ED

0x00

RG

MII 1

0/1

00/1

000

34

1649

18

36

14

39

811

25

30

26

710

41

17

23

49

15

112

40

43

35

33

32

31

28

27

25

19

20

21

22

36

37

24

13

47

29

46

45

44

38

48

42

U24

KS

Z9031R

NX

VB

-VA

O

C3

46

04

02

10

nF

50

V

C3

47

50

V1

0n

F

04

02

50

V

C3

48

04

02

10

nF

C3

94

08

05

10

uF

10

V

L5BLM

21

PG

22

1S

N1

50

V1

0n

F

04

02

C3

49

C3

50

04

02

10

nF

50

V

C3

95

08

05

10

uF

10

V

L6BLM

21

PG

22

1S

N1

V_1P

2

V_1P

8

10

V1

0u

FC

39

6

08

05

BLM

21

PG

22

1S

N1

0H

L7BLM

21

PG

22

1S

N1

L8

0H

C3

97

10

uF

08

05

10

V

C1

00

04

02

10

0n

F5

0V

50

V1

00

nF

04

02

C1

01

C1

02

04

02

10

0n

F5

0V

50

V1

00

nF

04

02

C1

03

C1

04

04

02

10

0n

F5

0V

50

V1

00

nF

04

02

C1

05

1K

1%

R4

1

04

02

1K

1%

R4

2

04

02

04

02

R4

3

1%

1K

04

02

R4

4

1%

1K

04

02

R4

5

1%

1K

Dra

ftma

n

Re

vie

we

rL

. Gira

ud

i

iMX

8S

OM

36

7

DD

/M

M/

YY

YY

1.0

Eth

ern

et_

Ph

y0

MD

C

RG

MII_

RX

_C

TL

RG

MII_

RX

C

RG

MII_

RX

D1

RG

MII_

RX

D0

RG

MII_

RX

D2

RG

MII_

RX

D3

RG

MII_

TX

_C

TL

RG

MII_

TX

C

RG

MII_

TX

D0

RG

MII_

TX

D1

RG

MII_

TX

D2

RG

MII_

TX

D3

MD

IO

Y2

CX

32

25

SA

25

00

0D

0P

TV

CC

25M

EG

Hz

04

02

R2

8

1%

10

K0

40

2

R2

9

1%

10

K0

40

2

R3

0

1%

10

K0

40

2

R3

1

1%

10

K

Connect th

ese to

DV

DD

L

AV

DD

L

AV

DD

L_P

LL

C1

98

04

02

1u

F1

0V

C3

51

04

02

10

nF

50

V

GN

DG

ND

C1

06

04

02

10

0n

F5

0V

C1

07

04

02

10

0n

F5

0VA

VD

DL

with

decouplin

g c

apacito

rs

C4

04

04

02

15

pF

50

V5

0V

15

pF

04

02

C4

05

V_1P

2

V_3P

3

V_1P

8

MD

I3-

MD

I3+

MD

I2-

MD

I2+

MD

I1-

MD

I1+

MD

I0-

MD

I0+

_LIN

K1

00

0

_LIN

K1

00

_P

HY

_R

ST

_P

HY

_IN

T

04

02

R7

9

1%

1.5

K

AY VC

C

GN

D

24

5

3

74LV

1T

34G

W

U7

AY VC

C

GN

D

24

5

3

74LV

1T

34G

W

U8

R1

59

04

02

12

.1K

1%

GN

D

GN

D

V_3P

3

V_3P

3 C?

04

02

22

0n

F1

6V

16

V2

20

nF

04

02

C?

Figu

reA.6:

Ethern

etPHY

70

A – Schematic

AD

C_IN

0A

DC

_IN

1A

DC

_IN

2A

DC

_IN

3

AD

C_IN

4A

DC

_IN

5A

DC

_IN

6A

DC

_IN

7

VD

D_A

DC

_1P

8V

DD

_A

DC

_D

IG_1P

8

VR

EF

L_A

DC

VR

EF

H_A

DC

AN

A_T

ES

T_O

UT

0_N

AN

A_T

ES

T_O

UT

0_P

AN

A_T

ES

T_O

UT

1_N

AN

A_T

ES

T_O

UT

1_P

+-

--

--

--

--

--

--

+-

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

A

LT

0

|

AL

T1

|

AL

T2

|

A

LT

3

|

+-

--

--

--

--

--

--

+-

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

DM

A_

AD

C_

IN

0

|

|

L

SI

O_

KP

P0

_C

OL

0

|

LS

IO

_G

PI

O3

_I

O1

8

|

|

DM

A_

AD

C_

IN

1

|

|

L

SI

O_

KP

P0

_C

OL

1

|

LS

IO

_G

PI

O3

_I

O1

9

|

|

DM

A_

AD

C_

IN

2

|

|

L

SI

O_

KP

P0

_C

OL

2

|

LS

IO

_G

PI

O3

_I

O2

0

|

|

DM

A_

AD

C_

IN

3

|

DM

A_

SP

I1

_S

CK

|

L

SI

O_

KP

P0

_C

OL

3

|

LS

IO

_G

PI

O3

_I

O2

1

|

|

DM

A_

AD

C_

IN

4

|

DM

A_

SP

I1

_S

DO

|

L

SI

O_

KP

P0

_R

OW

0

|

LS

IO

_G

PI

O3

_I

O2

2

|

|

DM

A_

AD

C_

IN

5

|

DM

A_

SP

I1

_S

DI

|

L

SI

O_

KP

P0

_R

OW

1

|

LS

IO

_G

PI

O3

_I

O2

3

|

|

DM

A_

AD

C_

IN

6

|

DM

A_

SP

I1

_C

S0

|

L

SI

O_

KP

P0

_R

OW

2

|

LS

IO

_G

PI

O3

_I

O2

4

|

|

DM

A_

AD

C_

IN

7

|

DM

A_

SP

I1

_C

S1

|

L

SI

O_

KP

P0

_R

OW

3

|

LS

IO

_G

PI

O3

_I

O2

5

|

+-

--

--

--

--

--

--

+-

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

DP

0_

AU

X_

SE

L

V_1P

8

GN

D

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/A4

Re

vie

we

r

L.

Gir

au

di

iMX

8S

OM

Dra

ftm

an

93

6

1.0

DD

/M

M/

YY

YY

imx

8_

ad

c

U1

PIM

X8M

6A

VU

DD

1A

AP

6A

L9

AR

7A

N9

AR

9A

P8

AN

11

AP

10

BE

1B

D2

BG

53

BH

52

AL11

AM

10

AK

16

AL15

V_1P

8_F

ILT

ER

C1

33

04

02

1u

F1

0V

PG

_1

P2

Inte

rnal pull

dow

n e

nable

d b

y d

efa

ult

GP

IO4

/_

HD

A_

RS

T

Figure

A.7:ADC

Block

ofiM

X8

71

A – Schematic

FLE

XC

AN

0_R

XF

LE

XC

AN

0_T

X

FLE

XC

AN

1_R

XF

LE

XC

AN

1_T

X

FLE

XC

AN

2_R

XF

LE

XC

AN

2_T

X

VD

D_F

LE

XC

AN

_1P

8_3P

3

+-

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

A

LT

0

|

AL

T1

|

A

LT

2

|

A

LT

3

|

+-

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

DM

A_

FL

EX

CA

N0

_R

X

|

|

|

LS

IO

_G

PI

O3

_I

O2

9

|

|

DM

A_

FL

EX

CA

N0

_T

X

|

|

|

LS

IO

_G

PI

O3

_I

O3

0

|

|

DM

A_

FL

EX

CA

N1

_R

X

|

|

|

LS

IO

_G

PI

O3

_I

O3

1

|

|

DM

A_

FL

EX

CA

N1

_T

X

|

|

|

LS

IO

_G

PI

O4

_I

O0

0

|

|

DM

A_

FL

EX

CA

N2

_R

X

|

|

|

LS

IO

_G

PI

O4

_I

O0

1

|

|

DM

A_

FL

EX

CA

N2

_T

X

|

|

|

LS

IO

_G

PI

O4

_I

O0

2

|

+-

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

+-

--

--

--

--

--

--

--

--

+

U1

N15

E7

C3

G7

E5

H6

PIM

X8M

6A

VU

DD

1A

V_1P

8

CA

N1

_TX

CA

N1

_R

X

CA

N0

_TX

CA

N0

_R

X

CA

N1_T

XC

AN

1_R

X

CA

N0_T

XC

AN

0_R

X

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/ A4

Re

vie

we

r

Dra

ftma

n

iMX

8S

OM

L. G

irau

di

10

36

1.0

DD

/M

M/

YY

YY

imx

8_

ca

n

CA

N2

_R

XC

AN

2_

TX

CA

N2_R

XC

AN

2_T

X

C5

GN

D

10

V

C1

37

04

02

1u

F

Figu

reA.8:

Can

Block

ofiM

X8

72

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/A4

CS

I1

MIP

I_C

SI0

_C

LK

_N

MIP

I_C

SI0

_C

LK

_P

MIP

I_C

SI0

_D

AT

A0_N

MIP

I_C

SI0

_D

AT

A0_P

MIP

I_C

SI0

_D

AT

A1_N

MIP

I_C

SI0

_D

AT

A1_P

MIP

I_C

SI0

_D

AT

A2_N

MIP

I_C

SI0

_D

AT

A2_P

MIP

I_C

SI0

_D

AT

A3_N

MIP

I_C

SI0

_D

AT

A3_P

MIP

I_C

SI0

_G

PIO

0_00

MIP

I_C

SI0

_G

PIO

0_01

MIP

I_C

SI0

_I2

C0_S

CL

MIP

I_C

SI0

_I2

C0_S

DA

MIP

I_C

SI0

_M

CLK

_O

UT

MIP

I_C

SI1

_C

LK

_N

MIP

I_C

SI1

_C

LK

_P

MIP

I_C

SI1

_D

AT

A0_N

MIP

I_C

SI1

_D

AT

A0_P

MIP

I_C

SI1

_D

AT

A1_N

MIP

I_C

SI1

_D

AT

A1_P

MIP

I_C

SI1

_D

AT

A2_N

MIP

I_C

SI1

_D

AT

A2_P

MIP

I_C

SI1

_D

AT

A3_N

MIP

I_C

SI1

_D

AT

A3_P

MIP

I_C

SI1

_G

PIO

0_00

MIP

I_C

SI1

_G

PIO

0_01

MIP

I_C

SI1

_I2

C0_S

CL

MIP

I_C

SI1

_I2

C0_S

DA

MIP

I_C

SI1

_M

CLK

_O

UT

VD

D_M

IPI_

CS

I0_1P

0V

DD

_M

IPI_

CS

I0_1P

8

VD

D_M

IPI_

CS

I1_1P

0V

DD

_M

IPI_

CS

I1_1P

8

VD

D_M

IPI_

CS

I_D

IG_1P

8

+-

--

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

A

LT

0

|

A

LT

1

|

AL

T2

|

AL

T3

|

+-

--

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

MI

PI

_C

SI

0_

GP

IO

0_

IO

00

|

D

MA

_I

2C

0_

SC

L

|

|

L

SI

O_

GP

IO

1_

IO

27

|

|

MI

PI

_C

SI

0_

GP

IO

0_

IO

01

|

D

MA

_I

2C

0_

SD

A

|

|

L

SI

O_

GP

IO

1_

IO

28

|

|

MI

PI

_C

SI

0_

I2

C0

_S

CL

|

|

|

L

SI

O_

GP

IO

1_

IO

25

|

|

MI

PI

_C

SI

0_

I2

C0

_S

DA

|

|

|

L

SI

O_

GP

IO

1_

IO

26

|

|

MI

PI

_C

SI

0_

AC

M_

MC

LK

_O

UT

|

|

|

L

SI

O_

GP

IO

1_

IO

24

|

|

MI

PI

_C

SI

1_

GP

IO

0_

IO

00

|

D

MA

_U

AR

T4

_R

X

|

|

L

SI

O_

GP

IO

1_

IO

30

|

|

MI

PI

_C

SI

1_

GP

IO

0_

IO

01

|

D

MA

_U

AR

T4

_T

X

|

|

L

SI

O_

GP

IO

1_

IO

31

|

|

MI

PI

_C

SI

1_

I2

C0

_S

CL

|

|

|

L

SI

O_

GP

IO

2_

IO

00

|

|

MI

PI

_C

SI

1_

I2

C0

_S

DA

|

|

|

L

SI

O_

GP

IO

2_

IO

01

|

|

MI

PI

_C

SI

1_

AC

M_

MC

LK

_O

UT

|

|

|

L

SI

O_

GP

IO

1_

IO

29

|

+-

--

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

CS

I_C

AM

_M

CK

CS

I1_C

K+

CS

I1_C

K-

CS

I1_R

X0+

CS

I1_R

X0-

CS

I1_R

X1+

CS

I1_R

X1-

CS

I1_R

X2+

CS

I1_R

X2-

CS

I1_R

X3+

CS

I1_R

X3-

CS

I1_I2

C_S

CL

CS

I1_I2

C_S

DA

CS

I1_I2

C_S

CL

CS

I1_I2

C_S

DA

GP

IO1/_

CA

M1_P

WR

GP

IO3/_

CA

M1_R

ST

CS

I0_R

X0+

CS

I0_R

X0-

CS

I0_R

X1+

CS

I0_R

X1-

CS

I0_R

X2+

CS

I0_R

X2-

CS

I0_R

X3+

CS

I0_R

X3-

GP

IO2/_

CA

M0_R

ST

GP

IO0/_

CA

M0_P

WR

CS

I0

CS

I0_C

K+

CS

I0_C

K-

Tw

o lanes p

ass o

n the S

MA

RC

connecto

r.

CS

I0_I2

C_S

CL

CS

I0_I2

C_S

DA

CS

I0_I2

C_S

CL

CS

I0_I2

C_S

DA

CS

I0_A

UX

The o

ther

two p

ass o

n A

uxili

ary

connecto

r

GN

D

GN

D

all

CS

I tr

aces s

hould

be 1

00 o

hm

diffe

rential im

pedance

GN

D

imx

8_

cs

i

DD

/M

M/

YY

YY

1.0

36

11

L.

Gir

au

di

iMX

8S

OM

Dra

ftm

an

Re

vie

we

r

CS

I1

BE

21

BF

20

BE

23

BF

22

BE

19

BF

18

BE

25

BF

24

BE

17

BF

16

BL23

BM

22

BH

24

BN

19

BJ23

BH

16

BJ17

BH

18

BJ19

BH

14

BJ15

BH

20

BJ21

BH

12

BJ13

BN

15

BN

13

BN

17

BE

15

BN

23

AV

26

AV

24

AW

25

AU

23

AV

22

PIM

X8M

6A

VU

DD

1AU

1

CS

I_C

AM

_M

CK

V_1P

8V

_1P

8

V_M

AIN

V_M

AIN

V_1P

8

V_1P

8_F

ILT

ER

V_1P

8_F

ILT

ER

CS

I0

V_1P

8V

_1P

8

CS

I0_

AU

X

C1

27

04

02

1u

F1

0V

10

V1

uF

04

02

C1

28

10

V1

uF

04

02

C1

29

04

02

R1

19

1%

2.2

K0

40

2

R1

20

1%

2.2

K

04

02

R1

21

1%

2.2

K0

40

2

R1

22

1%

2.2

KSM

AR

C s

uggeste

d v

alu

e=

2.2

k

GP

IO2

/_

CA

M0

_R

ST

GP

IO3

/_

CA

M1

_R

ST

GP

IO1

/_

CA

M1

_P

WR

GP

IO0

/_

CA

M0

_P

WR

Figure

A.9:CSIblock

ofiM

X8

73

A – Schematic

DS

I0

MIP

I_D

SI0

_C

LK

_N

MIP

I_D

SI0

_C

LK

_P

MIP

I_D

SI0

_D

AT

A0_N

MIP

I_D

SI0

_D

AT

A0_P

MIP

I_D

SI0

_D

AT

A1_N

MIP

I_D

SI0

_D

AT

A1_P

MIP

I_D

SI0

_D

AT

A2_N

MIP

I_D

SI0

_D

AT

A2_P

MIP

I_D

SI0

_D

AT

A3_N

MIP

I_D

SI0

_D

AT

A3_P

MIP

I_D

SI0

_G

PIO

0_00

MIP

I_D

SI0

_G

PIO

0_01

MIP

I_D

SI0

_I2

C0_S

CL

MIP

I_D

SI0

_I2

C0_S

DA

MIP

I_D

SI1

_C

LK

_N

MIP

I_D

SI1

_C

LK

_P

MIP

I_D

SI1

_D

AT

A0_N

MIP

I_D

SI1

_D

AT

A0_P

MIP

I_D

SI1

_D

AT

A1_N

MIP

I_D

SI1

_D

AT

A1_P

MIP

I_D

SI1

_D

AT

A2_N

MIP

I_D

SI1

_D

AT

A2_P

MIP

I_D

SI1

_D

AT

A3_N

MIP

I_D

SI1

_D

AT

A3_P

MIP

I_D

SI1

_G

PIO

0_00

MIP

I_D

SI1

_G

PIO

0_01

MIP

I_D

SI1

_I2

C0_S

CL

MIP

I_D

SI1

_I2

C0_S

DA

VD

D_M

IPI_

DS

I0_1P

0V

DD

_M

IPI_

DS

I0_1P

8

VD

D_M

IPI_

DS

I0_P

LL_1P

0

VD

D_M

IPI_

DS

I1_1P

0V

DD

_M

IPI_

DS

I1_1P

8

VD

D_M

IPI_

DS

I1_P

LL_1P

0

VD

D_M

IPI_

DS

I_D

IG_1P

8_3P

3+

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

-+

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

AL

T0

|

AL

T1

|

AL

T2

|

AL

T3

|

+-

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

MI

PI

_D

SI

0_

GP

IO

0_

IO

00

|

M

IP

I_

DS

I0

_P

WM

0_

OU

T

|

|

L

SI

O_

GP

IO

1_

IO

18

|

|

MI

PI

_D

SI

0_

GP

IO

0_

IO

01

|

|

|

L

SI

O_

GP

IO

1_

IO

19

|

|

MI

PI

_D

SI

0_

I2

C0

_S

CL

|

|

|

L

SI

O_

GP

IO

1_

IO

16

|

|

MI

PI

_D

SI

0_

I2

C0

_S

DA

|

|

|

L

SI

O_

GP

IO

1_

IO

17

|

|

MI

PI

_D

SI

1_

GP

IO

0_

IO

00

|

M

IP

I_

DS

I1

_P

WM

0_

OU

T

|

|

L

SI

O_

GP

IO

1_

IO

22

|

|

MI

PI

_D

SI

1_

GP

IO

0_

IO

01

|

|

|

L

SI

O_

GP

IO

1_

IO

23

|

|

MI

PI

_D

SI

1_

I2

C0

_S

CL

|

|

|

L

SI

O_

GP

IO

1_

IO

20

|

|

MI

PI

_D

SI

1_

I2

C0

_S

DA

|

|

|

L

SI

O_

GP

IO

1_

IO

21

|

+-

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

LC

D1_V

DD

_E

N

DS

I0_P

WM

_O

UT

LC

D1_B

KLT

_E

N

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/ A4

DS

I0_T

E

Synchro

niz

atio

n s

ignal

all D

SI tra

ces s

hould

be 1

00 o

hm

diffe

rentia

l impedance

GN

D

DS

I0

U1

PIM

X8M

6A

VU

DD

1A

AU

27

AW

27

AV

30

AV

28

AW

29

AW

31

AU

29

BG

25

BE

27

BK

24

BM

24

BG

27

BH

26

BG

35

BH

34

BG

29

BH

28

BG

33

BH

32

BG

31

BH

30

BE

31

BE

29

BD

28

BD

30

BL25

BN

25

BL29

BN

29

BK

26

BM

26

BK

28

BM

28

BL27

BN

27

DS

I0_

PW

M_

OU

T

LC

D1

_B

KLT_

EN

LC

D1

_V

DD

_E

N

imx

8_

ds

i

DD

/M

M/

YY

YY

1.0

Dra

ftma

n

iMX

8S

OM

L. G

irau

di

12

36

Re

vie

we

r

V_1P

8

V_1P

8_F

ILT

ER

16

V2

2u

F

12

10

C3

V_1P

8_F

ILT

ER

C1

25

04

02

1u

F1

0V

V_M

AIN

DS

I0_C

LK

-D

SI0

_C

LK

+

DS

I0_D

AT

A0-

DS

I0_D

AT

A0+

DS

I0_D

AT

A1-

DS

I0_D

AT

A1+

DS

I0_D

AT

A2-

DS

I0_D

AT

A2+

DS

I0_D

AT

A3-

DS

I0_D

AT

A3+

GN

D

Q2

4 3

5P

EM

H9

50

V

3.3

V a

nd s

ink 2

4m

A

SA

TA

_A

CT

_S

ATA

0_

AC

T

Figu

reA.10:

DSIblock

ofiM

X8

74

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/A4

13

L.

Gir

au

di

iMX

8S

OM

Dra

ftm

an

imx

8_

es

ai

Re

vie

we

r

DD

/M

M/

YY

YY

1.0

36

SA

I1_R

XC

SA

I1_R

XD

SA

I1_R

XF

SS

AI1

_T

XC

SA

I1_T

XD

SA

I1_T

XF

S

SP

I0_C

S0

SP

I0_C

S1

SP

I0_S

CK

SP

I0_S

DI

SP

I0_S

DO

SP

I2_C

S0

SP

I2_C

S1

SP

I2_S

CK

SP

I2_S

DI

SP

I2_S

DO

VD

D_S

PI_

SA

I_1P

8_3P

3_A

M16

VD

D_S

PI_

SA

I_1P

8_3P

3_A

N15

+-

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

AL

T0

|

AL

T1

|

AL

T2

|

AL

T3

|

+-

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

AU

D_

SA

I1

_R

XC

|

AU

D_

SA

I0

_T

XD

|

|

L

SI

O_

GP

IO

3_

IO

12

|

|

AU

D_

SA

I1

_R

XD

|

AU

D_

SA

I0

_T

XF

S

|

|

L

SI

O_

GP

IO

3_

IO

13

|

|

AU

D_

SA

I1

_R

XF

S

|

AU

D_

SA

I0

_R

XD

|

|

L

SI

O_

GP

IO

3_

IO

14

|

|

AU

D_

SA

I1

_T

XC

|

AU

D_

SA

I0

_T

XC

|

|

L

SI

O_

GP

IO

3_

IO

15

|

|

AU

D_

SA

I1

_T

XD

|

AU

D_

SA

I1

_R

XC

|

|

L

SI

O_

GP

IO

3_

IO

16

|

|

AU

D_

SA

I1

_T

XF

S

|

AU

D_

SA

I1

_R

XF

S

|

|

L

SI

O_

GP

IO

3_

IO

17

|

|

DM

A_

SP

I0

_C

S0

|

AU

D_

SA

I0

_R

XF

S

|

|

L

SI

O_

GP

IO

3_

IO

05

|

|

DM

A_

SP

I0

_C

S1

|

AU

D_

SA

I0

_T

XC

|

|

L

SI

O_

GP

IO

3_

IO

06

|

|

DM

A_

SP

I0

_S

CK

|

AU

D_

SA

I0

_R

XC

|

|

L

SI

O_

GP

IO

3_

IO

02

|

|

DM

A_

SP

I0

_S

DI

|

AU

D_

SA

I0

_R

XD

|

|

L

SI

O_

GP

IO

3_

IO

04

|

|

DM

A_

SP

I0

_S

DO

|

AU

D_

SA

I0

_T

XD

|

|

L

SI

O_

GP

IO

3_

IO

03

|

|

DM

A_

SP

I2

_C

S0

|

|

|

L

SI

O_

GP

IO

3_

IO

10

|

|

DM

A_

SP

I2

_C

S1

|

AU

D_

SA

I0

_T

XF

S

|

|

L

SI

O_

GP

IO

3_

IO

11

|

|

DM

A_

SP

I2

_S

CK

|

|

|

L

SI

O_

GP

IO

3_

IO

07

|

|

DM

A_

SP

I2

_S

DI

|

|

|

L

SI

O_

GP

IO

3_

IO

09

|

|

DM

A_

SP

I2

_S

DO

|

|

|

L

SI

O_

GP

IO

3_

IO

08

|

+-

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

ES

AI0

_F

SR

ES

AI0

_F

ST

ES

AI0

_S

CK

RE

SA

I0_S

CK

TE

SA

I0_T

X0

ES

AI0

_T

X1

ES

AI0

_T

X2_R

X3

ES

AI0

_T

X3_R

X2

ES

AI0

_T

X4_R

X1

ES

AI0

_T

X5_R

X0

ES

AI1

_F

SR

ES

AI1

_F

ST

ES

AI1

_S

CK

RE

SA

I1_S

CK

TE

SA

I1_T

X0

ES

AI1

_T

X1

ES

AI1

_T

X2_R

X3

ES

AI1

_T

X3_R

X2

ES

AI1

_T

X4_R

X1

ES

AI1

_T

X5_R

X0

MC

LK

_IN

0M

CLK

_O

UT

0

SP

DIF

0_E

XT

_C

LK

SP

DIF

0_R

XS

PD

IF0_T

X

SP

I3_C

S0

SP

I3_C

S1

SP

I3_S

CK

SP

I3_S

DI

SP

I3_S

DO

VD

D_E

SA

I0_M

CLK

_1P

8_3P

3_A

P16

VD

D_E

SA

I0_M

CLK

_1P

8_3P

3_A

R15

VD

D_E

SA

I1_S

PD

IF_S

PI_

1P

8_3P

3

+-

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

-+

|

A

LT

0

|

AL

T1

|

A

LT

2

|

AL

T3

|

+-

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

-+

|

AU

D_

ES

AI

0_

FS

R

|

|

|

L

SI

O_

GP

IO

2_

IO

22

|

|

AU

D_

ES

AI

0_

FS

T

|

|

|

L

SI

O_

GP

IO

2_

IO

23

|

|

AU

D_

ES

AI

0_

SC

KR

|

|

|

L

SI

O_

GP

IO

2_

IO

24

|

|

AU

D_

ES

AI

0_

SC

KT

|

|

|

L

SI

O_

GP

IO

2_

IO

25

|

|

AU

D_

ES

AI

0_

TX

0

|

|

|

L

SI

O_

GP

IO

2_

IO

26

|

|

AU

D_

ES

AI

0_

TX

1

|

|

|

L

SI

O_

GP

IO

2_

IO

27

|

|

AU

D_

ES

AI

0_

TX

2_

RX

3

|

|

|

L

SI

O_

GP

IO

2_

IO

28

|

|

AU

D_

ES

AI

0_

TX

3_

RX

2

|

|

|

L

SI

O_

GP

IO

2_

IO

29

|

|

AU

D_

ES

AI

0_

TX

4_

RX

1

|

|

|

L

SI

O_

GP

IO

2_

IO

30

|

|

AU

D_

ES

AI

0_

TX

5_

RX

0

|

|

|

L

SI

O_

GP

IO

2_

IO

31

|

|

AU

D_

AC

M_

MC

LK

_I

N0

|

A

UD

_E

SA

I0

_R

X_

HF

_C

LK

|

|

L

SI

O_

GP

IO

3_

IO

00

|

|

AU

D_

AC

M_

MC

LK

_O

UT

0

|

A

UD

_E

SA

I0

_T

X_

HF

_C

LK

|

|

L

SI

O_

GP

IO

3_

IO

01

|

|

AU

D_

ES

AI

1_

FS

R

|

|

|

L

SI

O_

GP

IO

2_

IO

04

|

|

AU

D_

ES

AI

1_

FS

T

|

|

|

L

SI

O_

GP

IO

2_

IO

05

|

|

AU

D_

ES

AI

1_

SC

KR

|

|

|

L

SI

O_

GP

IO

2_

IO

06

|

|

AU

D_

ES

AI

1_

SC

KT

|

A

UD

_S

AI

2_

RX

C

|

|

L

SI

O_

GP

IO

2_

IO

07

|

|

AU

D_

ES

AI

1_

TX

0

|

A

UD

_S

AI

2_

RX

D

|

|

L

SI

O_

GP

IO

2_

IO

08

|

|

AU

D_

ES

AI

1_

TX

1

|

A

UD

_S

AI

2_

RX

FS

|

|

L

SI

O_

GP

IO

2_

IO

09

|

|

AU

D_

ES

AI

1_

TX

2_

RX

3

|

|

|

L

SI

O_

GP

IO

2_

IO

10

|

|

AU

D_

ES

AI

1_

TX

3_

RX

2

|

|

|

L

SI

O_

GP

IO

2_

IO

11

|

|

AU

D_

ES

AI

1_

TX

4_

RX

1

|

|

|

L

SI

O_

GP

IO

2_

IO

12

|

|

AU

D_

ES

AI

1_

TX

5_

RX

0

|

|

|

L

SI

O_

GP

IO

2_

IO

13

|

|

AU

D_

SP

DI

F0

_E

XT

_C

LK

|

D

MA

_D

MA

0_

RE

Q_

IN

0

|

|

L

SI

O_

GP

IO

2_

IO

16

|

|

AU

D_

SP

DI

F0

_R

X

|

A

UD

_M

QS

_R

|

A

UD

_A

CM

_M

CL

K_

IN

1

|

L

SI

O_

GP

IO

2_

IO

14

|

|

AU

D_

SP

DI

F0

_T

X

|

A

UD

_M

QS

_L

|

A

UD

_A

CM

_M

CL

K_

OU

T1

|

L

SI

O_

GP

IO

2_

IO

15

|

|

DM

A_

SP

I3

_C

S0

|

D

MA

_F

TM

_C

H2

|

|

L

SI

O_

GP

IO

2_

IO

20

|

|

DM

A_

SP

I3

_C

S1

|

|

|

L

SI

O_

GP

IO

2_

IO

21

|

|

DM

A_

SP

I3

_S

CK

|

|

|

L

SI

O_

GP

IO

2_

IO

17

|

|

DM

A_

SP

I3

_S

DI

|

D

MA

_F

TM

_C

H1

|

|

L

SI

O_

GP

IO

2_

IO

19

|

|

DM

A_

SP

I3

_S

DO

|

D

MA

_F

TM

_C

H0

|

|

L

SI

O_

GP

IO

2_

IO

18

|

+-

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

-+

SA

I1

SA

I1

SA

I0

SA

I0

SA

I1_T

XF

S

SA

I1_T

XC

SA

I1_T

XD

SA

I1_R

XD

SA

I0_T

XF

SS

AI0

_T

XD

SA

I0_R

XD

SA

I0_T

XC

SP

I3

SP

I3

V_1P

8

V_1P

8

GN

DG

ND

ES

AI1

ES

AI1

_F

SR

ES

AI1

_F

ST

ES

AI1

_S

CK

RE

SA

I1_S

CK

TE

SA

I1_T

X0

ES

AI1

_T

X1

ES

AI1

_T

X2_R

X3

ES

AI1

_T

X3_R

X2

ES

AI1

_T

X4_R

X1

ES

AI1

_T

X5_R

X0

SP

DIF

0_E

XT

_C

LK

SP

DIF

0_R

XS

PD

IF0_T

X

HU

B_R

ST

EN

ET

0_P

HY

_R

ST

EN

ET

1_P

HY

_R

ST

_E

NE

T0

_P

HY

_IN

T_

EN

ET1

_P

HY

_IN

T_E

NE

T0_P

HY

_IN

T_E

NE

T1_P

HY

_IN

T

AU

DIO

_M

CK

AU

DIO

_M

CK

AW

9B

G9

BB

8A

Y8

BA

9B

A7

AU

9B

C5

AV

8A

U7

BE

11

BF

12

BD

12

AY

10

BF

10

BA

11

AU

11

AV

10

AY

12

AT

10

BC

3B

D4

BD

6B

C7

BC

9

BG

5B

D8

BF

6B

E5

BF

2

AP

16

AR

15

AU

15

PIM

X8M

6A

VU

DD

1A

U1

C4

6

04

02

10

0n

F1

6V

C4

7

04

02

10

0n

F1

6V

GN

D

SP

I2WIF

I_E

N_

WIF

I_R

ST

SP

I2

WIF

I_E

N_W

IFI_

RS

T_W

IFI_

INT

SP

I2_C

S0

SP

I2_S

CK

SP

I2_S

DI

SP

I2_S

DO

25

V4

.7u

F

06

03

C6

9

GN

DG

ND

V_1P

8

C4

8

04

02

10

0n

F1

6V

C7

0

25

V4

.7u

F

06

03

SP

DIF

0

SP

I3_S

CK

_S

PI3

_C

S0

_S

PI3

_C

S1

SP

I3_S

DI

SP

I3_S

DO

AV

6A

V4

AU

3A

U5

AU

1A

V2

BC

1B

A3

BB

4B

A5

AY

6

AW

1A

Y2

AW

5A

Y4

BA

1

AM

16

AN

15

PIM

X8M

6A

VU

DD

1A

U1

HU

B_

RS

T

ES

AI1

SP

DIF

0

_W

IFI_

INT

EN

ET1

_P

HY

_R

ST

EN

ET0

_P

HY

_R

ST

Tx a

nd R

x a

re s

ynchro

nous

CK

: bit c

lock

LR

CK

: defines left/r

ight channel.

Tw

o a

udio

sam

ple

s a

re s

ent every

cycle

Figure

A.11:

SAI/ESAI/SPIblock

ofiM

X8

75

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/ A3

12

34

56

78

ABCDEF

HD

MI_

RX

0_A

RC

_N

HD

MI_

RX

0_A

RC

_P

HD

MI_

RX

0_C

EC

HD

MI_

RX

0_C

LK

_N

HD

MI_

RX

0_C

LK

_P

HD

MI_

RX

0_D

AT

A0_N

HD

MI_

RX

0_D

AT

A0_P

HD

MI_

RX

0_D

AT

A1_N

HD

MI_

RX

0_D

AT

A1_P

HD

MI_

RX

0_D

AT

A2_N

HD

MI_

RX

0_D

AT

A2_P

HD

MI_

RX

0_D

DC

_S

CL

HD

MI_

RX

0_D

DC

_S

DA

HD

MI_

RX

0_H

PD

HD

MI_

RX

0_M

ON

_5V

HD

MI_

RX

0_R

EX

T

HD

MI_

TX

0_A

UX

_N

HD

MI_

TX

0_A

UX

_P

HD

MI_

TX

0_C

EC

HD

MI_

TX

0_C

LK

_E

DP

3_N

HD

MI_

TX

0_C

LK

_E

DP

3_P

HD

MI_

TX

0_D

AT

A0_E

DP

2_N

HD

MI_

TX

0_D

AT

A0_E

DP

2_P

HD

MI_

TX

0_D

AT

A1_E

DP

1_N

HD

MI_

TX

0_D

AT

A1_E

DP

1_P

HD

MI_

TX

0_D

AT

A2_E

DP

0_N

HD

MI_

TX

0_D

AT

A2_E

DP

0_P

HD

MI_

TX

0_D

DC

_S

CL

HD

MI_

TX

0_D

DC

_S

DA

HD

MI_

TX

0_H

PD

HD

MI_

TX

0_T

S_S

CL

HD

MI_

TX

0_T

S_S

DA

HD

MI_

TX

0_R

EX

T

VD

D_H

DM

I_R

X0_1P

8

VD

D_H

DM

I_R

X0_LD

O0_1P

0_C

AP

VD

D_H

DM

I_R

X0_LD

O1_1P

0_C

AP

VD

D_H

DM

I_R

X0_V

H_R

X_3P

3

VD

D_H

DM

I_T

X0_1P

0

VD

D_H

DM

I_T

X0_1P

8

VD

D_H

DM

I_T

X0_D

IG_3P

3

VD

D_H

DM

I_T

X0_LD

O_1P

0_C

AP

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

-+

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

AL

T0

|

AL

T1

|

A

LT

2

|

A

LT

3

|

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

-+

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

HD

MI

_T

X0

_I

2C

0_

SC

L

|

DM

A_

I2

C0

_S

CL

|

|

LS

IO

_G

PI

O2

_I

O0

2

|

|

HD

MI

_T

X0

_I

2C

0_

SD

A

|

DM

A_

I2

C0

_S

DA

|

|

LS

IO

_G

PI

O2

_I

O0

3

|

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

-+

--

--

--

+-

--

--

--

--

--

--

--

--

+

DP

HD

MI_

TX

HD

MI_

TX

_C

K-

HD

MI_

TX

_C

K+

HD

MI_

TX

_D

DC

_S

CL

HD

MI_

TX

_D

DC

_S

DA

HD

MI_

TX

_D

0-

HD

MI_

TX

_D

0+

HD

MI_

TX

_D

1-

HD

MI_

TX

_D

1+

HD

MI_

TX

_D

2-

HD

MI_

TX

_D

2+

HD

MI_

TX

_H

PD

DP

0_LA

NE

3-

DP

0_LA

NE

3+

DP

0_A

UX

+D

P0_A

UX

-

DP

0_LA

NE

2-

DP

0_LA

NE

2+

DP

0_LA

NE

1-

DP

0_LA

NE

1+

DP

0_LA

NE

0-

DP

0_LA

NE

0+

DP

0_H

PD

HD

MI_

TX

_D

0-

HD

MI_

TX

_D

0+

HD

MI_

TX

_D

1-

HD

MI_

TX

_D

1+

HD

MI_

TX

_D

2-

HD

MI_

TX

_D

2+

DP

0_LA

NE

3-

DP

0_LA

NE

3+

DP

0_LA

NE

2-

DP

0_LA

NE

2+

DP

0_LA

NE

1-

DP

0_LA

NE

1+

DP

0_LA

NE

0-

DP

0_LA

NE

0+

HD

MI_

TX

_H

PD

DP

0_H

PD

HD

MI_

TX

_C

K-

HD

MI_

TX

_C

K+

HD

MI_

TX

_D

DC

_S

HIF

T_S

CL

HD

MI_

TX

_D

DC

_S

HIF

T_S

DA

spare

I2C

GN

D

HD

MI_

TX

_D

0-

HD

MI_

TX

_D

0+

HD

MI_

TX

_D

1-

HD

MI_

TX

_D

1+

HD

MI_

TX

_D

2-

HD

MI_

TX

_D

2+

HD

MI_

TX

_C

K-

HD

MI_

TX

_C

K+

GN

D

Passiv

e le

vel s

hifte

r for H

DM

I sig

nals

DP

0_A

UX

+D

P0_A

UX

-

AU

X is

On-m

odule

AC

couple

d

pla

ce A

C-c

ouplin

g s

erie

s c

apacito

rs o

n c

arrie

r for 8

LA

NE

x s

ignals

TX

_LD

O_C

AP

TX

_LD

O_C

AP

GN

DG

ND

HD

MI_

RX

GN

D

HD

MI_

RX

0_M

ON

_5V

HD

MI_

RX

0_A

RC

+H

DM

I_R

X0_A

RC

-

HD

MI_

RX

0_H

PD

HD

MI_

RX

0_C

EC

HD

MI_

RX

0_D

DC

_S

DA

HD

MI_

RX

0_D

DC

_S

CL

HD

MI_

RX

0_C

LK

+H

DM

I_R

X0_C

LK

-

HD

MI_

RX

0_D

AT

A0+

HD

MI_

RX

0_D

AT

A1-

HD

MI_

RX

0_D

AT

A1+

HD

MI_

RX

0_D

AT

A2-

HD

MI_

RX

0_D

AT

A2+

HD

MI_

RX

0_D

AT

A0-

RX

_LD

O0_C

AP

RX

_LD

O0_C

AP

GN

DG

ND

RX

_LD

O1_C

AP

RX

_LD

O1_C

AP

GN

DG

ND

No d

edic

ate

d p

in o

n S

MA

RC

100 o

hm

diffe

rentia

l impedance

Consid

er h

ow

the 0

ohm

can b

e p

laced w

ithout c

reatin

g im

pedance m

ism

atc

hes

varia

nts

GN

D

AY VC

C

GN

D

GN

D

HP

D

HP

D

GN

D

HD

MI_

RX

0_M

ON

_5V

On th

e S

ink s

ide, o

nly

SC

L n

eed a

pullu

pof 4

7k (fro

m H

DM

I Spec)

Re

vie

we

r

Dra

ftma

n

iMX

8S

OM

L. G

irau

di

14

36

1.0

DD

/M

M/

YY

YY

imx

8_

DP

_H

DM

I

DP

HD

MI_

TX

V_3P

3

V_1P

8_F

ILT

ER

V_3P

3V_1P

8_F

ILT

ER

HD

MI_

RX

V_1P

8_F

ILT

ER V

_3P

3_F

ILT

ER

V_3P

3

HD

MI s

ays th

at V

ih fo

r HP

D

is 3

V: th

e s

marc

inste

ad w

ants

a p

in a

t 1.8

Vso th

is p

ort tra

nsla

tes fro

m 1

.8V

to 3

.3V

Connect to

the s

am

e p

ow

er s

upply

of H

DM

I: in

this

way th

e p

ulld

ow

n a

re d

isable

d w

hen th

eim

x8 is

dow

n

HD

MI_

TX

_D

DC

_S

CL

HD

MI_

TX

_D

DC

_S

DA

SC

L_LO

W

SD

A_LO

W

SC

L_H

IGH

SD

A_H

IGH

i2c_le

vel_

shifte

r

HD

MI_

TX

_D

DC

_S

HIF

T_S

CL

HD

MI_

TX

_D

DC

_S

HIF

T_S

DA

Shift fro

m 1

.8 to

3.3

and v

icevers

a1.8

V is

the w

ante

d fro

m S

MA

RC

, 3.3

should

be re

adable

by iM

X8

GN

D

BM

4

BL3

BK

2

BJ1

BH

2B

G3

BJ11

BN

11

BF

14

BE

13

BH

10

BM

20

BL19

BM

18

BL17

BM

16

BL15

BM

12

BL11

BJ9

BM

14

BL13

U1

PIM

X8M

6A

VU

DD

1A

AW

15

AW

21

AW

17

AV

16

AV

20

AU

21

AU

19

AV

18

BJ7

BN

7B

N9

BH

8

BN

5B

G1

BL9

BM

8

BL7

BM

6

BL5

M3

PM

DT2

90

UN

E3

80

m2

0V

5

34

C4

11

00

nF

C4

21

00

nF

C4

31

00

nF

C3

60

40

21

00

nF

16

V

C4

01

00

nF

C3

71

00

nF

C3

81

00

nF

C3

91

00

nF

R5

3

04

02

10

0K

1%

U6

74LV

1T

34G

W

3

5

42R9

30

40

201

%

C4

4

04

02

10

0n

F1

6V

16

V1

00

nF

04

02

C4

5

R7

30

40

24

7K

1%

DS

6N

SR

05

T4

0P

2T5

G

2

1

R1

37

04

02

27

K1

%

R9

9

06

03

49

9

1%

R8

30

40

20 1

%

0R

84

R8

500

R8

6

R8

700

R8

8

C2

34

04

02

22

0n

F1

6V

0R

89

R9

00

10

V2

.2u

F

04

02

C3

16

10

V1

uF

04

02

C1

31

04

02

1%

0R

91

04

02

1%

0R

92

10

V1

uF

04

02

C1

32

10

V2

.2u

F

04

02

C3

17

R9

8

06

03

49

9

1%

R1

29

04

02

60

4

1%

1%

60

40

40

2

R1

30

1%

60

40

40

2

R1

31

1%

60

40

40

2

R1

32

R1

33

04

02

60

4

1%

1%

60

40

40

2

R1

34

R1

35

04

02

60

4

1%

1%

60

40

40

2

R1

36

16

V1

00

nF

04

02

C3

4

C3

51

00

nF

C1

30

04

02

1u

F1

0V

C3

15

04

02

2.2

uF

10

V

Figu

reA.12:

HDMI/D

Pblock

ofiM

X8an

dlevel

shifter

76

A – Schematic

V_1P

8

V_3P

3

SD

A_

LO

WS

DA

_H

IGH

SC

L_LO

W

SD

A_LO

WS

DA

_H

IGH

SM

AR

C r

equires

100k w

ak p

u

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Sheet:

Date

:

Vers

ion:

/A4

A B C D

12

34

56

Re

vie

we

rL

. G

ira

ud

i

iMX

8S

OM

Dra

ftm

an

37

1.0

DD

/M

M/

YY

YY

i2c

_le

ve

l_s

hif

ter

SC

L_

LO

WS

CL_

HIG

HS

CL_H

IGH

0ohm

inte

nded for

bypassin

g the level shifte

rIf n

ot m

ounte

d, le

t th

e c

arr

ier

pull

the lin

es u

p to 5

V

20

V3

80

mP

MD

T2

90

UN

E

M4

53

42

0V

38

0m

PM

DT2

90

UN

E

M4

26

1

04

02

R6

9

1%

10

0K

04

02

R7

0

1%

10

0K

R1

60

04

02

4.7

K

1%

1%

4.7

K0

40

2

R1

61

R9

40

40

20 1

%

1%

00

40

2R

95

Figure

A.13:

Level

shifterof

DDC

chan

nel

77

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/ A4

15

L. G

irau

di

iMX

8S

OM

Dra

ftma

n

imx

8_

lvd

s

Re

vie

we

r

DD

/M

M/

YY

YY

1.0

36

LV

DS

0_C

H0_C

LK

_N

LV

DS

0_C

H0_C

LK

_P

LV

DS

0_C

H0_T

X0_N

LV

DS

0_C

H0_T

X0_P

LV

DS

0_C

H0_T

X1_N

LV

DS

0_C

H0_T

X1_P

LV

DS

0_C

H0_T

X2_N

LV

DS

0_C

H0_T

X2_P

LV

DS

0_C

H0_T

X3_N

LV

DS

0_C

H0_T

X3_P

LV

DS

0_C

H1_C

LK

_N

LV

DS

0_C

H1_C

LK

_P

LV

DS

0_C

H1_T

X0_N

LV

DS

0_C

H1_T

X0_P

LV

DS

0_C

H1_T

X1_N

LV

DS

0_C

H1_T

X1_P

LV

DS

0_C

H1_T

X2_N

LV

DS

0_C

H1_T

X2_P

LV

DS

0_C

H1_T

X3_N

LV

DS

0_C

H1_T

X3_P

LV

DS

0_G

PIO

00

LV

DS

0_G

PIO

01

LV

DS

0_I2

C0_S

CL

LV

DS

0_I2

C0_S

DA

LV

DS

0_I2

C1_S

CL

LV

DS

0_I2

C1_S

DA

LV

DS

1_C

H0_C

LK

_N

LV

DS

1_C

H0_C

LK

_P

LV

DS

1_C

H0_T

X0_N

LV

DS

1_C

H0_T

X0_P

LV

DS

1_C

H0_T

X1_N

LV

DS

1_C

H0_T

X1_P

LV

DS

1_C

H0_T

X2_N

LV

DS

1_C

H0_T

X2_P

LV

DS

1_C

H0_T

X3_N

LV

DS

1_C

H0_T

X3_P

LV

DS

1_C

H1_C

LK

_N

LV

DS

1_C

H1_C

LK

_P

LV

DS

1_C

H1_T

X0_N

LV

DS

1_C

H1_T

X0_P

LV

DS

1_C

H1_T

X1_N

LV

DS

1_C

H1_T

X1_P

LV

DS

1_C

H1_T

X2_N

LV

DS

1_C

H1_T

X2_P

LV

DS

1_C

H1_T

X3_N

LV

DS

1_C

H1_T

X3_P

LV

DS

1_G

PIO

00

LV

DS

1_G

PIO

01

LV

DS

1_I2

C0_S

CL

LV

DS

1_I2

C0_S

DA

LV

DS

1_I2

C1_S

CL

LV

DS

1_I2

C1_S

DA

VD

D_LV

DS

0_1P

0V

DD

_LV

DS

0_1P

8

VD

D_LV

DS

1_1P

0V

DD

_LV

DS

1_1P

8

VD

D_LV

DS

_D

IG_1P

8_3P

3+

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

-+

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

AL

T0

|

A

LT

1

|

AL

T2

|

AL

T3

|

+-

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

LV

DS

0_

GP

IO

0_

IO

00

|

L

VD

S0

_P

WM

0_

OU

T

|

|

L

SI

O_

GP

IO

1_

IO

04

|

|

LV

DS

0_

GP

IO

0_

IO

01

|

|

|

L

SI

O_

GP

IO

1_

IO

05

|

|

LV

DS

0_

I2

C0

_S

CL

|

L

VD

S0

_G

PI

O0

_I

O0

2

|

|

L

SI

O_

GP

IO

1_

IO

06

|

|

LV

DS

0_

I2

C0

_S

DA

|

L

VD

S0

_G

PI

O0

_I

O0

3

|

|

L

SI

O_

GP

IO

1_

IO

07

|

|

LV

DS

0_

I2

C1

_S

CL

|

D

MA

_U

AR

T2

_T

X

|

|

L

SI

O_

GP

IO

1_

IO

08

|

|

LV

DS

0_

I2

C1

_S

DA

|

D

MA

_U

AR

T2

_R

X

|

|

L

SI

O_

GP

IO

1_

IO

09

|

|

LV

DS

1_

GP

IO

0_

IO

00

|

L

VD

S1

_P

WM

0_

OU

T

|

|

L

SI

O_

GP

IO

1_

IO

10

|

|

LV

DS

1_

GP

IO

0_

IO

01

|

|

|

L

SI

O_

GP

IO

1_

IO

11

|

|

LV

DS

1_

I2

C0

_S

CL

|

L

VD

S1

_G

PI

O0

_I

O0

2

|

|

L

SI

O_

GP

IO

1_

IO

12

|

|

LV

DS

1_

I2

C0

_S

DA

|

L

VD

S1

_G

PI

O0

_I

O0

3

|

|

L

SI

O_

GP

IO

1_

IO

13

|

|

LV

DS

1_

I2

C1

_S

CL

|

D

MA

_U

AR

T3

_T

X

|

|

L

SI

O_

GP

IO

1_

IO

14

|

|

LV

DS

1_

I2

C1

_S

DA

|

D

MA

_U

AR

T3

_R

X

|

|

L

SI

O_

GP

IO

1_

IO

15

|

+-

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

U1

AV

32

AW

33

AW

35

AV

34

AV

36

BN

35

BD

32

BE

33

BL35

BH

36

BD

34

BM

30

BK

30

BN

31

BL31

BM

32

BK

32

BN

33

BL33

BM

34

BK

34

BM

40

BK

40

BN

39

BL39

BM

38

BK

38

BN

37

BL37

BM

36

BK

36

BE

35

BE

37

BD

36

BD

38

BD

40

BE

39

BH

38

BG

37

BH

40

BG

39

BH

42

BG

41

BH

44

BG

43

BH

46

BG

45

BN

45

BL45

BM

44

BK

44

BN

43

BL43

BM

42

BK

42

BN

41

BL41

PIM

X8M

6A

VU

DD

1A

V_1P

8_F

ILT

ER

V_1P

8_F

ILT

ER

V_M

AIN

V_1P

8

LV

DS

1_C

H1

LV

DS

1_C

H0_C

LK

+LV

DS

1_C

H0_C

LK

-

LV

DS

1_C

H0_T

X0-

LV

DS

1_C

H0_T

X0+

LV

DS

1_C

H0_T

X1+

LV

DS

1_C

H0_T

X1-

LV

DS

1_C

H0_T

X2-

LV

DS

1_C

H0_T

X2+

LV

DS

1_C

H0_T

X3-

LV

DS

1_C

H0_T

X3+

LV

DS

1_C

H1_C

LK

-LV

DS

1_C

H1_C

LK

+

LV

DS

1_C

H1_T

X0-

LV

DS

1_C

H1_T

X0+

LV

DS

1_C

H1_T

X1-

LV

DS

1_C

H1_T

X1+

LV

DS

1_C

H1_T

X2-

LV

DS

1_C

H1_T

X2+

LV

DS

1_C

H1_T

X3-

LV

DS

1_C

H1_T

X3+

all L

VD

S tra

ces s

hould

be 1

00 o

hm

diffe

rentia

l impedance

LV

DS

0_

CH

0

LV

DS

0_C

H0

LV

DS

0_C

H0_C

LK

-LV

DS

0_C

H0_C

LK

+

LV

DS

0_C

H0_T

X0-

LV

DS

0_C

H0_T

X0+

LV

DS

0_C

H0_T

X1-

LV

DS

0_C

H0_T

X1+

LV

DS

0_C

H0_T

X2-

LV

DS

0_C

H0_T

X2+

LV

DS

0_C

H0_T

X3-

LV

DS

0_C

H0_T

X3+

LV

DS

0_P

WM

0_O

UT

LC

D0_B

KLT

_E

NLC

D0_V

DD

_E

NLC

D0

_V

DD

_E

N

LV

DS

0_

PW

M0

_O

UTTo th

e A

uX

connecto

r

to S

MA

RC

UA

RT2

_R

XU

AR

T2

_TX

UA

RT

2_R

XU

AR

T2_T

Xused fo

r BT

C1

34

04

02

1u

F1

0V

GN

D

10

V1

uF

04

02

C1

35

LV

DS

1_C

H0 LV

DS

1_

CH

0

LV

DS

1_

CH

1

10

V1

uF

04

02

C1

36

GN

D

LC

D0

_B

KLT_

EN

Figu

reA.14:

LVDSblock

ofiM

X8

78

A – Schematic

GP

T0_C

AP

TU

RE

GP

T0_C

LK

GP

T0_C

OM

PA

RE

GP

T1_C

AP

TU

RE

GP

T1_C

LK

GP

T1_C

OM

PA

RE

M40_G

PIO

0_00

M40_G

PIO

0_01

M40_I2

C0_S

CL

M40_I2

C0_S

DA

M41_G

PIO

0_00

M41_G

PIO

0_01

M41_I2

C0_S

CL

M41_I2

C0_S

DA

UA

RT

0_C

TS

_B

UA

RT

0_R

TS

_B

UA

RT

0_R

XU

AR

T0_T

X

UA

RT

1_C

TS

_B

UA

RT

1_R

TS

_B

UA

RT

1_R

XU

AR

T1_T

X

VD

D_M

4_G

PT

_U

AR

T_1P

8_3P

3_A

L39

VD

D_M

4_G

PT

_U

AR

T_1P

8_3P

3_A

M38

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

AL

T0

|

AL

T1

|

A

LT

2

|

A

LT

3

|

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

LS

IO

_G

PT

0_

CA

PT

UR

E

|

DM

A_

I2

C1

_S

DA

|

LS

IO

_K

PP

0_

CO

L5

|

LS

IO

_G

PI

O0

_I

O1

5

|

|

LS

IO

_G

PT

0_

CL

K

|

DM

A_

I2

C1

_S

CL

|

LS

IO

_K

PP

0_

CO

L4

|

LS

IO

_G

PI

O0

_I

O1

4

|

|

LS

IO

_G

PT

0_

CO

MP

AR

E

|

LS

IO

_P

WM

3_

OU

T

|

LS

IO

_K

PP

0_

CO

L6

|

LS

IO

_G

PI

O0

_I

O1

6

|

|

LS

IO

_G

PT

1_

CA

PT

UR

E

|

DM

A_

I2

C2

_S

DA

|

LS

IO

_K

PP

0_

RO

W4

|

LS

IO

_G

PI

O0

_I

O1

8

|

|

LS

IO

_G

PT

1_

CL

K

|

DM

A_

I2

C2

_S

CL

|

LS

IO

_K

PP

0_

CO

L7

|

LS

IO

_G

PI

O0

_I

O1

7

|

|

LS

IO

_G

PT

1_

CO

MP

AR

E

|

LS

IO

_P

WM

2_

OU

T

|

LS

IO

_K

PP

0_

RO

W5

|

LS

IO

_G

PI

O0

_I

O1

9

|

|

M4

0_

GP

IO

0_

IO

00

|

M4

0_

TP

M0

_C

H0

|

DM

A_

UA

RT

4_

RX

|

LS

IO

_G

PI

O0

_I

O0

8

|

|

M4

0_

GP

IO

0_

IO

01

|

M4

0_

TP

M0

_C

H1

|

DM

A_

UA

RT

4_

TX

|

LS

IO

_G

PI

O0

_I

O0

9

|

|

M4

0_

I2

C0

_S

CL

|

M4

0_

UA

RT

0_

RX

|

M4

0_

GP

IO

0_

IO

02

|

LS

IO

_G

PI

O0

_I

O0

6

|

|

M4

0_

I2

C0

_S

DA

|

M4

0_

UA

RT

0_

TX

|

M4

0_

GP

IO

0_

IO

03

|

LS

IO

_G

PI

O0

_I

O0

7

|

|

M4

1_

GP

IO

0_

IO

00

|

M4

1_

TP

M0

_C

H0

|

DM

A_

UA

RT

3_

RX

|

LS

IO

_G

PI

O0

_I

O1

2

|

|

M4

1_

GP

IO

0_

IO

01

|

M4

1_

TP

M0

_C

H1

|

DM

A_

UA

RT

3_

TX

|

LS

IO

_G

PI

O0

_I

O1

3

|

|

M4

1_

I2

C0

_S

CL

|

M4

1_

UA

RT

0_

RX

|

M4

1_

GP

IO

0_

IO

02

|

LS

IO

_G

PI

O0

_I

O1

0

|

|

M4

1_

I2

C0

_S

DA

|

M4

1_

UA

RT

0_

TX

|

M4

1_

GP

IO

0_

IO

03

|

LS

IO

_G

PI

O0

_I

O1

1

|

|

DM

A_

UA

RT

0_

CT

S_

B

|

LS

IO

_P

WM

1_

OU

T

|

DM

A_

UA

RT

2_

TX

|

LS

IO

_G

PI

O0

_I

O2

3

|

|

DM

A_

UA

RT

0_

RT

S_

B

|

LS

IO

_P

WM

0_

OU

T

|

DM

A_

UA

RT

2_

RX

|

LS

IO

_G

PI

O0

_I

O2

2

|

|

DM

A_

UA

RT

0_

RX

|

|

|

LS

IO

_G

PI

O0

_I

O2

0

|

|

DM

A_

UA

RT

0_

TX

|

|

|

LS

IO

_G

PI

O0

_I

O2

1

|

|

DM

A_

UA

RT

1_

CT

S_

B

|

DM

A_

SP

I3

_C

S0

|

DM

A_

UA

RT

1_

RT

S_

B

|

LS

IO

_G

PI

O0

_I

O2

7

|

|

DM

A_

UA

RT

1_

RT

S_

B

|

DM

A_

SP

I3

_S

DI

|

DM

A_

UA

RT

1_

CT

S_

B

|

LS

IO

_G

PI

O0

_I

O2

6

|

|

DM

A_

UA

RT

1_

RX

|

DM

A_

SP

I3

_S

DO

|

|

LS

IO

_G

PI

O0

_I

O2

5

|

|

DM

A_

UA

RT

1_

TX

|

DM

A_

SP

I3

_S

CK

|

|

LS

IO

_G

PI

O0

_I

O2

4

|

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

U1

AM

38

AL39

AY

48

AT

44

AR

43

AV

46

AV

48

AV

50

AU

45

AW

49

AU

49

AR

45

AU

47

AP

44

AU

51

AM

44

AU

53

AR

47

BA

51

BA

53

AY

50

AW

53

AY

52

AV

52

PIM

X8M

6A

VU

DD

1A

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Sheet:

Date

:

Vers

ion:

/A4

A B C D

12

34

56

Re

vie

we

r

Dra

ftm

an

iMX

8S

OM

L.

Gir

au

di

16

36

1.0

DD

/M

M/

YY

YY

imx

8_

m4

_g

pt_

ua

rt

UA

RT1

UA

RT0

UA

RT

1

UA

RT

0

UA

RT

0_T

XU

AR

T0_R

X_U

AR

T0_R

TS

_U

AR

T0_C

TS

UA

RT

1_T

XU

AR

T1_R

X_U

AR

T1_R

TS

_U

AR

T1_C

TS

UA

RT3

_R

XU

AR

T3

_TX

UA

RT4

_TX

UA

RT4

_R

X

UA

RT

3_R

XU

AR

T3_T

X

UA

RT

4_T

XU

AR

T4_R

X

V_1P

8

DM

A_

I2C

2_

SD

AD

MA

_I2

C2

_S

CL

DM

A_I2

C2_S

DA

DM

A_I2

C2_S

CL

R1

23

04

02

2.2

K

1%

R1

24

04

02

2.2

K

1%

V_1P

8

GP

IO5

/P

WM

_O

UT

GP

IO5/P

WM

_O

UT

_S

MB

_A

LE

RT

_S

MB

_A

LE

RT

C4

9

04

02

10

0n

F1

6V

GN

D

M40_U

AR

T0_R

XM

40_U

AR

T0_T

X

M41_U

AR

T0_R

XM

41_U

AR

T0_T

X

M40_U

AR

T0_R

XM

40_U

AR

T0_T

X

M41_U

AR

T0_R

XM

41_U

AR

T0_T

X

T1

T2

T3

T4

1%

R1

91

0K

04

02

V_1P

8

GP

IO6

/TA

CH

ING

PIO

6/T

AC

HIN

GP

IO1

0G

PIO

10

SM

AR

C p

ullu

p v

alu

e=

2,2

k

Figure

A.15:

M4peripheral

block

ofiM

X8

79

A – Schematic

MLB

_C

LK

MLB

_C

LK

_N

MLB

_C

LK

_P

MLB

_D

AT

A

MLB

_D

AT

A_N

MLB

_D

AT

A_P

MLB

_S

IG

MLB

_S

IG_N

MLB

_S

IG_P

VD

D_M

LB

_1P

8

VD

D_M

LB

_D

IG_1P

8_3P

3

+-

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

AL

T0

|

AL

T1

|

AL

T2

|

AL

T3

|

+-

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

CO

NN

_M

LB

_C

LK

|

AU

D_

SA

I3

_R

XF

S

|

|

L

SI

O_

GP

IO

3_

IO

27

|

|

CO

NN

_M

LB

_D

AT

A

|

AU

D_

SA

I3

_R

XD

|

|

L

SI

O_

GP

IO

3_

IO

28

|

|

CO

NN

_M

LB

_S

IG

|

AU

D_

SA

I3

_R

XC

|

|

L

SI

O_

GP

IO

3_

IO

26

|

+-

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

U1

M14

T30

D30

E31

E1

F34

E35

E3

D32

E33

D2

PIM

X8M

6A

VU

DD

1A

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/ A4

Re

vie

we

r

Dra

ftma

n

iMX

8S

OM

L. G

irau

di

17

36

1.0

DD

/M

M/

YY

YY

imx

8_

mlb

MLB

_S

E

MLB

_D

IFF

MLB

_S

E

MLB

_D

IFF

MLB

_C

LK

MLB

_D

AT

A

MLB

_S

IG

MLB

_C

LK

+

MLB

_C

LK

-

MLB

_D

AT

A+

MLB

_D

AT

A-

MLB

_S

IG+

MLB

_S

IG-

V_1P

8_F

ILT

ER

V_3P

3

C1

39

04

02

1u

F1

0V

GN

D

R1

38

04

02

10

01

%

R1

39

04

02

10

01

%

R1

40

04

02

10

0

1%

R1

41

04

02

10

0

1%

1%

10

00

40

2

R1

42

100ohm

is th

e re

com

ended v

alu

e, it is

not m

andato

ry to

use th

at.

No in

fo a

bout th

e iM

X8 im

pedance

term

inatio

n d

efin

ed b

y th

e M

LB

sta

ndard

The s

am

e c

ore

has tw

o d

iffere

nt P

HY

: so th

ey c

annot b

e u

sed a

t the s

am

e tim

e

Figu

reA.16:

MLB

block

ofiM

X8

80

A – Schematic

PC

IE0

PC

IE1

SA

TA

0

PC

IE0

PC

IE1

SA

TA

0

PC

IE_C

TR

L0_C

LK

RE

Q_B

PC

IE_C

TR

L0_P

ER

ST

_B

PC

IE_C

TR

L0_W

AK

E_B

PC

IE_C

TR

L1_C

LK

RE

Q_B

PC

IE_C

TR

L1_P

ER

ST

_B

VD

D_P

CIE

_D

IG_1P

8

VD

D_P

CIE

_S

AT

A0_1P

0P

CIE

_S

AT

A0_R

X0_N

PC

IE_S

AT

A0_R

X0_P

PC

IE_S

AT

A0_T

X0_N

PC

IE_S

AT

A0_T

X0_P

PC

IE0_R

X0_N

PC

IE0_R

X0_P

PC

IE0_T

X0_N

PC

IE0_T

X0_P

VD

D_P

CIE

0_1P

0

PC

IE1_R

X0_N

PC

IE1_R

X0_P

PC

IE1_T

X0_N

PC

IE1_T

X0_P

VD

D_P

CIE

1_1P

0

PC

IE_S

AT

A0_P

HY

_P

LL_R

EF

_R

ET

UR

N

VD

D_P

CIE

_S

AT

A0_P

LL_1P

8

PC

IE1_P

HY

_P

LL_R

EF

_R

ET

UR

NP

CIE

0_P

HY

_P

LL_R

EF

_R

ET

UR

N

VD

D_P

CIE

0_P

LL_1P

8V

DD

_P

CIE

1_P

LL_1P

8

PC

IE_C

TR

L1_W

AK

E_B

PC

IE_R

EF

_Q

RP

CIE

_R

EX

T

PC

IE_S

AT

A_R

EF

CLK

100M

_N

PC

IE_S

AT

A_R

EF

CLK

100M

_P

VD

D_P

CIE

_IO

B_1P

8V

DD

_P

CIE

_LD

O_1P

8

VD

D_P

CIE

_LD

O_1P

0_C

AP

|

A

LT

0

|

AL

T1

|

A

LT

2

|

A

LT

3

|

+-

--

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

HS

IO

_P

CI

E0

_C

LK

RE

Q_

B

|

|

|

LS

IO

_G

PI

O4

_I

O2

7

|

|

HS

IO

_P

CI

E0

_P

ER

ST

_B

|

|

|

LS

IO

_G

PI

O4

_I

O2

9

|

|

HS

IO

_P

CI

E0

_W

AK

E_

B

|

|

|

LS

IO

_G

PI

O4

_I

O2

8

|

|

HS

IO

_P

CI

E1

_C

LK

RE

Q_

B

|

|

|

LS

IO

_G

PI

O4

_I

O3

0

|

|

HS

IO

_P

CI

E1

_P

ER

ST

_B

|

|

|

LS

IO

_G

PI

O5

_I

O0

0

|

|

HS

IO

_P

CI

E1

_W

AK

E_

B

|

|

|

LS

IO

_G

PI

O4

_I

O3

1

|

U1

N29

U27

T26

F26

E25

D22

E23

A27

M22

N27

M28

N23

N21

M20

N25

B24

C25

A21

B22

M26

B26

C27

A29

B30

B16

C17

A19

B20

M24

T22

G25

A25

A15

D20

A17

PIM

X8M

6A

VU

DD

1A

SA

TA

0_R

X+

SA

TA

0_R

X-

SA

TA

0_T

X+

SA

TA

0_T

X-

PC

IE0_R

X+

PC

IE0_R

X-

PC

IE0_T

X+

PC

IE0_T

X-

PC

IE1_R

X+

PC

IE1_R

X-

PC

IE1_T

X+

PC

IE1_T

X-

PC

IE1_R

EF

CK

+P

CIE

1_R

EF

CK

-

_P

CIE

1_P

ER

ST

_P

CIE

_W

AK

E_P

CIE

_W

AK

E

_P

CIE

1_P

ER

ST

_P

CIE

0_P

ER

ST

one c

om

mon W

ake-u

p s

ingal

_P

CIE

0_C

LK

RE

Q

_P

CIE

1_C

LK

RE

Q

These s

ignals

com

e fro

m the P

CIe

connecto

r (o

n c

arr

ier)

,but cannot pass o

n the S

MA

RC

connecto

r.

They a

re o

pen-d

rain

sig

nals

, ty

pic

ally

driven low

by b

y P

CIE

periphera

l or

iMX

8, re

ad b

y c

lockG

enera

tor

V_1P

8_F

ILT

ER

V_1P

8_F

ILT

ER

V_3P

3

GN

D

In E

VB

: 453O

hm

+-1

% r

esis

tor

is p

laced.

On d

ata

sheet th

ere

is n

ot any info

rmation

Follo

wed e

valu

ation b

oard

connections.

GN

DG

ND

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/A3

12

34

56

78

A B C D E FiM

X8

SO

M

L.

Gir

au

di

18

36

1.0

DD

/M

M/

YY

YY

imx

8_

pc

ie_

sa

ta

Re

vie

we

r

Dra

ftm

an

VD

D_P

CIE

_D

IG_1P

8 c

an b

e tie

d to 3

.3V

(On the E

VB

is c

alle

d V

DD

_P

CIE

_D

IG_1P

8_3P

3)

PC

IE_R

EX

T845-O

hm

for

85-o

hm

diffe

rential im

pedance.

909-O

hm

for

90-o

hm

diffe

rential im

pedance.

1.0

2-k

Ohm

for

100-o

hm

diffe

rential im

pedance.

R1

05

04

02

45

3

1%

R1

06

04

02

84

51

%

C2

27

04

02

22

0n

F1

6V

16

V2

20

nF

04

02

C2

28

C2

29

04

02

22

0n

F1

6V

C1

26

04

02

1u

F1

0V

C3

14

04

02

2.2

uF

10

V

PC

IE_C

PU

_R

EF

CLK

100M

+P

CIE

_C

PU

_R

EF

CLK

100M

-

100O

hm

diffe

rential im

pedance

85 -

> 1

00 O

hm

diffe

rential im

pedance P

CIE

Capacitor

should

be p

laced c

lose to the c

onnecto

r.

C3

41

04

02

10

nF

50

VC

34

20

40

21

0n

F5

0V

50

V1

0n

F0

40

2C

34

3

50

V1

0n

F0

40

2C

34

4

16

V2

20

nF

04

02

C2

30

16

V2

20

nF

04

02

C2

31

16

V2

20

nF

04

02

C2

32

16

V2

20

nF

04

02

C2

33

Diffe

rential im

pedance n

ote

: any v

alu

e b

etw

een 7

0 to 1

00O

hm

is c

om

plia

n w

ith

PC

Ie s

pecs. Just change a

ccord

ignly

the r

esis

tance c

onnecte

d to P

CIE

_R

EX

TP

ola

rity

invers

ion: R

X+

may b

e s

wapped w

ith R

X-

.

PC

IE0_R

EF

CK

+P

CIE

0_R

EF

CK

-

_P

CIE

0_P

ER

ST

Mount th

em

over

an e

mpty

regio

n in the r

efe

rence p

lane:

avoid

im

pedance m

ism

atc

h d

ue to the p

ads c

apacitance

PC

Ie0 a

nd P

CIe

1 c

ould

be c

ouple

d to form

a 2

lane lin

k

100 O

hm

DF

, 60 O

hm

SE

typic

al

100O

hm

diffe

rential im

pedance S

AT

A

the c

lock lin

es c

an b

e s

wapped insid

e the d

iffe

rential pair (

+ w

ith -

)

VD

D_9

VD

D_19

VS

S_3

VS

S_4

VS

S_13

VS

S_14

NC

_2

NC

_10

NC

_12

NC

_17

NC

_18

NC

_20

OE

1O

E2

CLK

0+

CLK

0-

CLK

1+

CLK

1-

CLK

2+

CLK

2-

EP

GN

D

U5

DS

C557-0

4444K

L1

1%

22

04

02

R1

07

04

02

22

1%

R1

08

1%

22

04

02

R1

09

04

02

22

1%

R1

10

1%

22

04

02

R1

11

04

02

22

1%

R1

12

Pola

rity

invers

ion: sw

ap +

with -

R1

4

04

02

10

K

1%

V_3P

3

GN

D

1%

49

.90

40

2

R1

13

R1

14

04

02

49

.9

1%

GN

D

1%

49

.90

40

2

R1

15

GN

D

R1

16

04

02

49

.9

1%

GN

D

1%

49

.90

40

2

R1

17

GN

D

R1

18

04

02

49

.9

1%

GN

D

C3

45

04

02

10

nF

50

V

V_3P

3

PC

IE_C

PU

_R

EF

CLK

100M

+

PC

IE_C

PU

_R

EF

CLK

100M

-

PC

IE0_R

EF

CK

+

PC

IE0_R

EF

CK

-

PC

IE1_R

EF

CK

+

PC

IE1_R

EF

CK

-

M2

2

6 1

PM

DT2

90

UN

E3

80

m2

0V

M2

5

3 4

PM

DT2

90

UN

E3

80

m2

0V

GN

D

GN

D

_P

CIE

0_C

LK

RE

Q

_P

CIE

1_C

LK

RE

Q

R1

5

04

02

10

K

1%

1%

10

K0

40

2

R1

6

V_3P

3V

_3P

3

_P

CIE

0_C

LK

RE

Q=

0 -

-> O

E1=

0 O

E2=

1 -

-> C

LK

0=

OF

F C

LK

1, C

LK

2=

ON

_P

CIE

1_C

LK

RE

Q=

0 -

-> O

E1=

1 O

E2=

1 -

-> C

LK

0, C

LK

1, C

LK

2=

ON

PC

IeA

can b

e u

sed w

ithout tu

rnin

g o

n P

CIe

B, sin

ce its

CLK

RE

Q turn

s o

n C

LK

1(t

o S

MA

RC

) and C

LK

2(t

o the C

PU

)

R1

7

04

02

10

K

1%

1%

10

K0

40

2

R1

8

V_3P

3V

_3P

3

GN

D

1 2D

S5

NS

R0

5T4

0P

2T5

G

PU

at dra

in a

re N

o M

OU

NT

: th

e D

SC

already h

as 4

0k P

ullu

ps o

n O

E.

C4

42

04

02

1u

F1

0V

C4

43

04

02

2.2

uF

10

V

ferr

ite?

Figure

A.17:

PCIe

block

ofiM

X8,

withclock

generator

81

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/ A4

Re

vie

we

r

Dra

ftma

n

iMX

8S

OM

L. G

irau

di

19

36

1.0

DD

/M

M/

YY

YY

imx

8_

sim

SIM

0_C

LK

SIM

0_G

PIO

0_00

SIM

0_IO

SIM

0_P

DS

IM0_P

OW

ER

_E

NS

IM0_R

ST

VD

D_S

IM0_1P

8_3P

3+

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

AL

T0

|

AL

T1

|

A

LT

2

|

A

LT

3

|

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

-+

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

DM

A_

SI

M0

_C

LK

|

|

|

LS

IO

_G

PI

O0

_I

O0

0

|

|

DM

A_

SI

M0

_P

OW

ER

_E

N

|

|

|

LS

IO

_G

PI

O0

_I

O0

5

|

|

DM

A_

SI

M0

_I

O

|

|

|

LS

IO

_G

PI

O0

_I

O0

2

|

|

DM

A_

SI

M0

_P

D

|

DM

A_

I2

C3

_S

CL

|

|

LS

IO

_G

PI

O0

_I

O0

3

|

|

DM

A_

SI

M0

_P

OW

ER

_E

N

|

DM

A_

I2

C3

_S

DA

|

|

LS

IO

_G

PI

O0

_I

O0

4

|

|

DM

A_

SI

M0

_R

ST

|

|

|

LS

IO

_G

PI

O0

_I

O0

1

|

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

-+

--

--

--

+-

--

--

--

--

--

--

--

--

+

U1

AK

42

AP

48

AT

48

AL43

AN

45

AP

46

AL45

PIM

X8M

6A

VU

DD

1A

V_1P

8

C1

38

04

02

1u

F1

0V

GN

DG

PIO

7

GP

IO8

GP

IO9

GP

IO1

1

GP

IO7

GP

IO8

GP

IO9

GP

IO11

DM

A_

I2C

3_

SD

AD

MA

_I2

C3

_S

CL

DM

A_I2

C3_S

CL

R1

25

04

02

2.2

K

1%

1%

2.2

K0

40

2

R1

26

V_1P

8V

_1P

8

Figu

reA.18:

SIM

block

oftheiM

X8.

Used

asGPIO

82

A – Schematic

QS

PI0

A_D

AT

A0

QS

PI0

A_D

AT

A1

QS

PI0

A_D

AT

A2

QS

PI0

A_D

AT

A3

QS

PI0

A_D

QS

QS

PI0

A_S

CLK

QS

PI0

A_S

S0_B

QS

PI0

A_S

S1_B

QS

PI0

B_D

AT

A0

QS

PI0

B_D

AT

A1

QS

PI0

B_D

AT

A2

QS

PI0

B_D

AT

A3

QS

PI0

B_D

QS

QS

PI0

B_S

CLK

QS

PI0

B_S

S0_B

QS

PI0

B_S

S1_B

QS

PI1

A_D

AT

A0

QS

PI1

A_D

AT

A1

QS

PI1

A_D

AT

A2

QS

PI1

A_D

AT

A3

QS

PI1

A_D

QS

QS

PI1

A_S

CLK

QS

PI1

A_S

S0_B

QS

PI1

A_S

S1_B

VD

D_Q

SP

I0_1P

8_3P

3

VD

D_Q

SP

I1A

_1P

8_3P

3

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

AL

T0

|

AL

T1

|

AL

T2

|

AL

T3

|

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

LS

IO

_Q

SP

I0

A_

SS

1_

B

|

LS

IO

_Q

SP

I0

A_

SC

LK

2

|

|

|

|

LS

IO

_Q

SP

I0

B_

SS

1_

B

|

LS

IO

_Q

SP

I0

B_

SC

LK

2

|

|

|

|

LS

IO

_Q

SP

I1

A_

DA

TA

0

|

|

|

L

SI

O_

GP

IO

4_

IO

26

|

|

LS

IO

_Q

SP

I1

A_

DA

TA

1

|

|

|

L

SI

O_

GP

IO

4_

IO

25

|

|

LS

IO

_Q

SP

I1

A_

DA

TA

2

|

|

|

L

SI

O_

GP

IO

4_

IO

24

|

|

LS

IO

_Q

SP

I1

A_

DA

TA

3

|

|

|

L

SI

O_

GP

IO

4_

IO

23

|

|

LS

IO

_Q

SP

I1

A_

DQ

S

|

|

|

L

SI

O_

GP

IO

4_

IO

22

|

|

LS

IO

_Q

SP

I1

A_

SC

LK

|

|

|

L

SI

O_

GP

IO

4_

IO

21

|

|

LS

IO

_Q

SP

I1

A_

SS

0_

B

|

|

|

L

SI

O_

GP

IO

4_

IO

19

|

|

LS

IO

_Q

SP

I1

A_

SS

1_

B

|

LS

IO

_Q

SP

I1

A_

SC

LK

2

|

|

L

SI

O_

GP

IO

4_

IO

20

|

+-

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

U1

PIM

X8M

6A

VU

DD

1A

M18

N19

G11

J11

F10

H12

E11

E13

D14

D12

H24

F22

F18

H22

F20

G19

H20

H18

F16

E15

E17

G17

H16

H14

F14

G13

DQ

0D

Q1

DQ

2/W

#D

Q3

DQ

4D

Q5

DQ

6

DQ

S

DQ

7

RE

SE

T#

RF

U_A

3R

FU

_A

5R

FU

_B

1R

FU

_B

5

S#

C

NC

VS

S_C

1V

SS

_B

3

VS

S_E

5

VC

C_B

4V

CC

_D

1V

CC

_E

4

VP

P

D3

D2

C4

D4

D5

E3

E2

C3

E1

A4

A3

A5

B1

B5

C2

B2

A2

C1

B3

E5

B4

D1

E4

C5

MT

35X

U512A

BA

1G

12-0

AA

T

U4

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/A4

iMX

8S

OM

L.

Gir

au

di

20

36

1.0

DD

/M

M/

YY

YY

Fla

sh

Re

vie

we

r

Dra

ftm

an

16

V2

20

nF

04

02

C2

23

C2

24

04

02

22

0n

F1

6VQ

SP

I0_D

AT

A0

QS

PI0

_D

AT

A1

QS

PI0

_D

AT

A2

QS

PI0

_D

AT

A3

QS

PI0

_D

AT

A4

QS

PI0

_D

AT

A5

QS

PI0

_D

AT

A6

QS

PI0

_D

AT

A7

QS

PI0

_D

QS

QS

PI0

_S

CLK

_Q

SP

I0_S

S0

_Q

SP

I0_S

S0

QS

PI0

_S

CLK

_R

ST

QS

PI1

A_D

AT

A0

QS

PI1

A_D

AT

A1

QS

PI1

A_D

AT

A2

QS

PI1

A_D

AT

A3

_Q

SP

I1A

_R

ST

QS

PI1

A_S

CLK

_Q

SP

I1A

_S

S1

QS

PI1

QS

PI0

A a

nd Q

SP

I0B

are

com

bin

ed a

s o

cta

l-S

PI Q

SP

I0

set P

D a

lways n

o m

ount

_Q

SP

I1A

_S

S0

C2

25

04

02

22

0n

F1

6V

GN

DG

ND

04

02

C3

13

2.2

uF

10

V

V_1P

8

R1

31

0K

1%

04

02

QS

PI0

_D

AT

A0

QS

PI0

_D

AT

A1

QS

PI0

_D

AT

A2

QS

PI0

_D

AT

A3

QS

PI0

_D

AT

A4

QS

PI0

_D

AT

A5

QS

PI0

_D

AT

A6

QS

PI0

_D

AT

A7

GN

D

V_1P

8

QS

PI0

_D

QS

GN

D

25

V4

.7u

F

06

03

C6

8

16

V2

20

nF

04

02

C2

26

Figure

A.19:

QSPIblock

ofiM

X8an

dNOR

Flash.

83

A – Schematic

PR

T_C

TL1

PR

T_C

TL2

PR

T_C

TL3

PR

T_C

TL4/G

AN

G_P

WR

US

B2D

N_D

M1/P

RT

_D

IS_M

1

US

B2D

N_D

M2/P

RT

_D

IS_M

2

US

B2D

N_D

M3/P

RT

_D

IS_M

3

US

B2D

N_D

M4/P

RT

_D

IS_M

4

US

B2D

N_D

P1/P

RT

_D

IS_P

1

US

B2D

N_D

P2/P

RT

_D

IS_P

2

US

B2D

N_D

P3/P

RT

_D

IS_P

3

US

B2D

N_D

P4/P

RT

_D

IS_P

4

US

B3D

N_R

XD

M1

US

B3D

N_R

XD

M2

US

B3D

N_R

XD

M3

US

B3D

N_R

XD

M4

US

B3D

N_R

XD

P1

US

B3D

N_R

XD

P2

US

B3D

N_R

XD

P3

US

B3D

N_R

XD

P4

US

B3D

N_T

XD

M1

US

B3D

N_T

XD

M2

US

B3D

N_T

XD

M3

US

B3D

N_T

XD

M4

US

B3D

N_T

XD

P1

US

B3D

N_T

XD

P2

US

B3D

N_T

XD

P3

US

B3D

N_T

XD

P4

AT

ES

TE

PG

ND

RB

IAS

RE

SE

T_N

SP

I_C

E_N

/CF

G_N

ON

_R

EM

SP

I_C

LK

/SM

CLK

SP

I_D

I/CF

G_B

C_E

N

SP

I_D

O/S

MD

AT

US

B2U

P_D

MU

SB

2U

P_D

P

US

B3U

P_R

XD

MU

SB

3U

P_R

XD

P

US

B3U

P_T

XD

MU

SB

3U

P_T

XD

P

VB

US

_D

ET

VD

D12_33

VD

D12_49

VD

D12_5

VD

D12_43

VD

D12_12

VD

D12_15

VD

D12_21

VD

D12_28

VD

D33_31

VD

D33_44

VD

D33_55

VD

D33_16

XTALI/CLK_IN

XTALO

U2

53

16

55

44

31

28

21

15

12

43 5

49

33

37

47

48

50

51

45

46

39

40

38

41

42

56

57

52

26

19

10

327

20

11

429

22

13

630

23

14

724

17

8 125

18

9 232

34

35

36

US

B5744-I/2

G

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/ A3

12

34

56

78

ABCDEF

Re

vie

we

r

Dra

ftma

n

iMX

8S

OM

L. G

irau

di

21

36

1.0

DD

/M

M/

YY

YY

US

B

US

B_H

SIC

0_D

AT

AU

SB

_H

SIC

0_S

TR

OB

EV

DD

_U

SB

_H

SIC

0_1P

2V

DD

_U

SB

_H

SIC

0_1P

8

VD

D_U

SB

_O

TG

1_1P

0

VD

D_U

SB

_O

TG

1_3P

3U

SB

_O

TG

1_D

NU

SB

_O

TG

1_D

P

US

B_O

TG

1_ID

US

B_O

TG

1_V

BU

S

VD

D_U

SB

_O

TG

2_1P

0

VD

D_U

SB

_O

TG

2_3P

3U

SB

_O

TG

2_D

NU

SB

_O

TG

2_D

P

US

B_O

TG

2_ID

US

B_O

TG

2_V

BU

SU

SB

_O

TG

2_R

EX

T

VD

D_U

SB

_S

S3_LD

O_1P

0_C

AP

VD

D_U

SB

_S

S3_T

C_3P

3

US

B_S

S3_R

EX

T

US

B_S

S3_R

X_N

US

B_S

S3_R

X_P

US

B_S

S3_T

C0

US

B_S

S3_T

C1

US

B_S

S3_T

C2

US

B_S

S3_T

C3

US

B_S

S3_T

X_N

US

B_S

S3_T

X_P

+-

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

AL

T0

|

AL

T1

|

AL

T2

|

AL

T3

|

+-

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

CO

NN

_U

SB

_H

SI

C0

_D

AT

A

|

DM

A_

I2

C1

_S

DA

|

|

L

SI

O_

GP

IO

5_

IO

01

|

|

CO

NN

_U

SB

_H

SI

C0

_S

TR

OB

E

|

DM

A_

I2

C1

_S

CL

|

|

L

SI

O_

GP

IO

5_

IO

02

|

|

DM

A_

I2

C1

_S

CL

|

CO

NN

_U

SB

_O

TG

1_

PW

R

|

|

L

SI

O_

GP

IO

4_

IO

03

|

|

DM

A_

I2

C1

_S

CL

|

CO

NN

_U

SB

_O

TG

2_

PW

R

|

|

L

SI

O_

GP

IO

4_

IO

04

|

|

DM

A_

I2

C1

_S

DA

|

CO

NN

_U

SB

_O

TG

1_

OC

|

|

L

SI

O_

GP

IO

4_

IO

05

|

|

DM

A_

I2

C1

_S

DA

|

CO

NN

_U

SB

_O

TG

2_

OC

|

|

L

SI

O_

GP

IO

4_

IO

06

|

+-

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

U1

A33

B32

H10

F8

L9

J9

C35

B34

E27

M16

M30

E29

A35

F30

B38

C37

M34

N31

A39

A37

B40

C39

N33

M32

V28

V26

F28

H26

PIM

X8M

6A

VU

DD

1A

US

B_

HU

B2

US

B_

HU

B4

US

B0

US

B_

HU

B3

US

B0

V_3P

3

GN

D

GN

D

Botto

mT

opGN

D

VD

D_LD

O_U

SB

_1P

0

VD

D_LD

O_U

SB

_1P

0

V_3P

3_F

ILT

ER

Layout n

ote

: if needed in

layout, D

+ a

nd D

- from

US

B c

onnecto

r can b

e s

wapped

in o

rder to

avoid

via

s.

For la

yout, A

pplic

atio

n N

ote

s a

re a

vaila

ble

V_3P

3_H

UB

_C

LE

AN

V_3P

3_H

UB

_C

LE

AN

V_3P

3_H

UB

One p

er p

in

GN

DG

ND

GN

DG

ND

GN

D

V_1P

2

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

One p

er p

in

GN

DG

ND

HU

B_E

N

(Fill th

e G

ND

pad w

ithat le

ast 2

0 G

ND

via

s.)

GN

D

_H

UB

_R

ST

GN

D

4.7

uH

TF

M2

52

01

2A

LM

A4

R7

MTA

A

L1

16

V4

.7u

F

08

05

C3

33

16

V1

00

nF

04

02

C2

0

04

02

10

0n

F1

6V

C2

1

10

0V

C3

36

04

02

1n

FC

22

04

02

10

0n

F1

6V

C2

3

04

02

10

0n

F1

6V

16

V1

00

nF

04

02

C2

8

16

V1

00

nF

04

02

C2

7

16

V1

00

nF

04

02

C2

5

16

V1

00

nF

04

02

C2

4

16

V1

00

nF

04

02

C2

6

16

V1

00

nF

04

02

C2

9

16

V1

00

nF

04

02

C3

0C

33

4

08

05

4.7

uF

16

V

C3

37

04

02

1n

F1

00

V

R1

00

04

02

12

K1

%

R9

6

06

03

49

9

1%

R9

7

06

03

49

9

1%

C1

9

04

02

10

0n

F1

6V

C1

19

04

02

1u

F1

0V

C3

10

04

02

2.2

uF

10

V

Stra

ppin

g

US

B_S

CL

US

B_S

DA

US

B_S

CL

US

B_S

DA

V_3P

3V

_3P

3

_U

SB

0_E

N_O

C

US

B_H

UB

3+

US

B_H

UB

3-

_U

SB

_H

UB

3_E

N_O

C

US

B_H

UB

1+

US

B_H

UB

1-

_U

SB

_H

UB

1_E

N_O

C

US

B_H

UB

1_S

SR

X+

US

B_H

UB

1_S

SR

X-

US

B_H

UB

1_S

ST

X+

US

B_H

UB

1_S

ST

X-

US

B_H

UB

2+

US

B_H

UB

2-

_U

SB

_H

UB

2_E

N_O

C

US

B_H

UB

2_S

SR

X+

US

B_H

UB

2_S

SR

X-

US

B_H

UB

2_S

ST

X+

US

B_H

UB

2_S

ST

X-

US

B_H

S1_D

+U

SB

_H

S1_D

-

US

B_H

S1_O

TG

_ID

US

B_H

S1_V

BU

S_D

ET

US

B_S

S_R

X+

US

B_S

S_R

X-

US

B_S

S_T

X+

US

B_S

S_T

X-

US

B_H

S1_D

+U

SB

_H

S1_D

-

US

B_S

S_R

X+

US

B_S

S_R

X-

US

B_S

S_T

X+

US

B_S

S_T

X-

CF

G_N

ON

_R

EM

CF

G_B

C_E

N

CF

G_N

ON

_R

EM

CF

G_B

C_E

N

200 k

O P

ull-D

ow

n200 k

O P

ull-U

p10 k

O P

ull-D

ow

n10 k

O P

ull-U

p10 O

Pull-D

ow

n

All p

orts

rem

ovable

[DE

F]

Port 1

non-re

movable

Port 1

, 2 n

on-re

movable

Port 1

, 2, 3

, non-re

movable

Port 1

, 2, 3

, 4 n

on-re

movable

200 k

O P

ull-D

ow

n200 k

O P

ull-U

p10 k

O P

ull-D

ow

n10 k

O P

ull-U

p10 O

Pull-D

ow

n

No b

atte

ry c

harg

ing [D

EF

]P

ort 1

batte

ry c

harg

ing

Port 1

, 2 b

atte

ry c

harg

ing

Port 1

, 2, 3

, batte

ry c

harg

ing

Port 1

, 2, 3

, 4 b

atte

ry c

harg

ing

R1

01

06

03

20

0K

1%

V_3P

3GN

DG

ND

R1

02

06

03

20

0K

1%

R1

04

06

03

10

1%

V_3P

3

1%

20

0K

06

03

R1

03

_U

SB

0_E

N_O

C

on E

VB

it was U

SB

_O

TG

1_O

C_B

:it s

hould

be n

egate

d

US

B0+

US

B0-

V_1P

2

V_1P

2

VD

D_LD

O_U

SB

_1P

0

R5

04

02

10

K

1%

V_3P

3

pullu

p+

gpio

norm

ally

enable

d

US

B0_E

N

US

B0_O

TG

_ID

US

B0_V

BU

S_D

ET

GN

DG

ND

GN

D

GN

D

Y1

CX

32

25

SA

25

00

0D

0P

TV

CC

25M

EG

Hz

50

V1

6p

F

04

02

C3

38

50

V1

6p

F

04

02

C3

39

US

B_H

UB

3_S

S_R

X+

US

B_H

UB

3_S

S_R

X-

US

B_H

UB

3_S

S_T

X+

US

B_H

UB

3_S

S_T

X-

US

B_H

UB

4_S

S_R

X+

US

B_H

UB

4_S

S_R

X-

US

B_H

UB

4_S

S_T

X+

US

B_H

UB

4_S

S_T

X-

The d

evic

e d

ete

cts

pullu

ps a

nd s

et I2

C m

ode

(actu

ally

SM

B)

Suggeste

d v

alu

e b

y D

S

It has in

tern

al tim

er fo

r Pow

er O

n R

eset

54

_U

SB

_H

UB

4_E

N_O

C

US

B_H

UB

4+

US

B_H

UB

4-

R5

2

04

02

10

0K

1% V

_3P

3

HU

B_

RS

T

Fro

m im

x8 G

PIO

(esai0

)A

ctiv

e h

igh

HS

IC is

physic

al la

yer fo

r US

B s

uita

ble

for IC

s o

n th

e s

am

e P

CB

. Here

not u

sed

_E

N_O

C is

an O

D s

ignal, in

put to

a lo

ad s

witc

h fo

r VB

US

: ty

pic

ally

, US

B s

witc

hes h

ave a

n O

ver C

urre

nt p

in (o

pen d

rain

). If E

N a

nd O

C a

re c

onnecte

d to

geth

er, th

is s

ignal h

as b

oth

usages.

[See S

MA

RC

Spec fo

r descrip

tion]

R6

04

02

10

K

1%

1%

10

K0

40

2

R7

C8

80

40

21

00

nF

50

VC

89

04

02

10

0n

F5

0V

C9

00

40

21

00

nF

50

V

_H

UB

_R

ST

C9

10

40

21

00

nF

50

V

C9

20

40

21

00

nF

50

V

C9

30

40

21

00

nF

50

V

C9

40

40

21

00

nF

50

V

C9

50

40

21

00

nF

50

V

C9

60

40

21

00

nF

50

V

C9

70

40

21

00

nF

50

V

C9

80

40

21

00

nF

50

V

C9

90

40

21

00

nF

50

V

atta

ccare

le a

limenta

zio

ni

Q2

1 6

2P

EM

H9

50

V

GN

D

R8

04

02

10

K1

%

V_3P

3

US

B_

HU

B_

SS

keep re

set lo

w to

go to

low

-pow

er s

tate

DS

4

2

1

NS

R0

5T4

0P

2T5

G

US

B0_E

N

_U

SB

0_E

N_O

CIn

put to

iMX

8

US

B_

HU

B1

GN

D

C2

22

04

02

22

0n

F1

6V

R8

20

40

201

%

GND

ID tie

d to

GN

D m

ake th

e iM

X8

behave a

s a

Host

VB

US

to G

ND

: the h

ost s

hould

pro

vid

e V

BU

S

Shift fro

m 1

.8V

to 3

.3V

R1

53

04

02

10

K1

%

GND

Figu

reA.20:

USB

block

ofiM

X8an

dHub

84

A – Schematic

PR

T_C

TL1

PR

T_C

TL2

PR

T_C

TL3

PR

T_C

TL4/G

AN

G_P

WR

US

B2D

N_D

M1/P

RT

_D

IS_M

1

US

B2D

N_D

M2/P

RT

_D

IS_M

2

US

B2D

N_D

M3/P

RT

_D

IS_M

3

US

B2D

N_D

M4/P

RT

_D

IS_M

4

US

B2D

N_D

P1/P

RT

_D

IS_P

1

US

B2D

N_D

P2/P

RT

_D

IS_P

2

US

B2D

N_D

P3/P

RT

_D

IS_P

3

US

B2D

N_D

P4/P

RT

_D

IS_P

4

US

B3D

N_R

XD

M1

US

B3D

N_R

XD

M2

US

B3D

N_R

XD

M3

US

B3D

N_R

XD

M4

US

B3D

N_R

XD

P1

US

B3D

N_R

XD

P2

US

B3D

N_R

XD

P3

US

B3D

N_R

XD

P4

US

B3D

N_T

XD

M1

US

B3D

N_T

XD

M2

US

B3D

N_T

XD

M3

US

B3D

N_T

XD

M4

US

B3D

N_T

XD

P1

US

B3D

N_T

XD

P2

US

B3D

N_T

XD

P3

US

B3D

N_T

XD

P4

AT

ES

TE

PG

ND

RB

IAS

RE

SE

T_N

SP

I_C

E_N

/CF

G_N

ON

_R

EM

SP

I_C

LK

/SM

CLK

SP

I_D

I/C

FG

_B

C_E

N

SP

I_D

O/S

MD

AT

US

B2U

P_D

MU

SB

2U

P_D

P

US

B3U

P_R

XD

MU

SB

3U

P_R

XD

P

US

B3U

P_T

XD

MU

SB

3U

P_T

XD

P

VB

US

_D

ET

VD

D12_33

VD

D12_49

VD

D12_5

VD

D12_43

VD

D12_12

VD

D12_15

VD

D12_21

VD

D12_28

VD

D33_31

VD

D33_44

VD

D33_55

VD

D33_16

XTALI/CLK_IN

XTALO

U2

53

16

55

44

31

28

21

15

12

435

49

33

37

47

48

50

51

45

46

39

40

38

41

42

56

57

52

26

19

10

3 27

20

11

4 29

22

13

6 30

23

14

7 24

17

81 25

18

92 32

34

35

36

US

B5744-I

/2G

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/A3

12

34

56

78

A B C D E F

Re

vie

we

r

Dra

ftm

an

iMX

8S

OM

L.

Gir

au

di

21

36

1.0

DD

/M

M/

YY

YY

US

B

US

B_H

SIC

0_D

AT

AU

SB

_H

SIC

0_S

TR

OB

EV

DD

_U

SB

_H

SIC

0_1P

2V

DD

_U

SB

_H

SIC

0_1P

8

VD

D_U

SB

_O

TG

1_1P

0

VD

D_U

SB

_O

TG

1_3P

3U

SB

_O

TG

1_D

NU

SB

_O

TG

1_D

P

US

B_O

TG

1_ID

US

B_O

TG

1_V

BU

S

VD

D_U

SB

_O

TG

2_1P

0

VD

D_U

SB

_O

TG

2_3P

3U

SB

_O

TG

2_D

NU

SB

_O

TG

2_D

P

US

B_O

TG

2_ID

US

B_O

TG

2_V

BU

SU

SB

_O

TG

2_R

EX

T

VD

D_U

SB

_S

S3_LD

O_1P

0_C

AP

VD

D_U

SB

_S

S3_T

C_3P

3

US

B_S

S3_R

EX

T

US

B_S

S3_R

X_N

US

B_S

S3_R

X_P

US

B_S

S3_T

C0

US

B_S

S3_T

C1

US

B_S

S3_T

C2

US

B_S

S3_T

C3

US

B_S

S3_T

X_N

US

B_S

S3_T

X_P

+-

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

AL

T0

|

AL

T1

|

AL

T2

|

AL

T3

|

+-

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

|

CO

NN

_U

SB

_H

SI

C0

_D

AT

A

|

DM

A_

I2

C1

_S

DA

|

|

L

SI

O_

GP

IO

5_

IO

01

|

|

CO

NN

_U

SB

_H

SI

C0

_S

TR

OB

E

|

DM

A_

I2

C1

_S

CL

|

|

L

SI

O_

GP

IO

5_

IO

02

|

|

DM

A_

I2

C1

_S

CL

|

CO

NN

_U

SB

_O

TG

1_

PW

R

|

|

L

SI

O_

GP

IO

4_

IO

03

|

|

DM

A_

I2

C1

_S

CL

|

CO

NN

_U

SB

_O

TG

2_

PW

R

|

|

L

SI

O_

GP

IO

4_

IO

04

|

|

DM

A_

I2

C1

_S

DA

|

CO

NN

_U

SB

_O

TG

1_

OC

|

|

L

SI

O_

GP

IO

4_

IO

05

|

|

DM

A_

I2

C1

_S

DA

|

CO

NN

_U

SB

_O

TG

2_

OC

|

|

L

SI

O_

GP

IO

4_

IO

06

|

+-

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

--

+-

--

--

-+

--

--

--

--

--

--

--

--

-+

U1

A33

B32

H10

F8

L9

J9

C35

B34

E27

M16

M30

E29

A35

F30

B38

C37

M34

N31

A39

A37

B40

C39

N33

M32

V28

V26

F28

H26

PIM

X8M

6A

VU

DD

1A

US

B_

HU

B2

US

B_

HU

B4

US

B0

US

B_

HU

B3

US

B0

V_3P

3

GN

D

GN

D

Bottom

Top GN

D

VD

D_LD

O_U

SB

_1P

0

VD

D_LD

O_U

SB

_1P

0

V_3P

3_F

ILT

ER

Layout note

: if n

eeded in layout, D

+ a

nd D

- fr

om

US

B c

onnecto

r can b

e s

wapped

in o

rder

to a

void

via

s.

For

layout, A

pplic

ation N

ote

s a

re a

vaila

ble

V_3P

3_H

UB

_C

LE

AN

V_3P

3_H

UB

_C

LE

AN

V_3P

3_H

UB

One p

er

pin

GN

DG

ND

GN

DG

ND

GN

D

V_1P

2

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

One p

er

pin

GN

DG

ND

HU

B_E

N

(Fill

the G

ND

pad w

ith

at le

ast 20 G

ND

via

s.)

GN

D

_H

UB

_R

ST

GN

D

4.7

uH

TF

M2

52

01

2A

LM

A4

R7

MTA

A

L1

16

V4

.7u

F

08

05

C3

33

16

V1

00

nF

04

02

C2

0

04

02

10

0n

F1

6V

C2

1

10

0V

C3

36

04

02

1n

FC

22

04

02

10

0n

F1

6V

C2

3

04

02

10

0n

F1

6V

16

V1

00

nF

04

02

C2

8

16

V1

00

nF

04

02

C2

7

16

V1

00

nF

04

02

C2

5

16

V1

00

nF

04

02

C2

4

16

V1

00

nF

04

02

C2

6

16

V1

00

nF

04

02

C2

9

16

V1

00

nF

04

02

C3

0C

33

4

08

05

4.7

uF

16

V

C3

37

04

02

1n

F1

00

V

R1

00

04

02

12

K1

%

R9

6

06

03

49

9

1%

R9

7

06

03

49

9

1%

C1

9

04

02

10

0n

F1

6V

C1

19

04

02

1u

F1

0V

C3

10

04

02

2.2

uF

10

V

Str

appin

g

US

B_S

CL

US

B_S

DA

US

B_S

CL

US

B_S

DA

V_3P

3V

_3P

3

_U

SB

0_E

N_O

C

US

B_H

UB

3+

US

B_H

UB

3-

_U

SB

_H

UB

3_E

N_O

C

US

B_H

UB

1+

US

B_H

UB

1-

_U

SB

_H

UB

1_E

N_O

C

US

B_H

UB

1_S

SR

X+

US

B_H

UB

1_S

SR

X-

US

B_H

UB

1_S

ST

X+

US

B_H

UB

1_S

ST

X-

US

B_H

UB

2+

US

B_H

UB

2-

_U

SB

_H

UB

2_E

N_O

C

US

B_H

UB

2_S

SR

X+

US

B_H

UB

2_S

SR

X-

US

B_H

UB

2_S

ST

X+

US

B_H

UB

2_S

ST

X-

US

B_H

S1_D

+U

SB

_H

S1_D

-

US

B_H

S1_O

TG

_ID

US

B_H

S1_V

BU

S_D

ET

US

B_S

S_R

X+

US

B_S

S_R

X-

US

B_S

S_T

X+

US

B_S

S_T

X-

US

B_H

S1_D

+U

SB

_H

S1_D

-

US

B_S

S_R

X+

US

B_S

S_R

X-

US

B_S

S_T

X+

US

B_S

S_T

X-

CF

G_N

ON

_R

EM

CF

G_B

C_E

N

CF

G_N

ON

_R

EM

CF

G_B

C_E

N

200 k

O P

ull-

Dow

n200 k

O P

ull-

Up

10 k

O P

ull-

Dow

n10 k

O P

ull-

Up

10 O

Pull-

Dow

n

All

port

s r

em

ovable

[D

EF

] P

ort

1 n

on-r

em

ovable

Port

1, 2 n

on-r

em

ovable

Port

1, 2, 3, non-r

em

ovable

Port

1, 2, 3, 4 n

on-r

em

ovable

200 k

O P

ull-

Dow

n200 k

O P

ull-

Up

10 k

O P

ull-

Dow

n10 k

O P

ull-

Up

10 O

Pull-

Dow

n

No b

attery

charg

ing [D

EF

]P

ort

1 b

attery

charg

ing

Port

1, 2 b

attery

charg

ing

Port

1, 2, 3, battery

charg

ing

Port

1, 2, 3, 4 b

attery

charg

ing

R1

01

06

03

20

0K

1%

V_3P

3 GN

DG

ND

R1

02

06

03

20

0K

1%

R1

04

06

03

10

1%

V_3P

3

1%

20

0K

06

03

R1

03

_U

SB

0_E

N_O

C

on E

VB

it w

as U

SB

_O

TG

1_O

C_B

:it s

hould

be n

egate

d

US

B0+

US

B0-

V_1P

2

V_1P

2

VD

D_LD

O_U

SB

_1P

0

R5

04

02

10

K

1%

V_3P

3

pullu

p+

gpio

norm

ally

enable

d

US

B0_E

N

US

B0_O

TG

_ID

US

B0_V

BU

S_D

ET

GN

DG

ND

GN

D

GN

D

Y1

CX

32

25

SA

25

00

0D

0P

TV

CC

25M

EG

Hz

50

V1

6p

F

04

02

C3

38

50

V1

6p

F

04

02

C3

39

US

B_H

UB

3_S

S_R

X+

US

B_H

UB

3_S

S_R

X-

US

B_H

UB

3_S

S_T

X+

US

B_H

UB

3_S

S_T

X-

US

B_H

UB

4_S

S_R

X+

US

B_H

UB

4_S

S_R

X-

US

B_H

UB

4_S

S_T

X+

US

B_H

UB

4_S

S_T

X-

The d

evic

e d

ete

cts

pullu

ps a

nd s

et I2

C m

ode

(actu

ally

SM

B)

Suggeste

d v

alu

e b

y D

S

It h

as inte

rnal tim

er

for

Pow

er

On R

eset

54

_U

SB

_H

UB

4_E

N_O

C

US

B_H

UB

4+

US

B_H

UB

4-

R5

2

04

02

10

0K

1%V

_3P

3

HU

B_

RS

T

Fro

m im

x8 G

PIO

(esai0

)A

ctive h

igh

HS

IC is p

hysic

al la

yer

for

US

B s

uitable

for

ICs o

n the s

am

e P

CB

. H

ere

not used

_E

N_O

C is a

n O

D s

ignal, input to

a load s

witch for

VB

US

: ty

pic

ally

, U

SB

sw

itches h

ave a

n O

ver

Curr

ent pin

(open d

rain

).

If E

N a

nd O

C a

re c

onnecte

d togeth

er,

this

sig

nal has b

oth

usages.

[See S

MA

RC

Spec for

description]

R6

04

02

10

K

1%

1%

10

K0

40

2

R7

C8

80

40

21

00

nF

50

VC

89

04

02

10

0n

F5

0V

C9

00

40

21

00

nF

50

V

_H

UB

_R

ST

C9

10

40

21

00

nF

50

V

C9

20

40

21

00

nF

50

V

C9

30

40

21

00

nF

50

V

C9

40

40

21

00

nF

50

V

C9

50

40

21

00

nF

50

V

C9

60

40

21

00

nF

50

V

C9

70

40

21

00

nF

50

V

C9

80

40

21

00

nF

50

V

C9

90

40

21

00

nF

50

V

attaccare

le a

limenta

zio

ni

Q2

16

2P

EM

H9

50

V

GN

D

R8

04

02

10

K1

%

V_3P

3

US

B_

HU

B_

SS

keep r

eset lo

w to g

o to low

-pow

er

sta

te

DS

4

2

1

NS

R0

5T4

0P

2T5

G

US

B0_E

N

_U

SB

0_E

N_O

CIn

put to

iM

X8

US

B_

HU

B1

GN

D

C2

22

04

02

22

0n

F1

6V

R8

20

40

20 1

%

GND

ID tie

d to G

ND

make the iM

X8

behave a

s a

Host

VB

US

to G

ND

: th

e h

ost should

pro

vid

e V

BU

S

Shift fr

om

1.8

V to 3

.3V

R1

53

04

02

10

K1

%

GND

Figure

A.21:

USB

block

ofiM

X8an

dHub

85

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/ A4

Re

vie

we

r

Dra

ftma

n

iMX

8S

OM

L. G

irau

di

22

36

1.0

DD

/M

M/

YY

YY

Mo

du

le

SC

LS

DA SP

I2

BT

_U

AR

T_R

XB

T_U

AR

T_T

X

EN

_R

ST

_IR

QR

TC

_C

K

DM

A_I2

C2_S

CL

DM

A_I2

C2_S

DA

SP

I2

RT

C_O

UT

UA

RT

2_T

XU

AR

T2_R

X

WIF

I_E

N

_W

IFI_

RS

T

_W

IFI_

INT

LP

DD

R4-1

imx8_gro

und

lpddr4

_0

imx8_pow

er

eepro

m

wifi_

bt

WD

I

PW

RO

N

ST

AN

DB

Y

_R

ES

ET

EW

AR

N

_IN

T

US

DH

C1_V

SE

LU

SD

HC

2_V

SE

LP

GO

OD

SC

LS

DA

FS

OB

SC

U_W

DO

G_O

UT

SC

U_P

MIC

_O

N_R

EQ

SC

U_P

MIC

_S

TA

ND

BY

SC

U_P

MIC

_I2

C_S

CL

SC

U_P

MIC

_I2

C_S

DA

_R

ST

PM

IC_E

WA

RN

_P

MIC

_IN

T

ON

_O

FF

_B

UT

TO

N

_W

DT

_T

IME

_O

UT

SN

VS

_T

AM

PE

R_IN

0S

NV

S_T

AM

PE

R_IN

1S

NV

S_T

AM

PE

R_O

UT

0S

NV

S_T

AM

PE

R_O

UT

1

PG

OO

D

_C

AR

RIE

R_S

TB

YC

AR

RIE

R_P

WR

_O

N

JT

AG

RT

C_O

UT

IMX

8_B

OO

T0

IMX

8_B

OO

T1

IMX

8_B

OO

T2

IMX

8_B

OO

T3

IMX

8_B

OO

T4

IMX

8_B

OO

T5

_R

ST

_O

UT

PG

US

DH

C1_V

SE

LU

SD

HC

2_V

SE

L

SC

U_W

DO

G_O

UT

_P

MIC

_P

OR

_R

ST

RT

C_O

UT

pm

ic

SC

U_

PM

IC_

I2C

_S

CL

SC

U_

PM

IC_

I2C

_S

DA

imx8_scu_snvs

auxsupply

ON

_O

FF

_B

UTTO

N

_W

DT_

TIM

E_

OU

T

SN

VS

_TA

MP

ER

_IN

1S

NV

S_

TA

MP

ER

_O

UT0

SN

VS

_TA

MP

ER

_O

UT1

CA

RR

IER

_P

WR

_O

N_

CA

RR

IER

_S

TB

Y

JTA

G

SC

U_P

MIC

_O

N_R

EQ

SC

U_P

MIC

_S

TA

ND

BY

PG

OO

D

_P

MIC

_IN

T

PM

IC_E

WA

RN

PM

IC_E

WA

RN

_P

MIC

_IN

T

PG

OO

D

_R

ST

_IN

_R

ST

_D

BG

_R

ST

_P

MIC

_P

OR

SC

U_W

DO

G_O

UT

_R

ST

_P

MIC

_P

OR

_R

ST_

IN

_V

IN_

PW

R_

BA

D

reset

_R

ST_

DB

G

SC

U_P

MIC

_O

N_R

EQ

SC

U_P

MIC

_S

TA

ND

BY

PO

WE

R &

RE

SE

T

LP

DD

R

PG

_1P

2

_F

OR

CE

_R

EC

OV

_B

OO

T_S

EL2

_B

OO

T_S

EL1

_B

OO

T_S

EL0

OU

T0

OU

T1

OU

T2

OU

T3

OU

T4

OU

T5

boot

_B

OO

T_

SE

L0

_B

OO

T_

SE

L1

_B

OO

T_

SE

L2

_F

OR

CE

_R

EC

OV

_R

ST_

OU

T

_V

IN_P

WR

_B

AD

vin

_sw

itch

SN

VS

_TA

MP

ER

_IN

0

Figu

reA.22:

Secon

dpart

ofTop

Level

86

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/A4

GN

D

GN

D

RE

G_E

N

PG

AG

ND

EP

GN

D

PG

ND

PV

IN

PG

AV

IN

EN

FB

SW

RE

G_E

N

GN

DG

ND

GN

D

PG F

eedback p

ath

Level shifte

r:W

hen 1

.8V

is h

igh, enable

the b

uck

hig

h S

ide s

witch

The r

egula

oto

r tu

rns O

N a

fter

1.8

VT

hen, it a

llow

s 3

.3V

to b

e c

onnecte

d to the H

UB

this

pullu

p a

lso s

erv

es a

s b

ase r

esis

tance for

BJT

To the U

SB

Hub:

it n

eeds 3

.3 a

fter

1.2

Tre

shold

s c

hage w

ith A

VIN

:E

N m

ust be r

efe

rred to V

DD

_IN

Re

vie

we

r

Dra

ftm

an

iMX

8S

OM

L.

Gir

au

di

23

36

1.0

DD

/M

M/

YY

YY

SW

_R

EG

_1

P2

V

VD

D_IN

_S

W

04

02

R5

4

1%

10

0K

TP

S62067Q

DS

GR

Q1

U15

2 4

5 7

6

8 1 93

VD

D_IN

_S

W

L1

6TF

M2

52

01

2A

LM

A1

R0

MTA

A1

uH

C4

03

04

02

22

pF

50

V

V_1P

2

PG

V_1P

8

V_3P

3V

_3P

3_H

UB

M6

S

D

G

SI3

429E

DV

-T1-G

E3

21m

20V

R2

0

04

02

10

K

1%

R1

55

04

02

33

0K

1%

1%

33

0K

04

02

R1

56

C5

2

04

02

10

0n

F1

6V

1.8

V e

nable

s the B

uck

the b

uck P

G e

nable

s the 3

.3V

to

US

B H

ub

43

5Q

4P

EM

H9

50

V

43

5Q

3P

EM

H9

50

V

C3

92

08

05

10

uF

10

V1

0V

10

uF

08

05

C3

93

VD

D_IN

_S

W

GN

D

04

02

R5

5

1%

10

0K

16

2Q

3P

EM

H9

50

V

R2

1

04

02

10

K

1%

this

adds to

the b

ase r

esis

tance

Figure

A.23:

Buck

generating1.2V

87

A – Schematic

GN

D

1A

1B

1C

1Y

2A

2B

2C

2Y

GN

D

VC

C

1A

1B

1C

1Y

2A

2B

2C

2Y

GN

D

VC

C

A N

OR

B

B A

ND

C

A A

ND

_C

A A

ND

_C

y <

-> O

UT

x <

-> _

BO

OT

_S

EL

y5 =

!(x2 +

x0)

y4 =

x1 * x

0y3 =

!y5

y2 =

y3 * !x

1y1 =

x2 * !x

1y0 =

0

+-

--

-+

--

--

+-

--

-+

--

--

+-

--

-+

--

--

+-

--

-+

--

--

+-

--

-+

--

--

--

--

+

|

y5

|

y

4

|

y3

|

y

2

|

y1

|

y

0

|

x2

|

x

1

|

x0

|

Bo

ot

|

+-

--

-+

--

--

+-

--

-+

--

--

+-

--

-+

--

--

+-

--

-+

--

--

+-

--

-+

--

--

--

--

+

|

1

|

0

|

0

|

0

|

0

|

0

|

0

|

0

|

0

|

S

AT

A

|

|

0

|

0

|

1

|

1

|

0

|

0

|

0

|

0

|

1

|

U

SH

DC

1

|

|

0

|

0

|

1

|

1

|

1

|

0

|

1

|

0

|

0

|

U

SH

DC

2

|

|

0

|

0

|

1

|

0

|

0

|

0

|

1

|

1

|

0

|

e

MM

C0

|

|

0

|

1

|

1

|

0

|

0

|

0

|

1

|

1

|

1

|

S

PI

|

+-

--

-+

--

--

+-

--

-+

--

--

+-

--

-+

--

--

+-

--

-+

--

--

+-

--

-+

--

--

--

--

+

_F

OR

CE

_R

EC

OV

pulls

dow

n e

very

outp

ut e

xcept O

UT

2 w

hic

h is

DO

NT

'CA

RE

as lo

ng a

s fu

ses a

re n

ot p

rogra

mm

ed

_B

OO

T_S

EL0

_B

OO

T_S

EL2

_B

OO

T_S

EL1

LO

GIC

_O

UT

4

_B

OO

T_S

EL0

_B

OO

T_S

EL2

_B

OO

T_S

EL0

_B

OO

T_S

EL1

LO

GIC

_O

UT

3

_B

OO

T_S

EL1

_B

OO

T_S

EL1

_B

OO

T_S

EL2

LO

GIC

_O

UT

1

LO

GIC

_O

UT

1

LO

GIC

_O

UT

3

LO

GIC

_O

UT

4

LO

GIC

_O

UT

5

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/ A4

LO

GIC

_O

UT

2

GN

D

LO

GIC

_O

UT

3LO

GIC

_O

UT

5

LO

GIC

_O

UT

5LO

GIC

_O

UT

2

GN

D

GND

GND

K

A1

A2

K

A1

A2

V1P

8_S

CU

V1P8_SCU V1P8_SCU

V1P8_SCU

V1P

8_S

CU

_F

OR

CE

_R

EC

OV

_B

OO

T_

SE

L1

_B

OO

T_

SE

L2

_B

OO

T_

SE

L0

DD

/M

M/

YY

YY

Bo

ot_

log

ic_

ne

two

rk

Re

vie

we

r

L. G

irau

di

iMX

8S

OM

Dra

ftma

n

24

36

1.0

OU

T1

OU

T5

OU

T2

OU

T3

OU

T4

OU

T0

V1P

8_S

CU

V1P

8_S

CU

V1P

8_S

CU

V1P

8_S

CU

V1P

8_S

CU

16

V2

20

nF

04

02

C3

06

DG

ND

=G

ND

;VC

C=

V1P

8_S

CU

U1

7

74

LV

C1

G0

4-

Q1

00

24

DS

2B

AS

40

-0

5W

DS

3B

AS

40

-0

5W

16

V2

20

nF

04

02

C3

07

04

02

1%

10

0K

R6

4

04

02

1%

10

0K

R6

5

1%

1K

04

02

R4

00

40

21

%

10

0K

R6

6

04

02

1%

10

0K

R6

7

74A

UP

2G

57G

F

U16

10

548 7 6

9

3 2 1

74A

UP

2G

58G

F

U18

10

548 7 6

9

3 2 1

1%

1K

04

02

R3

7

16

V2

20

nF

04

02

C3

08

1%

1K

04

02

R3

8

R3

90

40

21

K1

%

Figu

reA.24:

Boot

selectionlogical

net

88

A – Schematic

GN

D

GN

D

Set devic

e a

ddre

ss to 1

010000

Required b

y S

MA

RC

sta

ndard

, sto

res info

about m

odule

.

V_1P

8

22

0n

F1

6V

C3

03

04

02

SD

AS

CL

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/A4

Re

vie

we

r

L.

Gir

au

di

iMX

8S

OM

Dra

ftm

an

26

36

1.0

DD

/M

M/

YY

YY

ee

pro

m_

i2c

_1

GN

D

A0

A1

A2

VS

S

VC

C

WP

SC

LS

DA

U1

4

56 7

8 4

321

AT2

4C

32

D-

MA

HM

-T

SC

LS

DA

Figure

A.25:

I2C

EEPROM

89

A – Schematic

VS

S_M

AIN

_A

G5

VS

S_M

AIN

_A

R5

VS

S_M

AIN

_A

R49

VS

S_M

AIN

_A

R35

VS

S_M

AIN

_A

R31

VS

S_M

AIN

_A

R27

VS

S_M

AIN

_A

R23

VS

S_M

AIN

_A

R19

VS

S_M

AIN

_A

R11

VS

S_M

AIN

_A

P34

VS

S_M

AIN

_A

P30

VS

S_M

AIN

_A

P26

VS

S_M

AIN

_A

P22

VS

S_M

AIN

_A

P18

VS

S_M

AIN

_A

P12

VS

S_M

AIN

_A

N7

VS

S_M

AIN

_A

N53

VS

S_M

AIN

_A

N51

VS

S_M

AIN

_A

N5

VS

S_M

AIN

_A

N49

VS

S_M

AIN

_A

N47

VS

S_M

AIN

_A

N43

VS

S_M

AIN

_A

N41

VS

S_M

AIN

_A

N33

VS

S_M

AIN

_A

N3

VS

S_M

AIN

_A

N29

VS

S_M

AIN

_A

N25

VS

S_M

AIN

_A

N21

VS

S_M

AIN

_A

N17

VS

S_M

AIN

_A

N13

VS

S_M

AIN

_A

N1

VS

S_M

AIN

_A

M8

VS

S_M

AIN

_A

M46

VS

S_M

AIN

_A

M42

VS

S_M

AIN

_A

M36

VS

S_M

AIN

_A

M32

VS

S_M

AIN

_A

M28

VS

S_M

AIN

_A

M24

VS

S_M

AIN

_A

M20

VS

S_M

AIN

_A

M12

VS

S_M

AIN

_A

L41

VS

S_M

AIN

_A

L35

VS

S_M

AIN

_A

L31

VS

S_M

AIN

_A

L27

VS

S_M

AIN

_A

L23

VS

S_M

AIN

_A

L19

VS

S_M

AIN

_A

L13

VS

S_M

AIN

_A

K8

VS

S_M

AIN

_A

K6

VS

S_M

AIN

_A

K52

VS

S_M

AIN

_A

K50

VS

S_M

AIN

_A

K48

VS

S_M

AIN

_A

K46

VS

S_M

AIN

_A

K44

VS

S_M

AIN

_A

K4

VS

S_M

AIN

_A

K38

VS

S_M

AIN

_A

K34

VS

S_M

AIN

_A

K30

VS

S_M

AIN

_A

K26

VS

S_M

AIN

_A

K22

VS

S_M

AIN

_A

K2

VS

S_M

AIN

_A

K18

VS

S_M

AIN

_A

K12

VS

S_M

AIN

_A

K10

VS

S_M

AIN

_A

J41

VS

S_M

AIN

_A

J37

VS

S_M

AIN

_A

J33

VS

S_M

AIN

_A

J29

VS

S_M

AIN

_A

J25

VS

S_M

AIN

_A

J21

VS

S_M

AIN

_A

J17

VS

S_M

AIN

_A

J13

VS

S_M

AIN

_A

H42

VS

S_M

AIN

_A

H36

VS

S_M

AIN

_A

H32

VS

S_M

AIN

_A

H28

VS

S_M

AIN

_A

H24

VS

S_M

AIN

_A

H20

VS

S_M

AIN

_A

H12

VS

S_M

AIN

_A

G9

VS

S_M

AIN

_A

G7

VS

S_M

AIN

_A

G53

VS

S_M

AIN

_A

G51

VS

S_M

AIN

_A

G49

VS

S_M

AIN

_A

T12

VS

S_M

AIN

_A

G47

VS

S_M

AIN

_A

G45

VS

S_M

AIN

_A

G43

VS

S_M

AIN

_A

G41

VS

S_M

AIN

_A

G35

VS

S_M

AIN

_A

G31

VS

S_M

AIN

_A

G3

VS

S_M

AIN

_A

G27

VS

S_M

AIN

_A

G23

VS

S_M

AIN

_A

G19

VS

S_M

AIN

_A

G13

VS

S_M

AIN

_A

G11

VS

S_M

AIN

_A

G1

VS

S_M

AIN

_A

F42

VS

S_M

AIN

_A

F34

VS

S_M

AIN

_A

F30

VS

S_M

AIN

_A

F26

VS

S_M

AIN

_A

F22

VS

S_M

AIN

_A

F18

VS

S_M

AIN

_A

F12

VS

S_M

AIN

_A

E41

VS

S_M

AIN

_A

E37

VS

S_M

AIN

_A

E33

VS

S_M

AIN

_A

E29

VS

S_M

AIN

_A

E25

VS

S_M

AIN

_A

E21

VS

S_M

AIN

_A

E17

VS

S_M

AIN

_A

E13

VS

S_M

AIN

_A

D8

VS

S_M

AIN

_A

D6

VS

S_M

AIN

_A

D52

VS

S_M

AIN

_A

D50

VS

S_M

AIN

_A

D48

VS

S_M

AIN

_A

D46

VS

S_M

AIN

_A

D44

VS

S_M

AIN

_A

D42

VS

S_M

AIN

_A

D4

VS

S_M

AIN

_A

D36

VS

S_M

AIN

_A

D32

VS

S_M

AIN

_A

D28

VS

S_M

AIN

_A

D24

VS

S_M

AIN

_A

D20

VS

S_M

AIN

_A

D2

VS

S_M

AIN

_A

D12

VS

S_M

AIN

_A

D10

VS

S_M

AIN

_A

C41

VS

S_M

AIN

_A

C35

VS

S_M

AIN

_A

C31

VS

S_M

AIN

_A

C27

VS

S_M

AIN

_A

C23

VS

S_M

AIN

_A

C19

VS

S_M

AIN

_A

C13

VS

S_M

AIN

_A

B42

VS

S_M

AIN

_A

B34

VS

S_M

AIN

_A

B30

VS

S_M

AIN

_A

B26

VS

S_M

AIN

_A

B22

VS

S_M

AIN

_A

B18

VS

S_M

AIN

_A

B12

VS

S_M

AIN

_A

A9

VS

S_M

AIN

_A

A7

VS

S_M

AIN

_A

A53

VS

S_M

AIN

_A

A51

VS

S_M

AIN

_A

A5

VS

S_M

AIN

_A

A49

VS

S_M

AIN

_A

A47

VS

S_M

AIN

_A

A45

VS

S_M

AIN

_A

A43

VS

S_M

AIN

_A

A41

VS

S_M

AIN

_A

A37

VS

S_M

AIN

_A

A33

VS

S_M

AIN

_A

A3

VS

S_M

AIN

_A

A29

VS

S_M

AIN

_A

A25

VS

S_M

AIN

_A

A21

VS

S_M

AIN

_A

A17

VS

S_M

AIN

_A

A13

VS

S_M

AIN

_A

A11

VS

S_M

AIN

_A

A1

VS

S_M

AIN

_A

51

VS

S_M

AIN

_A

31

VS

S_M

AIN

_A

3V

SS

_M

AIN

_A

23 U

1

A23

A3

A31

A51

AA

1A

A11

AA

13

AA

17

AA

21

AA

25

AA

29

AA

3A

A33

AA

37

AA

41

AA

43

AA

45

AA

47

AA

49

AA

5A

A51

AA

53

AA

7A

A9

AB

12

AB

18

AB

22

AB

26

AB

30

AB

34

AB

42

AC

13

AC

19

AC

23

AC

27

AC

31

AC

35

AC

41

AD

10

AD

12

AD

2A

D20

AD

24

AD

28

AD

32

AD

36

AD

4A

D42

AD

44

AD

46

AD

48

AD

50

AD

52

AD

6A

D8

AE

13

AE

17

AE

21

AE

25

AE

29

AE

33

AE

37

AE

41

AF

12

AF

18

AF

22

AF

26

AF

30

AF

34

AF

42

AG

1A

G11

AG

13

AG

19

AG

23

AG

27

AG

3A

G31

AG

35

AG

41

AG

43

AG

45

AG

47

AT

12

AG

49

AG

51

AG

53

AG

7A

G9

AH

12

AH

20

AH

24

AH

28

AH

32

AH

36

AH

42

AJ13

AJ17

AJ21

AJ25

AJ29

AJ33

AJ37

AJ41

AK

10

AK

12

AK

18

AK

2A

K22

AK

26

AK

30

AK

34

AK

38

AK

4A

K44

AK

46

AK

48

AK

50

AK

52

AK

6A

K8

AL13

AL19

AL23

AL27

AL31

AL35

AL41

AM

12

AM

20

AM

24

AM

28

AM

32

AM

36

AM

42

AM

46

AM

8A

N1

AN

13

AN

17

AN

21

AN

25

AN

29

AN

3A

N33

AN

41

AN

43

AN

47

AN

49

AN

5A

N51

AN

53

AN

7A

P12

AP

18

AP

22

AP

26

AP

30

AP

34

AR

11

AR

19

AR

23

AR

27

AR

31

AR

35

AR

49

AR

5A

G5

PIM

X8M

6A

VU

DD

1A

VS

S_M

AIN

_B

C35

VS

S_M

AIN

_C

33

VS

S_M

AIN

_C

31

VS

S_M

AIN

_C

29

VS

S_M

AIN

_C

23

VS

S_M

AIN

_C

21

VS

S_M

AIN

_C

19

VS

S_M

AIN

_C

15

VS

S_M

AIN

_C

11

VS

S_M

AIN

_C

1V

SS

_M

AIN

_B

N3

VS

S_M

AIN

_B

N21

VS

S_M

AIN

_B

M46

VS

S_M

AIN

_B

M10

VS

S_M

AIN

_B

L53

VS

S_M

AIN

_B

L21

VS

S_M

AIN

_B

L1

VS

S_M

AIN

_B

K8

VS

S_M

AIN

_B

K6

VS

S_M

AIN

_B

K46

VS

S_M

AIN

_B

K22

VS

S_M

AIN

_B

K20

VS

S_M

AIN

_B

K18

VS

S_M

AIN

_B

K16

VS

S_M

AIN

_B

K14

VS

S_M

AIN

_B

K12

VS

S_M

AIN

_B

K10

VS

S_M

AIN

_B

J51

VS

S_M

AIN

_B

J5

VS

S_M

AIN

_B

J49

VS

S_M

AIN

_B

J47

VS

S_M

AIN

_B

J45

VS

S_M

AIN

_B

J43

VS

S_M

AIN

_B

J41

VS

S_M

AIN

_B

J39

VS

S_M

AIN

_B

J37

VS

S_M

AIN

_B

J35

VS

S_M

AIN

_B

J33

VS

S_M

AIN

_B

J31

VS

S_M

AIN

_B

J3

VS

S_M

AIN

_B

J29

VS

S_M

AIN

_B

J27

VS

S_M

AIN

_B

J25

VS

S_M

AIN

_B

H4

VS

S_M

AIN

_B

H22

VS

S_M

AIN

_B

G7

VS

S_M

AIN

_B

G47

VS

S_M

AIN

_B

G23

VS

S_M

AIN

_B

G21

VS

S_M

AIN

_B

G19

VS

S_M

AIN

_B

G17

VS

S_M

AIN

_B

G15

VS

S_M

AIN

_B

G13

VS

S_M

AIN

_B

G11

VS

S_M

AIN

_B

F52

VS

S_M

AIN

_B

F44

VS

S_M

AIN

_B

F42

VS

S_M

AIN

_B

F40

VS

S_M

AIN

_B

F4

VS

S_M

AIN

_B

F38

VS

S_M

AIN

_B

F36

VS

S_M

AIN

_B

F34

VS

S_M

AIN

_B

F32

VS

S_M

AIN

_B

F30

VS

S_M

AIN

_B

F28

VS

S_M

AIN

_B

F26

VS

S_M

AIN

_B

E9

VS

S_M

AIN

_B

E7

VS

S_M

AIN

_B

E45

VS

S_M

AIN

_B

E3

VS

S_M

AIN

_B

D50

VS

S_M

AIN

_B

D48

VS

S_M

AIN

_B

D26

VS

S_M

AIN

_B

D24

VS

S_M

AIN

_B

D22

VS

S_M

AIN

_B

D20

VS

S_M

AIN

_B

D18

VS

S_M

AIN

_B

D16

VS

S_M

AIN

_B

D14

VS

S_M

AIN

_B

C43

VS

S_M

AIN

_B

C41

VS

S_M

AIN

_B

C39

VS

S_M

AIN

_B

C37

VS

S_M

AIN

_B

C31

VS

S_M

AIN

_B

C33

VS

S_M

AIN

_C

41

VS

S_M

AIN

_B

C29

VS

S_M

AIN

_B

C27

VS

S_M

AIN

_B

C25

VS

S_M

AIN

_B

C23

VS

S_M

AIN

_B

C21

VS

S_M

AIN

_B

C19

VS

S_M

AIN

_B

C17

VS

S_M

AIN

_B

C15

VS

S_M

AIN

_B

C13

VS

S_M

AIN

_B

C11

VS

S_M

AIN

_B

B6

VS

S_M

AIN

_B

B52

VS

S_M

AIN

_B

B48

VS

S_M

AIN

_B

B40

VS

S_M

AIN

_B

B38

VS

S_M

AIN

_B

B36

VS

S_M

AIN

_B

B34

VS

S_M

AIN

_B

B32

VS

S_M

AIN

_B

B30

VS

S_M

AIN

_B

B28

VS

S_M

AIN

_B

B26

VS

S_M

AIN

_B

B24

VS

S_M

AIN

_B

B22

VS

S_M

AIN

_B

B20

VS

S_M

AIN

_B

B2

VS

S_M

AIN

_B

B18

VS

S_M

AIN

_B

B16

VS

S_M

AIN

_B

B14

VS

S_M

AIN

_B

B10

VS

S_M

AIN

_B

A45

VS

S_M

AIN

_B

A41

VS

S_M

AIN

_B

A39

VS

S_M

AIN

_B

A37

VS

S_M

AIN

_B

A35

VS

S_M

AIN

_B

A33

VS

S_M

AIN

_B

A31

VS

S_M

AIN

_B

A29

VS

S_M

AIN

_B

A27

VS

S_M

AIN

_B

A25

VS

S_M

AIN

_B

A23

VS

S_M

AIN

_B

A21

VS

S_M

AIN

_B

A19

VS

S_M

AIN

_B

A17

VS

S_M

AIN

_B

A15

VS

S_M

AIN

_B

A13

VS

S_M

AIN

_B

6V

SS

_M

AIN

_B

46

VS

S_M

AIN

_B

36

VS

S_M

AIN

_B

28

VS

S_M

AIN

_B

18

VS

S_M

AIN

_B

14

VS

S_M

AIN

_B

12

VS

S_M

AIN

_A

W7

VS

S_M

AIN

_A

W51

VS

S_M

AIN

_A

W47

VS

S_M

AIN

_A

W43

VS

S_M

AIN

_A

W37

VS

S_M

AIN

_A

W3

VS

S_M

AIN

_A

W23

VS

S_M

AIN

_A

W19

VS

S_M

AIN

_A

W11

VS

S_M

AIN

_A

V42

VS

S_M

AIN

_A

V38

VS

S_M

AIN

_A

V12

VS

S_M

AIN

_A

U37

VS

S_M

AIN

_A

U33

VS

S_M

AIN

_A

U31

VS

S_M

AIN

_A

U25

VS

S_M

AIN

_A

U17

VS

S_M

AIN

_A

T8

VS

S_M

AIN

_A

T6

VS

S_M

AIN

_A

T52

VS

S_M

AIN

_A

T50

VS

S_M

AIN

_A

T46

VS

S_M

AIN

_A

T42

VS

S_M

AIN

_A

T4

VS

S_M

AIN

_A

T36

VS

S_M

AIN

_A

T32

VS

S_M

AIN

_A

T28

VS

S_M

AIN

_A

T24

VS

S_M

AIN

_A

T20

VS

S_M

AIN

_A

T2

VS

S_M

AIN

_A

T16 U1

AT

16

AT

2A

T20

AT

24

AT

28

AT

32

AT

36

AT

4A

T42

AT

46

AT

50

AT

52

AT

6A

T8

AU

17

AU

25

AU

31

AU

33

AU

37

AV

12

AV

38

AV

42

AW

11

AW

19

AW

23

AW

3A

W37

AW

43

AW

47

AW

51

AW

7B

12

B14

B18

B28

B36

B46

B6

BA

13

BA

15

BA

17

BA

19

BA

21

BA

23

BA

25

BA

27

BA

29

BA

31

BA

33

BA

35

BA

37

BA

39

BA

41

BA

45

BB

10

BB

14

BB

16

BB

18

BB

2B

B20

BB

22

BB

24

BB

26

BB

28

BB

30

BB

32

BB

34

BB

36

BB

38

BB

40

BB

48

BB

52

BB

6B

C11

BC

13

BC

15

BC

17

BC

19

BC

21

BC

23

BC

25

BC

27

BC

29

C41

PIM

X8M

6A

VU

DD

1A

VS

S_M

AIN

_L33

VS

S_M

AIN

_Y

36

VS

S_M

AIN

_Y

32

VS

S_M

AIN

_Y

28

VS

S_M

AIN

_Y

24

VS

S_M

AIN

_Y

20

VS

S_M

AIN

_Y

12

VS

S_M

AIN

_W

35

VS

S_M

AIN

_W

31

VS

S_M

AIN

_W

27

VS

S_M

AIN

_W

23

VS

S_M

AIN

_W

19

VS

S_M

AIN

_V

8V

SS

_M

AIN

_V

6V

SS

_M

AIN

_V

52

VS

S_M

AIN

_V

50

VS

S_M

AIN

_V

48

VS

S_M

AIN

_V

46

VS

S_M

AIN

_V

44

VS

S_M

AIN

_V

42

VS

S_M

AIN

_V

4V

SS

_M

AIN

_V

34

VS

S_M

AIN

_V

30

VS

S_M

AIN

_V

22

VS

S_M

AIN

_V

2V

SS

_M

AIN

_V

18

VS

S_M

AIN

_V

12

VS

S_M

AIN

_V

10

VS

S_M

AIN

_U

37

VS

S_M

AIN

_U

33

VS

S_M

AIN

_U

21

VS

S_M

AIN

_U

17

VS

S_M

AIN

_T

42

VS

S_M

AIN

_T

36

VS

S_M

AIN

_T

32

VS

S_M

AIN

_T

28

VS

S_M

AIN

_T

24

VS

S_M

AIN

_T

20

VS

S_M

AIN

_T

16

VS

S_M

AIN

_T

12

VS

S_M

AIN

_R

9V

SS

_M

AIN

_R

7V

SS

_M

AIN

_R

53

VS

S_M

AIN

_R

51

VS

S_M

AIN

_R

5V

SS

_M

AIN

_R

49

VS

S_M

AIN

_R

47

VS

S_M

AIN

_R

45

VS

S_M

AIN

_R

43

VS

S_M

AIN

_R

39

VS

S_M

AIN

_R

37

VS

S_M

AIN

_R

35

VS

S_M

AIN

_R

33

VS

S_M

AIN

_R

31

VS

S_M

AIN

_R

3V

SS

_M

AIN

_R

29

VS

S_M

AIN

_R

27

VS

S_M

AIN

_R

25

VS

S_M

AIN

_R

23

VS

S_M

AIN

_R

21

VS

S_M

AIN

_R

19

VS

S_M

AIN

_R

17

VS

S_M

AIN

_R

15

VS

S_M

AIN

_R

11

VS

S_M

AIN

_R

1V

SS

_M

AIN

_P

42

VS

S_M

AIN

_P

12

VS

S_M

AIN

_N

41

VS

S_M

AIN

_N

13

VS

S_M

AIN

_M

8V

SS

_M

AIN

_M

6V

SS

_M

AIN

_M

52

VS

S_M

AIN

_M

50

VS

S_M

AIN

_M

48

VS

S_M

AIN

_M

46

VS

S_M

AIN

_M

44

VS

S_M

AIN

_M

4V

SS

_M

AIN

_M

2V

SS

_M

AIN

_M

10

VS

S_M

AIN

_L43

VS

S_M

AIN

_L41

VS

S_M

AIN

_L39

VS

S_M

AIN

_L37

VS

S_M

AIN

_L29

VS

S_M

AIN

_L31

VS

S_M

AIN

_Y

42

VS

S_M

AIN

_L35

VS

S_M

AIN

_L27

VS

S_M

AIN

_L25

VS

S_M

AIN

_L23

VS

S_M

AIN

_L21

VS

S_M

AIN

_L19

VS

S_M

AIN

_L17

VS

S_M

AIN

_L15

VS

S_M

AIN

_L13

VS

S_M

AIN

_L11

VS

S_M

AIN

_K

8V

SS

_M

AIN

_K

46

VS

S_M

AIN

_K

42

VS

S_M

AIN

_K

40

VS

S_M

AIN

_K

38

VS

S_M

AIN

_K

36

VS

S_M

AIN

_K

34

VS

S_M

AIN

_K

32

VS

S_M

AIN

_K

30

VS

S_M

AIN

_K

28

VS

S_M

AIN

_K

26

VS

S_M

AIN

_K

24

VS

S_M

AIN

_K

22

VS

S_M

AIN

_K

20

VS

S_M

AIN

_K

18

VS

S_M

AIN

_K

16

VS

S_M

AIN

_K

14

VS

S_M

AIN

_K

12

VS

S_M

AIN

_J7

VS

S_M

AIN

_J53

VS

S_M

AIN

_J51

VS

S_M

AIN

_J5

VS

S_M

AIN

_J49

VS

S_M

AIN

_J47

VS

S_M

AIN

_J41

VS

S_M

AIN

_J37

VS

S_M

AIN

_J35

VS

S_M

AIN

_J31

VS

S_M

AIN

_J3

VS

S_M

AIN

_J29

VS

S_M

AIN

_J25

VS

S_M

AIN

_J23

VS

S_M

AIN

_J21

VS

S_M

AIN

_J19

VS

S_M

AIN

_J17

VS

S_M

AIN

_J15

VS

S_M

AIN

_J13

VS

S_M

AIN

_J1

VS

S_M

AIN

_G

9V

SS

_M

AIN

_G

5V

SS

_M

AIN

_G

49

VS

S_M

AIN

_G

39

VS

S_M

AIN

_G

33

VS

S_M

AIN

_G

27

VS

S_M

AIN

_G

23

VS

S_M

AIN

_G

21

VS

S_M

AIN

_G

15

VS

S_M

AIN

_F

52

VS

S_M

AIN

_F

50

VS

S_M

AIN

_F

44

VS

S_M

AIN

_F

4V

SS

_M

AIN

_F

36

VS

S_M

AIN

_F

32

VS

S_M

AIN

_F

24

VS

S_M

AIN

_F

2V

SS

_M

AIN

_F

12

VS

S_M

AIN

_E

9V

SS

_M

AIN

_E

47

VS

S_M

AIN

_E

21

VS

S_M

AIN

_E

19

VS

S_M

AIN

_D

6V

SS

_M

AIN

_D

40

VS

S_M

AIN

_D

38

VS

S_M

AIN

_D

36

VS

S_M

AIN

_D

34

VS

S_M

AIN

_D

28

VS

S_M

AIN

_D

26

VS

S_M

AIN

_D

24

VS

S_M

AIN

_D

18

VS

S_M

AIN

_D

16

VS

S_M

AIN

_C

9V

SS

_M

AIN

_C

53

VS

S_M

AIN

_C

49

VS

S_M

AIN

_C

43 U

1

C43

C49

C53

C9

D16

D18

D24

D26

D28

D34

D36

D38

D40

D6

E19

E21

E47

E9

F12

F2

F24

F32

F36

F4

F44

F50

F52

G15

G21

G23

G27

G33

G39

G49

G5

G9

J1

J13

J15

J17

J19

J21

J23

J25

J29

J3

J31

J35

J37

J41

J47

J49

J5

J51

J53

J7

K12

K14

K16

K18

K20

K22

K24

K26

K28

K30

K32

K34

K36

K38

K40

K42

K46

K8

L11

L13

L15

L17

L19

L21

L23

L25

L27

L35

Y42

L31

L29

L37

L39

L41

L43

M10

M2

M4

M44

M46

M48

M50

M52

M6

M8

N13

N41

P12

P42

R1

R11

R15

R17

R19

R21

R23

R25

R27

R29

R3

R31

R33

R35

R37

R39

R43

R45

R47

R49

R5

R51

R53

R7

R9

T12

T16

T20

T24

T28

T32

T36

T42

U17

U21

U33

U37

V10

V12

V18

V2

V22

V30

V34

V4

V42

V44

V46

V48

V50

V52

V6

V8

W19

W23

W27

W31

W35

Y12

Y20

Y24

Y28

Y32

Y36

L33

PIM

X8M

6A

VU

DD

1A

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/ A3

12

34

56

78

ABCDEF

Re

vie

we

r

Dra

ftma

n

iMX

8S

OM

L. G

irau

di

27

36

1.0

DD

/M

M/

YY

YY

imx

8_

gro

un

d

GN

DG

ND

GN

DG

ND

GN

DG

ND

Figu

reA.26:

Grou

ndblock

iMX8

90

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/A3

12

34

56

78

A B C D E F

Re

vie

we

r

Dra

ftm

an

iMX

8S

OM

L.

Gir

au

di

28

36

1.0

DD

/M

M/

YY

YY

imx

8_

po

we

r

VD

D_A

53_A

M22

VD

D_A

53_A

M26

VD

D_A

53_A

N23

VD

D_A

53_A

P24

VD

D_A

53_A

R21

VD

D_A

53_A

R25

VD

D_A

53_A

T22

VD

D_A

72_A

L29

VD

D_A

72_A

L33

VD

D_A

72_A

M30

VD

D_A

72_A

M34

VD

D_A

72_A

N27

VD

D_A

72_A

N31

VD

D_A

72_A

N35

VD

D_A

72_A

P28

VD

D_A

72_A

P32

VD

D_A

72_A

R29

VD

D_A

72_A

R33

VD

D_A

72_A

T34

VD

D_A

NA

0_1P

8_U

29

VD

D_A

NA

0_1P

8_U

31

VD

D_A

NA

1_1P

8V

DD

_A

NA

2_1P

8V

DD

_A

NA

3_1P

8

VD

D_C

P_1P

8

VD

D_G

PU

0_A

A19

VD

D_G

PU

0_A

B20

VD

D_G

PU

0_A

C21

VD

D_G

PU

0_A

D18

VD

D_G

PU

0_A

D22

VD

D_G

PU

0_A

E19

VD

D_G

PU

0_V

20

VD

D_G

PU

0_W

21

VD

D_G

PU

0_Y

18

VD

D_G

PU

0_Y

22

VD

D_G

PU

1_A

A35

VD

D_G

PU

1_A

B32

VD

D_G

PU

1_A

B36

VD

D_G

PU

1_A

C33

VD

D_G

PU

1_A

D34

VD

D_G

PU

1_A

E35

VD

D_G

PU

1_U

35

VD

D_G

PU

1_V

36

VD

D_G

PU

1_W

33

VD

D_G

PU

1_Y

34

VD

D_M

1P

8_C

AP

VD

D_M

AIN

_A

A23

VD

D_M

AIN

_A

A27

VD

D_M

AIN

_A

A31

VD

D_M

AIN

_A

B24

VD

D_M

AIN

_A

B28

VD

D_M

AIN

_A

C25

VD

D_M

AIN

_A

C29

VD

D_M

AIN

_A

D26

VD

D_M

AIN

_A

D30

VD

D_M

AIN

_A

E23

VD

D_M

AIN

_A

E27

VD

D_M

AIN

_A

E31

VD

D_M

AIN

_A

F20

VD

D_M

AIN

_A

F24

VD

D_M

AIN

_A

F28

VD

D_M

AIN

_A

F32

VD

D_M

AIN

_A

F36

VD

D_M

AIN

_A

G21

VD

D_M

AIN

_A

G33

VD

D_M

AIN

_A

H18

VD

D_M

AIN

_A

H34

VD

D_M

AIN

_A

J19

VD

D_M

AIN

_A

J31

VD

D_M

AIN

_A

K32

VD

D_M

AIN

_A

K36

VD

D_M

AIN

_A

L17

VD

D_M

AIN

_A

L21

VD

D_M

AIN

_A

L25

VD

D_M

AIN

_A

L37

VD

D_M

AIN

_A

M18

VD

D_M

AIN

_A

N19

VD

D_M

AIN

_A

P20

VD

D_M

AIN

_A

P36

VD

D_M

AIN

_A

R17

VD

D_M

AIN

_A

R37

VD

D_M

AIN

_A

T18

VD

D_M

AIN

_A

T26

VD

D_M

AIN

_A

T30

VD

D_M

AIN

_A

U35

VD

D_M

AIN

_T

34

VD

D_M

AIN

_U

19

VD

D_M

AIN

_U

23

VD

D_M

AIN

_V

24

VD

D_M

AIN

_V

32

VD

D_M

AIN

_W

25

VD

D_M

AIN

_W

29

VD

D_M

AIN

_Y

26

VD

D_M

AIN

_Y

30

VD

D_M

EM

C_A

C17

VD

D_M

EM

C_A

C37

VD

D_M

EM

C_A

G17

VD

D_M

EM

C_A

G25

VD

D_M

EM

C_A

G29

VD

D_M

EM

C_A

G37

VD

D_M

EM

C_A

H22

VD

D_M

EM

C_A

H26

VD

D_M

EM

C_A

H30

VD

D_M

EM

C_A

J23

VD

D_M

EM

C_A

J27

VD

D_M

EM

C_A

K24

VD

D_M

EM

C_A

K28

VD

D_M

EM

C_W

17

VD

D_M

EM

C_W

37

U1

W37

W17

AK

28

AK

24

AJ27

AJ23

AH

30

AH

26

AH

22

AG

37

AG

29

AG

25

AG

17

AC

37

AC

17

Y30

Y26

W29

W25

V32

V24

U23

U19

T34

AU

35

AT

30

AT

26

AT

18

AR

37

AR

17

AP

36

AP

20

AN

19

AM

18

AL37

AL25

AL21

AL17

AK

36

AK

32

AJ31

AJ19

AH

34

AH

18

AG

33

AG

21

AF

36

AF

32

AF

28

AF

24

AF

20

AE

31

AE

27

AE

23

AD

30

AD

26

AC

29

AC

25

AB

28

AB

24

AA

31

AA

27

AA

23

AP

42

Y34

W33

V36

U35

AE

35

AD

34

AC

33

AB

36

AB

32

AA

35

Y22

Y18

W21

V20

AE

19

AD

22

AD

18

AC

21

AB

20

AA

19

AN

37

AK

20

AJ35

U25

U31

U29

AT

34

AR

33

AR

29

AP

32

AP

28

AN

35

AN

31

AN

27

AM

34

AM

30

AL33

AL29

AT

22

AR

25

AR

21

AP

24

AN

23

AM

26

AM

22

PIM

X8M

6A

VU

DD

1A

Tie

these togeth

er

with V

DD

_S

CU

and V

DD

_S

CU

_A

NA

Capacitors

are

pla

ced in b

lock im

x8_S

CU

_S

NV

SV1P

8_S

CU

C1

40

04

02

1u

F1

0V

10

V1

uF

04

02

C1

41

C1

42

04

02

1u

F1

0V

10

V1

uF

04

02

C1

43

C1

44

04

02

1u

F1

0V

10

V1

uF

04

02

C1

45

C1

46

04

02

1u

F1

0V

10

V1

uF

04

02

C1

47

C1

48

04

02

1u

F1

0V

BO

TT

OM

TO

P

V_M

AIN

C3

58

12

10

47

uF

6.3

V6

.3V

47

uF

12

10

C3

59

C3

60

12

10

47

uF

6.3

V

C3

61

12

10

47

uF

6.3

V

GN

D

NO

TE

: if n

eeded for

layout re

asons, 47uF

G

CM

32E

R70J476K

E19 c

apacitors

may b

e r

epla

ced w

ith the s

malle

r G

RT

21B

C80G

476M

E13.

Keep in m

ind that it is 4

Vdc a

nd h

as "

Dera

ting1"

label

10

V1

uF

04

02

C1

49

C1

50

04

02

1u

F1

0V

10

V1

uF

04

02

C1

51

C1

52

04

02

1u

F1

0V

10

V1

uF

04

02

C1

53

C1

54

04

02

1u

F1

0V

BO

TT

OM

TO

P

6.3

V4

7u

F

12

10

C3

62

C3

63

12

10

47

uF

6.3

V6

.3V

47

uF

12

10

C3

64

6.3

V4

7u

F

12

10

C3

65

C3

66

12

10

47

uF

6.3

V

C3

67

12

10

47

uF

6.3

V

GN

D

V_M

EM

C

C3

18

04

02

2.2

uF

10

V

GN

D

Bottom

MU

ST

be tie

d togeth

ere

with o

ther

pow

ers

BO

TT

OM

10

V1

uF

04

02

C1

55

C1

56

04

02

1u

F1

0V

10

V1

uF

04

02

C1

57

C1

58

04

02

1u

F1

0V

10

V1

uF

04

02

C1

59

C1

60

04

02

1u

F1

0V

TO

P

6.3

V4

7u

F

12

10

C3

68

C3

69

12

10

47

uF

6.3

V6

.3V

47

uF

12

10

C3

70

6.3

V4

7u

F

12

10

C3

71

C3

72

12

10

47

uF

6.3

V

C3

73

12

10

47

uF

6.3

V

GN

D

V_G

PU

1

10

V1

uF

04

02

C1

61

C1

62

04

02

1u

F1

0V

10

V1

uF

04

02

C1

63

C1

64

04

02

1u

F1

0V

10

V1

uF

04

02

C1

65

C1

66

04

02

1u

F1

0V

6.3

V4

7u

F

12

10

C3

74

C3

75

12

10

47

uF

6.3

V6

.3V

47

uF

12

10

C3

76

6.3

V4

7u

F

12

10

C3

77

C3

78

12

10

47

uF

6.3

V

C3

79

12

10

47

uF

6.3

V

V_G

PU

0

GN

D

C1

67

04

02

1u

F1

0V

10

V1

uF

04

02

C1

68

C1

69

04

02

1u

F1

0V

10

V1

uF

04

02

C1

70

C1

71

04

02

1u

F1

0V

6.3

V4

7u

F

12

10

C3

80

C3

81

12

10

47

uF

6.3

V6

.3V

47

uF

12

10

C3

82

6.3

V4

7u

F

12

10

C3

83

C3

84

12

10

47

uF

6.3

V

C3

85

12

10

47

uF

6.3

V

C1

72

04

02

1u

F1

0V

10

V1

uF

04

02

C1

73

C1

74

04

02

1u

F1

0V

10

V1

uF

04

02

C1

75

C1

76

04

02

1u

F1

0V

6.3

V4

7u

F

12

10

C3

86

6.3

V4

7u

F

12

10

C3

87

C3

88

12

10

47

uF

6.3

V

C3

89

12

10

47

uF

6.3

V

GN

D

GN

D

V_C

PU

0

V_C

PU

1

BO

TT

OM

TO

P

C1

77

04

02

1u

F1

0V

10

V1

uF

04

02

C1

78

C1

79

04

02

1u

F1

0V

V1P

8_S

CU

GN

DG

ND

GN

DA

lready d

ecouple

d b

y V

DD

_S

CU

_A

NA

V_1P

8_F

ILT

ER

Figure

A.27:

Mainpow

erblock

ofiM

X8

91

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/ A3

12

34

56

78

ABCDEF

Re

vie

we

r

Dra

ftma

n

iMX

8S

OM

1.0

IMX

8_

SC

U_

SN

VS

36

29

L. G

irau

di

DD

/M

M/

YY

YY

SC

U_

PM

IC_

STA

ND

BY

SC

U_

PM

IC_

ON

_R

EQ

SC

U_

WD

OG

_O

UT

SC

U_

PM

IC_

I2C

_S

DA

SC

U_

PM

IC_

I2C

_S

CL

_R

ST

PM

IC_

EW

AR

N

_P

MIC

_IN

T

Capacito

rs a

re a

ll pla

ced h

ere

These p

in s

hould

be tie

d to

geth

er w

ithV

DD

_A

NA

1_1P

8V

DD

_A

NA

2_1P

8V

DD

_A

NA

3_1P

8V

DD

_C

P_1P

8

R1

27

04

02

2.2

K

1%

1%

2.2

K0

40

2

R1

28

V1P

8_S

CU

V1P

8_S

CU

Y4

CM

7V

-T1

A-

32

.76

8k-

9p

F-

20

PP

M-

TB

-Q

A3

2.7

68

KH

z

Note

: VS

S_S

CU

_X

TA

L is

connecte

d to

VS

S_M

AIN

insid

e th

e IC

.T

here

fore

, do n

ot c

onnect to

VS

S_M

AIN

on th

e P

CB

.U

se V

SS

_S

CU

_X

TA

L to

cre

ate

an is

land fo

r the 2

4M

Hz c

rysta

l

C3

21

04

02

2.2

uF

10

V1

0V

2.2

uF

04

02

C3

22

C1

96

04

02

1u

F1

0V

10

V1

uF

04

02

C1

97

BO

TT

OM

TO

P

V1P

8_S

CU

GN

D

Y5

AB

M8

AIG

-2

4.0

00

MH

Z-

12

-2

Z-

T3

24M

EG

Hz

A

AG

ND

A

V1P

8_S

CU

C3

23

04

02

2.2

uF

10

V

A

C3

04

04

02

22

0n

F1

6V

L3

1

MP

Z1

60

8S

60

1A

TD

25 0H

Ferrite

Bead

ON

_O

FF

_B

UTTO

N

C3

35

08

05

4.7

uF

16

V

GN

D

debouncin

gcapacito

r

SN

VS

_TA

MP

ER

_O

UT1

SN

VS

_TA

MP

ER

_O

UT0

SN

VS

_TA

MP

ER

_IN

1S

NV

S_

TA

MP

ER

_IN

0

PG

OO

D

GN

D

LD

O_S

NV

S_C

AP

VD

D_S

NV

S

16

V2

20

nF

04

02

C3

05

C3

24

04

02

2.2

uF

10

V

GN

D

CA

RR

IER

_P

WR

_O

N

_C

AR

RIE

R_

STB

Y

1%

10

K0

40

2

R2

2

V1P

8_S

CU

JTA

GJT

AG

TM

S

TC

K

TD

OT

DI

SC

U_U

AR

T_R

XS

CU

_U

AR

T_T

X

_T

RS

T n

ot c

onnecte

d

RTC

_O

UT

1%

47

K0

40

2R

74

GND

T5

R2

30

40

21

0K

1%

GND

LD

O_S

NV

S_C

AP

VD

D_S

NV

S

GN

D SM

AR

C s

ignal

R1

57

04

02

2.2

1%

R1

43

04

02

10

01

%

R2

4

04

02

10

K

1%

V1P

8_S

CU

snubber

GN

D

1%

04

02

R2

51

0K

IMX

8_

BO

OT5

IMX

8_

BO

OT4

IMX

8_

BO

OT3

IMX

8_

BO

OT2

IMX

8_

BO

OT1

IMX

8_

BO

OT0

JT

AG

_T

CK

JT

AG

_T

DI

JT

AG

_T

DO

JT

AG

_T

MS

JT

AG

_T

RS

T_B

ON

_O

FF

_B

UT

TO

N

PM

IC_E

AR

LY

_W

AR

NIN

GP

MIC

_I2

C_S

CL

PM

IC_I2

C_S

DA

PM

IC_IN

T_B

PM

IC_O

N_R

EQ

PO

R_B

RT

C_X

TA

LI

RT

C_X

TA

LO

SC

U_B

OO

T_M

OD

E0

SC

U_B

OO

T_M

OD

E1

SC

U_B

OO

T_M

OD

E2

SC

U_B

OO

T_M

OD

E3

SC

U_B

OO

T_M

OD

E4

SC

U_B

OO

T_M

OD

E5

SC

U_G

PIO

0_00

SC

U_G

PIO

0_01

SC

U_G

PIO

0_02

SC

U_G

PIO

0_03

SC

U_G

PIO

0_04

SC

U_G

PIO

0_05

SC

U_G

PIO

0_06

SC

U_G

PIO

0_07

SN

VS

_T

AM

PE

R_IN

0S

NV

S_T

AM

PE

R_IN

1S

NV

S_T

AM

PE

R_O

UT

0S

NV

S_T

AM

PE

R_O

UT

1

VD

D_S

CU

_1P

8_A

N39

VD

D_S

CU

_1P

8_A

P38

VD

D_S

CU

_A

NA

_1P

8

VD

D_S

CU

_X

TA

L_1P

8

VD

D_S

NV

S_4P

2V

DD

_S

NV

S_LD

O_1P

8_C

AP

VS

S_S

CU

_X

TA

L_B

K48

VS

S_S

CU

_X

TA

L_B

M48

VS

S_S

CU

_X

TA

L_B

M50

VS

S_S

CU

_X

TA

L_B

N51

XT

ALI

XT

ALO

SC

U_P

MIC

_M

EM

C_O

NS

CU

_P

MIC

_S

TA

ND

BY

SC

U_W

DO

G_O

UT

TE

ST

_M

OD

E_S

ELE

CT

+-

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

A

LT

0

|

AL

T1

|

A

LT

2

|

A

LT

3

|

+-

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

|

SC

U_

DS

C_

BO

OT

_M

OD

E4

|

S

CU

_P

MI

C_

I2

C_

SC

L

|

|

|

|

SC

U_

DS

C_

BO

OT

_M

OD

E5

|

S

CU

_P

MI

C_

I2

C_

SD

A

|

|

|

|

SC

U_

GP

IO

0_

IO

00

|

S

CU

_U

AR

T0

_R

X

|

|

LS

IO

_G

PI

O0

_I

O2

8

|

|

SC

U_

GP

IO

0_

IO

01

|

S

CU

_U

AR

T0

_T

X

|

|

LS

IO

_G

PI

O0

_I

O2

9

|

|

SC

U_

GP

IO

0_

IO

02

|

S

CU

_G

PI

O0

_I

OX

X_

PM

IC

_G

PU

0_

ON

|

|

LS

IO

_G

PI

O0

_I

O3

0

|

|

SC

U_

GP

IO

0_

IO

03

|

S

CU

_G

PI

O0

_I

OX

X_

PM

IC

_G

PU

1_

ON

|

|

LS

IO

_G

PI

O0

_I

O3

1

|

|

SC

U_

GP

IO

0_

IO

04

|

S

CU

_G

PI

O0

_I

OX

X_

PM

IC

_A

72

_O

N

|

|

LS

IO

_G

PI

O1

_I

O0

0

|

|

SC

U_

GP

IO

0_

IO

05

|

S

CU

_G

PI

O0

_I

OX

X_

PM

IC

_A

53

_O

N

|

|

LS

IO

_G

PI

O1

_I

O0

1

|

|

SC

U_

GP

IO

0_

IO

06

|

S

CU

_T

PM

0_

CH

0

|

|

LS

IO

_G

PI

O1

_I

O0

2

|

|

SC

U_

GP

IO

0_

IO

07

|

S

CU

_T

PM

0_

CH

1

|

S

CU

_D

SC

_R

TC

_C

LO

CK

_O

UT

PU

T_

32

K

|

LS

IO

_G

PI

O1

_I

O0

3

|

+-

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

--

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

+-

--

--

--

--

--

--

--

--

+

U1

BC

49

BB

50

BA

47

BC

53

BL49

BN

49

BN

51

BM

50

BM

48

BK

48

AW

39

AT

38

AU

39

AR

39

AP

38

AN

39

BD

42

BD

46

BE

43

BE

41

BF

48

BG

49

AY

44

BC

47

BB

46

AW

45

AV

44

AU

43

BK

52

AY

42

BA

43

BJ53

BC

45

BB

44

BL47

BN

47

BE

49

BL51

BH

50

BG

51

AY

46

BF

50

BE

47

BE

53

BA

49

BD

52

BE

51

BC

51

PIM

X8M

6A

VU

DD

1A

GN

D

10

KR

26

04

02

1%

_R

ST_

OU

T

04

02

10

KR

27

1%

V1P

8_S

CU

T6

T7

_W

DT_

TIM

E_

OU

T

Figu

reA.28:

SCU/S

NVSblock

ofiM

X8

92

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/A3

12

34

56

78

A B C D E F

1.0

DD

/M

M/

YY

YY

LP

DD

R4

-0

Re

vie

we

r

Dra

ftm

an

iMX

8S

OM

L.

Gir

au

di

30

36

DN

U_B

1D

NU

_A

B2

DN

U_A

B12

DN

U_A

B11

DN

U_A

B1

DN

U_A

A12

DN

U_A

A1

DN

U_A

2D

NU

_A

12

DN

U_A

11

DN

U_A

1

VS

S_C

8V

SS

_Y

8V

SS

_Y

5V

SS

_Y

12

VS

S_Y

1V

SS

_W

9V

SS

_W

4V

SS

_W

2V

SS

_W

11

VS

S_V

8V

SS

_V

5V

SS

_V

12

VS

S_V

1V

SS

_T

8V

SS

_T

5V

SS

_T

3V

SS

_T

12

VS

S_T

10

VS

S_T

1V

SS

_P

3V

SS

_P

12

VS

S_P

10

VS

S_P

1V

SS

_N

9V

SS

_N

4V

SS

_N

2V

SS

_N

11

VS

S_K

9V

SS

_K

4V

SS

_K

2V

SS

_K

11

VS

S_J3

VS

S_J12

VS

S_J10

VS

S_J1

VS

S_G

8V

SS

_G

5V

SS

_G

3V

SS

_G

12

VS

S_G

10

VS

S_G

1V

SS

_A

10

VS

S_A

3V

SS

_A

B10

VS

S_A

B3

VS

S_A

B5

VS

S_A

B8

VS

S_C

1V

SS

_C

12

VS

S_C

5D

NU

_B

12

VS

S_D

11

VS

S_D

2V

SS

_D

4V

SS

_D

9V

SS

_E

1V

SS

_E

12

VS

S_E

5V

SS

_E

8

VD

DQ

_W

8V

DD

Q_W

5V

DD

Q_W

12

VD

DQ

_W

1V

DD

Q_U

3V

DD

Q_U

10

VD

DQ

_F

3V

DD

Q_F

10

VD

DQ

_D

8V

DD

Q_D

5V

DD

Q_D

12

VD

DQ

_D

1V

DD

Q_B

8V

DD

Q_B

5V

DD

Q_B

3V

DD

Q_B

10

VD

DQ

_A

A8

VD

DQ

_A

A5

VD

DQ

_A

A3

VD

DQ

_A

A10

VD

D2_U

8V

DD

2_U

5V

DD

2_R

8V

DD

2_R

5V

DD

2_R

12

VD

D2_R

1V

DD

2_N

3V

DD

2_N

12

VD

D2_N

10

VD

D2_N

1V

DD

2_K

3V

DD

2_K

12

VD

D2_K

10

VD

D2_K

1V

DD

2_H

8V

DD

2_H

5V

DD

2_H

12

VD

D2_H

1V

DD

2_F

8V

DD

2_F

5V

DD

2_A

B9

VD

D2_A

B4

VD

D2_A

9V

DD

2_A

4

VD

D1_U

12

VD

D1_U

1V

DD

1_T

9V

DD

1_T

4V

DD

1_G

9V

DD

1_G

4V

DD

1_F

12

VD

D1_F

1

U11

F1

F12

G4

G9

T4

T9

U1

U12

A4

A9

AB

4A

B9

F5

F8

H1

H12

H5

H8

K1

K10

K12

K3

N1

N10

N12

N3

R1

R12

R5

R8

U5

U8

AA

10

AA

3A

A5

AA

8B

10

B3

B5

B8

D1

D12

D5

D8

F10

F3

U10

U3

W1

W12

W5

W8

E8

E5

E12

E1

D9

D4

D2

D11

B12

C5

C12

C1

AB

8A

B5

AB

3A

B10

A3

A10

G1

G10

G12

G3

G5

G8

J1

J10

J12

J3

K11

K2

K4

K9

N11

N2

N4

N9

P1

P10

P12

P3

T1

T10

T12

T3

T5

T8

V1

V12

V5

V8

W11

W2

W4

W9

Y1

Y12

Y5

Y8

C8

A1

A11

A12

A2

AA

1A

A12

AB

1A

B11

AB

12

AB

2B

1

MT

53B

768M

32D

4N

Q-0

62 A

AT

:B

CA

0_A

CA

1_A

CA

2_A

CA

3_A

CA

4_A

CA

5_A

CK

_T

_A

CK

E0_A

CK

E1_A

CK

E2_A

CS

0_A

CS

1_A

CS

2_A

CA

0_B

CA

1_B

CA

2_B

CA

3_B

CA

4_B

CA

5_B

CK

_T

_B

CK

E0_B

CK

E1_B

CK

E2_B

CS

0_B

CS

1_B

CS

2_B

DM

I0_A

DM

I1_A

DQ

0_A

DQ

1_A

DQ

2_A

DQ

3_A

DQ

4_A

DQ

5_A

DQ

6_A

DQ

7_A

DQ

8_A

DQ

9_A

DQ

10_A

DQ

11_A

DQ

12_A

DQ

13_A

DQ

14_A

DQ

15_A

DQ

S0_C

_A

DQ

S0_T

_A

DQ

S1_C

_A

DQ

S1_T

_A

DM

I0_B

DM

I1_B

DQ

0_B

DQ

1_B

DQ

2_B

DQ

3_B

DQ

4_B

DQ

5_B

DQ

6_B

DQ

7_B

DQ

8_B

DQ

9_B

DQ

10_B

DQ

11_B

DQ

12_B

DQ

13_B

DQ

14_B

DQ

15_B

DQ

S0_C

_B

DQ

S0_T

_B

DQ

S1_C

_B

DQ

S1_T

_B

OD

T_C

A_A

OD

T_C

A_B

RE

SE

T_N

ZQ

0Z

Q1

ZQ

2

CK

_C

_B

CK

_C

_A

U11

J9

P9

G11

A8

A5

T11

T2

G2

W10

V10

W3

V3

AA

9Y

9V

9U

9U

11

V11

Y11

AA

11

AA

4Y

4V

4U

4U

2V

2Y

2A

A2

Y10

Y3

D10

E10

D3

E3

B9

C9

E9

F9

F11

E11

C11

B11

B4

C4

E4

F4

F2

E2

C2

B2

C10

C3

N5

R3

R4

N8

P5

P4

P8

P11

R11

R10

R9

P2

R2

K5

H3

H4

K8

J5

J4

J8

J11

H11

H10

H9

J2

H2

MT

53B

768M

32D

4N

Q-0

62 A

AT

:B

VD

D_D

DR

_C

H0_V

DD

A_P

LL_1P

8

DD

R_C

H0_Z

Q

DD

R_C

H0_V

RE

FD

DR

_C

H0_D

TO

1D

DR

_C

H0_D

TO

0

DD

R_C

H0_A

TO

DD

R_C

H0_C

K1_P

DD

R_C

H0_C

K1_N

DD

R_C

H0_C

K0_P

DD

R_C

H0_C

K0_N

DD

R_C

H0_D

QS

3_P

DD

R_C

H0_D

QS

3_N

DD

R_C

H0_D

QS

2_P

DD

R_C

H0_D

QS

2_N

DD

R_C

H0_D

QS

1_P

DD

R_C

H0_D

QS

1_N

DD

R_C

H0_D

QS

0_P

DD

R_C

H0_D

QS

0_N

DD

R_C

H0_D

M3

DD

R_C

H0_D

M2

DD

R_C

H0_D

M1

DD

R_C

H0_D

M0

VD

D_D

DR

_C

H0_V

DD

Q_A

A39

VD

D_D

DR

_C

H0_V

DD

Q_A

E39

VD

D_D

DR

_C

H0_V

DD

Q_A

F38

VD

D_D

DR

_C

H0_V

DD

Q_A

G39

VD

D_D

DR

_C

H0_V

DD

Q_A

H38

VD

D_D

DR

_C

H0_V

DD

Q_A

J39

VD

D_D

DR

_C

H0_V

DD

Q_C

KE

_A

B38

VD

D_D

DR

_C

H0_V

DD

Q_C

KE

_A

C39

VD

D_D

DR

_C

H0_V

DD

Q_C

KE

_A

D38

VD

D_D

DR

_C

H0_V

DD

Q_U

39

VD

D_D

DR

_C

H0_V

DD

Q_V

38

VD

D_D

DR

_C

H0_V

DD

Q_W

39

VD

D_D

DR

_C

H0_V

DD

Q_Y

38

DD

R_C

H0_D

CF

00

DD

R_C

H0_D

CF

01

DD

R_C

H0_D

CF

02

DD

R_C

H0_D

CF

03

DD

R_C

H0_D

CF

04

DD

R_C

H0_D

CF

05

DD

R_C

H0_D

CF

06

DD

R_C

H0_D

CF

07

DD

R_C

H0_D

CF

08

DD

R_C

H0_D

CF

09

DD

R_C

H0_D

CF

10

DD

R_C

H0_D

CF

11

DD

R_C

H0_D

CF

12

DD

R_C

H0_D

CF

13

DD

R_C

H0_D

CF

14

DD

R_C

H0_D

CF

15

DD

R_C

H0_D

CF

16

DD

R_C

H0_D

CF

17

DD

R_C

H0_D

CF

18

DD

R_C

H0_D

CF

19

DD

R_C

H0_D

CF

20

DD

R_C

H0_D

CF

21

DD

R_C

H0_D

CF

22

DD

R_C

H0_D

CF

23

DD

R_C

H0_D

CF

24

DD

R_C

H0_D

CF

25

DD

R_C

H0_D

CF

26

DD

R_C

H0_D

CF

27

DD

R_C

H0_D

CF

28

DD

R_C

H0_D

CF

29

DD

R_C

H0_D

CF

30

DD

R_C

H0_D

CF

31

DD

R_C

H0_D

CF

32

DD

R_C

H0_D

CF

33

DD

R_C

H0_D

Q00

DD

R_C

H0_D

Q01

DD

R_C

H0_D

Q02

DD

R_C

H0_D

Q03

DD

R_C

H0_D

Q04

DD

R_C

H0_D

Q05

DD

R_C

H0_D

Q06

DD

R_C

H0_D

Q07

DD

R_C

H0_D

Q08

DD

R_C

H0_D

Q09

DD

R_C

H0_D

Q10

DD

R_C

H0_D

Q11

DD

R_C

H0_D

Q12

DD

R_C

H0_D

Q13

DD

R_C

H0_D

Q14

DD

R_C

H0_D

Q15

DD

R_C

H0_D

Q16

DD

R_C

H0_D

Q17

DD

R_C

H0_D

Q18

DD

R_C

H0_D

Q19

DD

R_C

H0_D

Q20

DD

R_C

H0_D

Q21

DD

R_C

H0_D

Q22

DD

R_C

H0_D

Q23

DD

R_C

H0_D

Q24

DD

R_C

H0_D

Q25

DD

R_C

H0_D

Q26

DD

R_C

H0_D

Q27

DD

R_C

H0_D

Q28

DD

R_C

H0_D

Q29

DD

R_C

H0_D

Q30

DD

R_C

H0_D

Q31

DD

R0

U1

AR

51

AJ43

AP

50

AR

53

AL47

AM

48

AH

44

AJ45

AH

50

AH

48

AH

46

AJ49

AJ51

AL51

AL49

AM

50

P48

P50

N49

P46

L51

N51

K50

L49

N43

G51

G53

H50

K48

L47

N45

P44

AF

48

AE

53

AB

52

AC

53

AE

49

AF

50

AE

51

AE

47

AF

52

AB

44

AC

45

AC

51

AE

45

AC

43

AB

46

AB

48

AC

47

U53

Y52

W53

T46

U49

U51

T50

T52

T48

W51

W45

Y44

W43

Y46

Y48

W47

U47

Y38

W39

V38

U39

AD

38

AC

39

AB

38

AJ39

AH

38

AG

39

AF

38

AE

39

AA

39

H52

N47

AJ47

AP

52

L53

K52

P52

N53

AH

52

AJ53

AL53

AM

52

Y50

W49

AB

50

AC

49

AF

46

U45

T44

U43

AF

44

AE

43

PIM

X8M

6A

VU

DD

1A

C1

80

04

02

1u

F1

0V

10

V1

uF

04

02

C1

81

10

V1

uF

04

02

C1

82

C1

83

04

02

1u

F1

0V

10

V1

uF

04

02

C1

84

C1

85

04

02

1u

F1

0V

GN

D

Bottom

Top

C4

12

10

22

uF

16

V1

6V

22

uF

12

10

C5

GN

D

V_D

DR

IO0

V_D

DR

IO0

C1

86

04

02

1u

F1

0V

C3

19

04

02

2.2

uF

10

V

L2 BLM

18

EG

60

1S

N1

0H

GN

DG

ND

V_1P

8

R1

44

04

02

24

0

1%

GN

D

C6

12

10

22

uF

16

V

C2

35

04

02

22

0n

F1

6V

16

V2

20

nF

04

02

C2

36

C2

37

04

02

22

0n

F1

6V

16

V2

20

nF

04

02

C2

38

GN

D

V_1P

8

16

V2

2u

F

12

10

C7

C8

12

10

22

uF

16

V1

6V

22

uF

12

10

C9

C1

0

12

10

22

uF

16

V

C2

39

04

02

22

0n

F1

6V

16

V2

20

nF

04

02

C2

40

16

V2

20

nF

04

02

C2

41

16

V2

20

nF

04

02

C2

42

16

V2

20

nF

04

02

C2

43

16

V2

20

nF

04

02

C2

44

16

V2

20

nF

04

02

C2

45

16

V2

20

nF

04

02

C2

46

16

V2

20

nF

04

02

C2

47

16

V2

20

nF

04

02

C2

48

16

V2

20

nF

04

02

C2

49

16

V2

20

nF

04

02

C2

50

16

V2

20

nF

04

02

C2

51

16

V2

20

nF

04

02

C2

52

16

V2

20

nF

04

02

C2

53

16

V2

20

nF

04

02

C2

54

16

V2

20

nF

04

02

C2

55

16

V2

20

nF

04

02

C2

56

16

V2

20

nF

04

02

C2

57

16

V2

20

nF

04

02

C2

58

16

V2

20

nF

04

02

C2

59

16

V2

20

nF

04

02

C2

60

16

V2

20

nF

04

02

C2

61

16

V2

20

nF

04

02

C2

62

16

V2

20

nF

04

02

C2

63

16

V2

20

nF

04

02

C2

64

16

V2

20

nF

04

02

C2

65

16

V2

20

nF

04

02

C2

66

16

V2

20

nF

04

02

C2

67

16

V2

20

nF

04

02

C2

68

GN

D GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

V_D

DR

IO0

V_D

DR

IO0

GN

D

DD

R_C

H0_D

Q0

DD

R_C

H0_D

Q1

DD

R_C

H0_D

Q2

DD

R_C

H0_D

Q3

DD

R_C

H0_D

Q4

DD

R_C

H0_D

Q5

DD

R_C

H0_D

Q6

DD

R_C

H0_D

Q7

DD

R_C

H0_D

Q8

DD

R_C

H0_D

Q9

DD

R_C

H0_D

Q10

DD

R_C

H0_D

Q11

DD

R_C

H0_D

Q12

DD

R_C

H0_D

Q13

DD

R_C

H0_D

Q14

DD

R_C

H0_D

Q15

DD

R_C

H0_D

Q16

DD

R_C

H0_D

Q17

DD

R_C

H0_D

Q18

DD

R_C

H0_D

Q19

DD

R_C

H0_D

Q20

DD

R_C

H0_D

Q21

DD

R_C

H0_D

Q22

DD

R_C

H0_D

Q23

DD

R_C

H0_D

Q24

DD

R_C

H0_D

Q25

DD

R_C

H0_D

Q26

DD

R_C

H0_D

Q27

DD

R_C

H0_D

Q28

DD

R_C

H0_D

Q29

DD

R_C

H0_D

Q30

DD

R_C

H0_D

Q31

DD

R_C

H0_D

Q0

DD

R_C

H0_D

Q1

DD

R_C

H0_D

Q2

DD

R_C

H0_D

Q3

DD

R_C

H0_D

Q4

DD

R_C

H0_D

Q5

DD

R_C

H0_D

Q6

DD

R_C

H0_D

Q7

DD

R_C

H0_D

Q8

DD

R_C

H0_D

Q9

DD

R_C

H0_D

Q10

DD

R_C

H0_D

Q11

DD

R_C

H0_D

Q12

DD

R_C

H0_D

Q13

DD

R_C

H0_D

Q14

DD

R_C

H0_D

Q15

DD

R_C

H0_D

Q16

DD

R_C

H0_D

Q17

DD

R_C

H0_D

Q18

DD

R_C

H0_D

Q19

DD

R_C

H0_D

Q20

DD

R_C

H0_D

Q21

DD

R_C

H0_D

Q22

DD

R_C

H0_D

Q23

DD

R_C

H0_D

Q24

DD

R_C

H0_D

Q25

DD

R_C

H0_D

Q26

DD

R_C

H0_D

Q27

DD

R_C

H0_D

Q28

DD

R_C

H0_D

Q29

DD

R_C

H0_D

Q30

DD

R_C

H0_D

Q31

DD

R_C

H0_D

QS

0+

DD

R_C

H0_D

QS

1+

DD

R_C

H0_D

QS

2+

DD

R_C

H0_D

QS

3+

DD

R_C

H0_D

QS

0-

DD

R_C

H0_D

QS

1-

DD

R_C

H0_D

QS

2-

DD

R_C

H0_D

QS

3-

DD

R_C

H0_D

M0

DD

R_C

H0_D

M1

DD

R_C

H0_D

M2

DD

R_C

H0_D

M3

DD

R_C

H0_D

QS

0+

DD

R_C

H0_D

QS

0-

DD

R_C

H0_D

QS

1+

DD

R_C

H0_D

QS

1-

DD

R_C

H0_D

QS

2+

DD

R_C

H0_D

QS

2-

DD

R_C

H0_D

QS

3+

DD

R_C

H0_D

QS

3-

DD

R_C

H0_D

M0

DD

R_C

H0_D

M1

DD

R_C

H0_D

M2

DD

R_C

H0_D

M3

DD

R_C

H0_C

K1+

DD

R_C

H0_C

K1-

DD

R_C

H0_C

K0+

DD

R_C

H0_C

K0-

LP

4_C

H0_C

A0_A

LP

4_C

H0_C

A1_A

LP

4_C

H0_C

A2_A

LP

4_C

H0_C

A3_A

LP

4_C

H0_C

A4_A

LP

4_C

H0_C

A5_A

LP

4_C

H0_C

S0_A

LP

4_C

H0_C

S1_A

LP

4_C

H0_C

KE

1_A

LP

4_C

H0_C

KE

0_A

LP

4_C

H0_C

A0_B

LP

4_C

H0_C

A1_B

LP

4_C

H0_C

A2_B

LP

4_C

H0_C

A3_B

LP

4_C

H0_C

A4_B

LP

4_C

H0_C

A5_B

LP

4_C

H0_C

S0_B

LP

4_C

H0_C

S1_B

LP

4_C

H0_C

KE

1_B

LP

4_C

H0_C

KE

0_B

_LP

4_C

H0_R

ES

ET

DD

R_C

H0_C

K0+

DD

R_C

H0_C

K0-

DD

R_C

H0_C

K1+

DD

R_C

H0_C

K1-

LP

4_C

H0_C

KE

1_A

LP

4_C

H0_C

KE

0_A

LP

4_C

H0_C

KE

1_B

LP

4_C

H0_C

KE

0_B

LP

4_C

H0_C

S0_A

LP

4_C

H0_C

S1_A

LP

4_C

H0_C

S0_B

LP

4_C

H0_C

S1_B

LP

4_C

H0_C

A0_A

LP

4_C

H0_C

A3_A

LP

4_C

H0_C

A1_A

LP

4_C

H0_C

A2_A

LP

4_C

H0_C

A4_A

LP

4_C

H0_C

A5_A

LP

4_C

H0_C

A4_B

LP

4_C

H0_C

A5_B

LP

4_C

H0_C

A3_B

LP

4_C

H0_C

A0_B

LP

4_C

H0_C

A1_B

LP

4_C

H0_C

A2_B

_LP

4_C

H0_R

ES

ET

VD

DA

_P

LL

VD

DA

_P

LL

V_D

DR

IO0

Imx8M

"H

ard

ware

develo

pm

ent's

Guid

e"

says

"Byte

sw

appin

g w

ithin

each 1

6-b

it c

hannel is

OK

. B

it s

wappin

g w

ithin

each s

lice/b

yte

lane is O

K."

Consid

er

sw

appin

g in o

rder

to a

void

cro

ssin

g in the b

us lin

es.

On d

ie term

ination

for

rankA

On d

ie term

ination

for

rankB

On E

VB

, th

ere

is a

n R

C n

etw

ork

labele

d a

s "

not necessary

".

R1

45

04

02

24

0

1%

R1

46

04

02

24

0

1%

V_D

DR

IO0

V_D

DR

IO0

V_D

DR

IO0

V_D

DR

IO0

Figure

A.29:

LPDDR4RAM0

93

A – Schematic

CA

0_A

CA

1_A

CA

2_A

CA

3_A

CA

4_A

CA

5_A

CK

_T

_A

CK

E0_A

CK

E1_A

CK

E2_A

CS

0_A

CS

1_A

CS

2_A

CA

0_B

CA

1_B

CA

2_B

CA

3_B

CA

4_B

CA

5_B

CK

_T

_B

CK

E0_B

CK

E1_B

CK

E2_B

CS

0_B

CS

1_B

CS

2_B

DM

I0_A

DM

I1_A

DQ

0_A

DQ

1_A

DQ

2_A

DQ

3_A

DQ

4_A

DQ

5_A

DQ

6_A

DQ

7_A

DQ

8_A

DQ

9_A

DQ

10_A

DQ

11_A

DQ

12_A

DQ

13_A

DQ

14_A

DQ

15_A

DQ

S0_C

_A

DQ

S0_T

_A

DQ

S1_C

_A

DQ

S1_T

_A

DM

I0_B

DM

I1_B

DQ

0_B

DQ

1_B

DQ

2_B

DQ

3_B

DQ

4_B

DQ

5_B

DQ

6_B

DQ

7_B

DQ

8_B

DQ

9_B

DQ

10_B

DQ

11_B

DQ

12_B

DQ

13_B

DQ

14_B

DQ

15_B

DQ

S0_C

_B

DQ

S0_T

_B

DQ

S1_C

_B

DQ

S1_T

_B

OD

T_C

A_A

OD

T_C

A_B

RE

SE

T_N

ZQ

0Z

Q1

ZQ

2

CK

_C

_B

CK

_C

_A

U12

J9

P9

G11

A8

A5

T11

T2

G2

W10

V10

W3

V3

AA

9Y

9V

9U

9U

11

V11

Y11

AA

11

AA

4Y

4V

4U

4U

2V

2Y

2A

A2

Y10

Y3

D10

E10

D3

E3

B9

C9

E9

F9

F11

E11

C11

B11

B4

C4

E4

F4

F2

E2

C2

B2

C10

C3

N5

R3

R4

N8

P5

P4

P8

P11

R11

R10

R9

P2

R2

K5

H3

H4

K8

J5

J4

J8

J11

H11

H10

H9

J2

H2

MT

53B

768M

32D

4N

Q-0

62 A

AT

:B

DN

U_B

1D

NU

_A

B2

DN

U_A

B12

DN

U_A

B11

DN

U_A

B1

DN

U_A

A12

DN

U_A

A1

DN

U_A

2D

NU

_A

12

DN

U_A

11

DN

U_A

1

VS

S_C

8V

SS

_Y

8V

SS

_Y

5V

SS

_Y

12

VS

S_Y

1V

SS

_W

9V

SS

_W

4V

SS

_W

2V

SS

_W

11

VS

S_V

8V

SS

_V

5V

SS

_V

12

VS

S_V

1V

SS

_T

8V

SS

_T

5V

SS

_T

3V

SS

_T

12

VS

S_T

10

VS

S_T

1V

SS

_P

3V

SS

_P

12

VS

S_P

10

VS

S_P

1V

SS

_N

9V

SS

_N

4V

SS

_N

2V

SS

_N

11

VS

S_K

9V

SS

_K

4V

SS

_K

2V

SS

_K

11

VS

S_J3

VS

S_J12

VS

S_J10

VS

S_J1

VS

S_G

8V

SS

_G

5V

SS

_G

3V

SS

_G

12

VS

S_G

10

VS

S_G

1V

SS

_A

10

VS

S_A

3V

SS

_A

B10

VS

S_A

B3

VS

S_A

B5

VS

S_A

B8

VS

S_C

1V

SS

_C

12

VS

S_C

5D

NU

_B

12

VS

S_D

11

VS

S_D

2V

SS

_D

4V

SS

_D

9V

SS

_E

1V

SS

_E

12

VS

S_E

5V

SS

_E

8

VD

DQ

_W

8V

DD

Q_W

5V

DD

Q_W

12

VD

DQ

_W

1V

DD

Q_U

3V

DD

Q_U

10

VD

DQ

_F

3V

DD

Q_F

10

VD

DQ

_D

8V

DD

Q_D

5V

DD

Q_D

12

VD

DQ

_D

1V

DD

Q_B

8V

DD

Q_B

5V

DD

Q_B

3V

DD

Q_B

10

VD

DQ

_A

A8

VD

DQ

_A

A5

VD

DQ

_A

A3

VD

DQ

_A

A10

VD

D2_U

8V

DD

2_U

5V

DD

2_R

8V

DD

2_R

5V

DD

2_R

12

VD

D2_R

1V

DD

2_N

3V

DD

2_N

12

VD

D2_N

10

VD

D2_N

1V

DD

2_K

3V

DD

2_K

12

VD

D2_K

10

VD

D2_K

1V

DD

2_H

8V

DD

2_H

5V

DD

2_H

12

VD

D2_H

1V

DD

2_F

8V

DD

2_F

5V

DD

2_A

B9

VD

D2_A

B4

VD

D2_A

9V

DD

2_A

4

VD

D1_U

12

VD

D1_U

1V

DD

1_T

9V

DD

1_T

4V

DD

1_G

9V

DD

1_G

4V

DD

1_F

12

VD

D1_F

1

U12

F1

F12

G4

G9

T4

T9

U1

U12

A4

A9

AB

4A

B9

F5

F8

H1

H12

H5

H8

K1

K10

K12

K3

N1

N10

N12

N3

R1

R12

R5

R8

U5

U8

AA

10

AA

3A

A5

AA

8B

10

B3

B5

B8

D1

D12

D5

D8

F10

F3

U10

U3

W1

W12

W5

W8

E8

E5

E12

E1

D9

D4

D2

D11

B12

C5

C12

C1

AB

8A

B5

AB

3A

B10

A3

A10

G1

G10

G12

G3

G5

G8

J1

J10

J12

J3

K11

K2

K4

K9

N11

N2

N4

N9

P1

P10

P12

P3

T1

T10

T12

T3

T5

T8

V1

V12

V5

V8

W11

W2

W4

W9

Y1

Y12

Y5

Y8

C8

A1

A11

A12

A2

AA

1A

A12

AB

1A

B11

AB

12

AB

2B

1

MT

53B

768M

32D

4N

Q-0

62 A

AT

:B

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/ A3

12

34

56

78

ABCDEF

Re

vie

we

r

Dra

ftma

n

iMX

8S

OM

L. G

irau

di

31

36

1.0

DD

/M

M/

YY

YY

LP

DD

R4

VD

D_D

DR

_C

H1_V

DD

Q_A

A15

VD

D_D

DR

_C

H1_V

DD

Q_A

E15

VD

D_D

DR

_C

H1_V

DD

Q_A

F16

VD

D_D

DR

_C

H1_V

DD

Q_A

G15

VD

D_D

DR

_C

H1_V

DD

Q_A

H16

VD

D_D

DR

_C

H1_V

DD

Q_A

J15

VD

D_D

DR

_C

H1_V

DD

Q_C

KE

_A

B16

VD

D_D

DR

_C

H1_V

DD

Q_C

KE

_A

C15

VD

D_D

DR

_C

H1_V

DD

Q_C

KE

_A

D16

VD

D_D

DR

_C

H1_V

DD

Q_U

15

VD

D_D

DR

_C

H1_V

DD

Q_V

16

VD

D_D

DR

_C

H1_V

DD

Q_W

15

VD

D_D

DR

_C

H1_V

DD

Q_Y

16

VD

D_D

DR

_C

H1_V

DD

A_P

LL_1P

8

DD

R_C

H1_C

K0_N

DD

R_C

H1_C

K0_P

DD

R_C

H1_D

CF

00

DD

R_C

H1_D

CF

01

DD

R_C

H1_D

CF

02

DD

R_C

H1_D

CF

03

DD

R_C

H1_D

CF

04

DD

R_C

H1_D

CF

05

DD

R_C

H1_D

CF

06

DD

R_C

H1_D

CF

07

DD

R_C

H1_D

CF

08

DD

R_C

H1_D

CF

09

DD

R_C

H1_D

CF

10

DD

R_C

H1_D

CF

11

DD

R_C

H1_D

CF

12

DD

R_C

H1_D

CF

13

DD

R_C

H1_D

CF

14

DD

R_C

H1_D

CF

15

DD

R_C

H1_D

CF

16

DD

R_C

H1_C

K1_N

DD

R_C

H1_C

K1_P

DD

R_C

H1_D

CF

17

DD

R_C

H1_D

CF

18

DD

R_C

H1_D

CF

19

DD

R_C

H1_D

CF

20

DD

R_C

H1_D

CF

21

DD

R_C

H1_D

CF

22

DD

R_C

H1_D

CF

23

DD

R_C

H1_D

CF

24

DD

R_C

H1_D

CF

25

DD

R_C

H1_D

CF

26

DD

R_C

H1_D

CF

27

DD

R_C

H1_D

CF

28

DD

R_C

H1_D

CF

29

DD

R_C

H1_D

CF

30

DD

R_C

H1_D

CF

31

DD

R_C

H1_D

CF

32

DD

R_C

H1_D

CF

33

DD

R_C

H1_A

TO

DD

R_C

H1_D

TO

0D

DR

_C

H1_D

TO

1

DD

R_C

H1_D

M0

DD

R_C

H1_D

M1

DD

R_C

H1_D

M2

DD

R_C

H1_D

M3

DD

R_C

H1_D

Q00

DD

R_C

H1_D

Q01

DD

R_C

H1_D

Q02

DD

R_C

H1_D

Q03

DD

R_C

H1_D

Q04

DD

R_C

H1_D

Q05

DD

R_C

H1_D

Q06

DD

R_C

H1_D

Q07

DD

R_C

H1_D

QS

0_N

DD

R_C

H1_D

QS

0_P

DD

R_C

H1_D

QS

1_N

DD

R_C

H1_D

QS

1_P

DD

R_C

H1_D

QS

2_N

DD

R_C

H1_D

QS

2_P

DD

R_C

H1_D

QS

3_N

DD

R_C

H1_D

QS

3_P

DD

R_C

H1_D

Q08

DD

R_C

H1_D

Q09

DD

R_C

H1_D

Q10

DD

R_C

H1_D

Q11

DD

R_C

H1_D

Q12

DD

R_C

H1_D

Q13

DD

R_C

H1_D

Q14

DD

R_C

H1_D

Q15

DD

R_C

H1_D

Q16

DD

R_C

H1_D

Q17

DD

R_C

H1_D

Q18

DD

R_C

H1_D

Q19

DD

R_C

H1_D

Q20

DD

R_C

H1_D

Q21

DD

R_C

H1_D

Q22

DD

R_C

H1_D

Q23

DD

R_C

H1_D

Q24

DD

R_C

H1_D

Q25

DD

R_C

H1_D

Q26

DD

R_C

H1_D

Q27

DD

R_C

H1_D

Q28

DD

R_C

H1_D

Q29

DD

R_C

H1_D

Q30

DD

R_C

H1_D

Q31

DD

R_C

H1_V

RE

F

DD

R_C

H1_Z

Q

DD

R1

U1

AF

10

U11

AR

3A

J11

AP

4A

R1

AL7

AM

6A

H10

AJ9

AH

4A

H6

AH

8A

J5

AJ3

AL3

AL5

AM

4

P6

P4

N5

P8

L3

N3

K4

L5

AM

2A

L1

AJ1

AH

2

N1

P2

K2

L1

N11

G3

G1

H4

K6

L7

N9

P10

AP

2

AJ7

N7

H2

T10

U9

AF

8

AF

6A

E1

AB

2A

C1

AE

5A

F4

AE

3A

E7

AF

2A

B10

AC

9A

C3

AE

9A

C11

AB

8A

B6

AC

7

AC

5A

B4

U1

Y2

W1

T8

U5

U3

T4

T2

T6

W3

W9

Y10

W11

Y8

Y6

W7

U7

W5

Y4

AE

11

Y16

W15

V16

U15

AD

16

AC

15

AB

16

AJ15

AH

16

AG

15

AF

16

AE

15

AA

15

PIM

X8M

6A

VU

DD

1A

GN

D

GN

D

GN

DG

ND

Botto

m

Top

V_1P

8V

_D

DR

IO1

V_D

DR

IO1

DD

R_C

H1_C

K1+

DD

R_C

H1_C

K1-

DD

R_C

H1_C

K0+

DD

R_C

H1_C

K0-

LP

4_C

H1_C

A0_A

LP

4_C

H1_C

A1_A

LP

4_C

H1_C

A2_A

LP

4_C

H1_C

A3_A

LP

4_C

H1_C

A4_A

LP

4_C

H1_C

A5_A

LP

4_C

H1_C

S0_A

LP

4_C

H1_C

S1_A

LP

4_C

H1_C

KE

1_A

LP

4_C

H1_C

KE

0_A

LP

4_C

H1_C

A0_B

LP

4_C

H1_C

A1_B

LP

4_C

H1_C

A2_B

LP

4_C

H1_C

A3_B

LP

4_C

H1_C

A4_B

LP

4_C

H1_C

A5_B

LP

4_C

H1_C

S0_B

LP

4_C

H1_C

S1_B

LP

4_C

H1_C

KE

1_B

LP

4_C

H1_C

KE

0_B

_LP

4_C

H1_R

ES

ET

DD

R_C

H1_D

Q0

DD

R_C

H1_D

Q1

DD

R_C

H1_D

Q2

DD

R_C

H1_D

Q3

DD

R_C

H1_D

Q4

DD

R_C

H1_D

Q5

DD

R_C

H1_D

Q6

DD

R_C

H1_D

Q7

DD

R_C

H1_D

Q8

DD

R_C

H1_D

Q9

DD

R_C

H1_D

Q10

DD

R_C

H1_D

Q11

DD

R_C

H1_D

Q12

DD

R_C

H1_D

Q13

DD

R_C

H1_D

Q14

DD

R_C

H1_D

Q15

DD

R_C

H1_D

Q16

DD

R_C

H1_D

Q17

DD

R_C

H1_D

Q18

DD

R_C

H1_D

Q19

DD

R_C

H1_D

Q20

DD

R_C

H1_D

Q21

DD

R_C

H1_D

Q22

DD

R_C

H1_D

Q23

DD

R_C

H1_D

Q24

DD

R_C

H1_D

Q25

DD

R_C

H1_D

Q26

DD

R_C

H1_D

Q27

DD

R_C

H1_D

Q28

DD

R_C

H1_D

Q29

DD

R_C

H1_D

Q30

DD

R_C

H1_D

Q31

DD

R_C

H1_D

QS

0+

DD

R_C

H1_D

QS

1+

DD

R_C

H1_D

QS

2+

DD

R_C

H1_D

QS

3+

DD

R_C

H1_D

QS

0-

DD

R_C

H1_D

QS

1-

DD

R_C

H1_D

QS

2-

DD

R_C

H1_D

QS

3-

DD

R_C

H1_D

M0

DD

R_C

H1_D

M1

DD

R_C

H1_D

M2

DD

R_C

H1_D

M3

DD

R_C

H1_C

K0+

DD

R_C

H1_C

K0-

LP

4_C

H1_C

KE

1_A

LP

4_C

H1_C

KE

0_A

LP

4_C

H1_C

S0_A

LP

4_C

H1_C

S1_A

LP

4_C

H1_C

A0_A

LP

4_C

H1_C

A3_A

LP

4_C

H1_C

A1_A

LP

4_C

H1_C

A2_A

LP

4_C

H1_C

A4_A

LP

4_C

H1_C

A5_A

DD

R_C

H1_C

K1+

DD

R_C

H1_C

K1-

LP

4_C

H1_C

KE

1_B

LP

4_C

H1_C

KE

0_B

LP

4_C

H1_C

S0_B

LP

4_C

H1_C

S1_B

LP

4_C

H1_C

A4_B

LP

4_C

H1_C

A5_B

LP

4_C

H1_C

A3_B

LP

4_C

H1_C

A0_B

LP

4_C

H1_C

A1_B

LP

4_C

H1_C

A2_B

_LP

4_C

H1_R

ES

ET

DD

R_C

H1_D

Q0

DD

R_C

H1_D

Q1

DD

R_C

H1_D

Q2

DD

R_C

H1_D

Q3

DD

R_C

H1_D

Q4

DD

R_C

H1_D

Q5

DD

R_C

H1_D

Q6

DD

R_C

H1_D

Q7

DD

R_C

H1_D

Q8

DD

R_C

H1_D

Q9

DD

R_C

H1_D

Q10

DD

R_C

H1_D

Q11

DD

R_C

H1_D

Q12

DD

R_C

H1_D

Q13

DD

R_C

H1_D

Q14

DD

R_C

H1_D

Q15

DD

R_C

H1_D

Q16

DD

R_C

H1_D

Q17

DD

R_C

H1_D

Q18

DD

R_C

H1_D

Q19

DD

R_C

H1_D

Q20

DD

R_C

H1_D

Q21

DD

R_C

H1_D

Q22

DD

R_C

H1_D

Q23

DD

R_C

H1_D

Q24

DD

R_C

H1_D

Q25

DD

R_C

H1_D

Q26

DD

R_C

H1_D

Q27

DD

R_C

H1_D

Q28

DD

R_C

H1_D

Q29

DD

R_C

H1_D

Q30

DD

R_C

H1_D

Q31

DD

R_C

H1_D

QS

0+

DD

R_C

H1_D

QS

0-

DD

R_C

H1_D

QS

1+

DD

R_C

H1_D

QS

1-

DD

R_C

H1_D

QS

2+

DD

R_C

H1_D

QS

2-

DD

R_C

H1_D

QS

3+

DD

R_C

H1_D

QS

3-

DD

R_C

H1_D

M0

DD

R_C

H1_D

M1

DD

R_C

H1_D

M2

DD

R_C

H1_D

M3

GN

D

GN

DGN

D

GN

D

GN

D

GN

D

GN

D

GN

D

V_1P

8

GN

D

V_D

DR

IO1

V_D

DR

IO1

V_D

DR

IO1

V_D

DR

IO1

12

10

22

uF

16

V

C1

1

16

V2

2u

F

12

10

C1

2

C1

93

04

02

1u

F1

0V

C3

20

04

02

2.2

uF

10

V

BLM

18

EG

60

1S

N1

L3

0H

1u

F

04

02

C1

92

10

V

C1

91

04

02

1u

F1

0V

10

V1

uF

04

02

C1

90

C1

89

04

02

1u

F1

0V

04

02

1u

F1

0V

C1

88

10

V1

uF

04

02

C1

87

1%

24

00

40

2

R1

47

1%

24

0R

14

8

04

02

16

V2

2u

F

12

10

C1

3

16

V2

20

nF

04

02

C2

69

C2

94

04

02

22

0n

F1

6V

C2

95

04

02

22

0n

F1

6V

04

02

22

0n

F1

6V

C2

96

C2

97

04

02

22

0n

F1

6V

C2

98

04

02

22

0n

F1

6V

C2

99

04

02

22

0n

F1

6V

16

V

C3

00

04

02

22

0n

FC

30

1

04

02

22

0n

F1

6V

C3

02

04

02

22

0n

F1

6V

C2

91

04

02

22

0n

F1

6V

C2

93

04

02

22

0n

F1

6V

C2

92

04

02

22

0n

F1

6V

C2

90

04

02

22

0n

F1

6V

16

V

C2

88

04

02

22

0n

F

04

02

22

0n

FC

28

7

16

V1

6V

22

0n

F

04

02

C2

86

16

V2

20

nF

04

02

C2

89

16

V2

20

nF

04

02

C2

85

C2

84

04

02

22

0n

F1

6V

C2

83

04

02

22

0n

F1

6V

C2

82

04

02

22

0n

F1

6V

C2

81

04

02

22

0n

F1

6V

C2

80

04

02

22

0n

F1

6V

C2

79

04

02

22

0n

F1

6V

C2

78

04

02

22

0n

F1

6V

C2

77

04

02

22

0n

F1

6V

C2

76

04

02

22

0n

F1

6V

C2

75

04

02

22

0n

F1

6V

16

V2

20

nF

04

02

C2

74

C2

73

04

02

22

0n

F1

6V

C1

7

12

10

22

uF

16

V1

6V

22

uF

12

10

C1

6C

15

12

10

22

uF

16

V1

6V

22

uF

12

10

C1

4

16

V2

20

nF

04

02

C2

72

C2

71

04

02

22

0n

F1

6V

16

V2

20

nF

04

02

C2

70

GN

D

1%

24

00

40

2

R1

49

VD

DA

_P

LL

VD

DA

_P

LL

Imx8M

"Hard

ware

develo

pm

ent's

Guid

e" s

ays

"Byte

sw

appin

g w

ithin

each 1

6-b

it channel is

OK

. Bit s

wappin

g w

ithin

each s

lice/b

yte

lane is

OK

."C

onsid

er s

wappin

g in

ord

er to

avoid

cro

ssin

g in

the b

us lin

es.

V_D

DR

IO1

V_D

DR

IO1

Som

e D

CF

x p

ins m

ay h

ave th

e O

DT

_C

A fu

nctio

n.

On E

VB

schem

atic

s, th

ere

was a

note

tellin

g to

not u

se th

em

Figu

reA.30:

LPDDR4RAM1

94

A – Schematic

R6

8

04

02

10

0K

1%

VD

D_IN

U1

9F

DM

C6

68

6P

4m

-20V

3

5

412

VD

D_IN

_S

W

_V

IN_

PW

R_

BA

DQ

4

16

2P

EM

H9

50

V

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Sheet:

Date

:

Vers

ion:

/A4

A B C D

12

34

56

Re

vie

we

rL

. G

ira

ud

i

iMX

8S

OM

Dra

ftm

an

37

1.0

DD

/M

M/

YY

YY

vin

_s

wit

ch

GN

D

Turn

off V

DD

_IN

_S

W w

hen _

VIN

_P

WR

_B

AD

is low

Figure

A.31:

VIN

PW

RBAD

switch

95

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/ A4

PM

IC

DD

/M

M/

YY

YY

1.0

36

32

L. G

irau

di

iMX

8S

OM

Dra

ftma

n

Re

vie

we

r

SCL

SDA

STA

ND

BY

PW

RO

N

SD

A

SC

L

ST

AN

DB

Y

PW

RO

N

WD

I

_R

ES

ET

EW

AR

N

_IN

T

_X

INT

VD

DO

TP

TB

BE

N

PG

OO

D

SD

_V

SE

LE

CT

SD

_E

NA

BLE

FS

OB

PM

IC1

SD

A

SC

L

ST

AN

DB

Y

PW

RO

N

WD

I

_R

ES

ET

EW

AR

N

_IN

T

VD

DO

TP

TB

BE

N

PG

OO

D

SD

_V

SE

LE

CT

SD

_E

NA

BLE

FS

OB

PM

IC2

_R

ES

ET

EW

AR

N

_IN

T

US

DH

C2

_V

SE

L

WD

I

PG

OO

D

GN

D

use O

TP

config

ura

tion

US

DH

C1

_V

SE

L

04

02

R5

6

1%

10

0K

04

02

R5

7

1%

10

0K

FS

OB

04

02

R5

81

00

K

1%

1%

10

0K

R5

9

04

02

V1P

8_S

CU

V1P

8_S

CU

04

02

R6

01

00

K

1%

V1P

8_S

CU

04

02

R6

11

00

K

1%

V1P

8_S

CU

04

02

R6

21

00

K

1%

GN

D

1%

10

0K

R6

3

04

02

V1P

8_S

CU

can b

e c

ontro

lled th

rough i2

c

Figu

reA.32:

PMIC

Top

Level

96

A – Schematic

SW

1F

BS

W1IN

SW

1LX

SW

2F

BS

W2IN

SW

2LX

SW

3F

BS

W3IN

SW

3LX

SW

4F

BS

W4IN

SW

4LX

SW

5F

BS

W5IN

SW

5LX

SW

6F

BS

W6IN

SW

6LX

SW

7F

BS

W7IN

SW

7LX

LD

O12IN

LIC

ELL

LD

O2E

N

LD

O4IN

LD

O3IN

VS

ELE

CT

LD

O1O

UT

LD

O3O

UT

LD

O2O

UT

LD

O4O

UT

VS

NV

S

1.8

/3.3

V

XF

AIL

V1P

5D

V1P

5A

SY

NC

OU

T

RE

SE

TB

MC

U

VD

DIO

EW

AR

N

FS

OB

INT

B

PG

OO

D

VD

DO

TP

VIN

SC

LS

DA

ST

AN

DB

Y

SY

NC

IN

AM

UX

TB

BE

N

WD

I

XIN

TB

PW

RO

N

DGNDAGND

DNC1

EPAD

GN

D

GN

DG

ND

GN

D

GN

DG

ND

GN

D

GN

D

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

3 4 5 2 7 6

13 8 9

12

11

10

31

32

33

30

35

34

38

37

36

PC

33P

F8200A

0E

S

U26

17

46

43

27

26

16

15

25

18

28

47

PC

33P

F8200A

0E

S

U26

44

40

41

49

21

54

20

29

24

42

53

50

55

56

23

48

52

14

19

39

22

4551

1

57

PC

33P

F8200A

0E

S

U26

VD

D_IN

_S

W

25

V2

20

nF

04

02

C4

38

10

V1

uF

04

02

C2

00

04

02

1u

F1

0V

C2

01

10

V1

uF

04

02

C2

02

04

02

1u

F1

0V

C2

03

10

V1

uF

04

02

C2

04

10

V2

2u

F

08

05

C4

08

VD

D_IN

04

02

2.2

uF

10

V

C3

25

10

V2

.2u

F

04

02

C3

26

V1P

8_S

CU

1uHL17

22

uF

08

05

10

V

C4

09

10

V2

2u

F

08

05

C4

10

1uHL18

08

05

22

uF

10

V

C4

11

V_M

AIN

4.7

uF

C7

1

C4

12

08

05

22

uF

10

V

1uHL19

10

V2

2u

F

08

05

C4

13

V_C

PU

1

C4

14

08

05

22

uF

10

V

1uHL20

10

V2

2u

F

08

05

C4

15

C4

16

08

05

22

uF

10

V

1uHL21

10

V2

2u

F

08

05

C4

17

VD

D_IN

_S

W

V_C

PU

0

PM

IC1_A

MU

X

P1_V

1P

5D

P1_V

1P

5A

P1_S

W1LX

P1_S

W1LX

P1_S

W2LX

P1_S

W2LX

P1_S

W3LX

P1_S

W4LX

P1_S

W5LX

P1_S

W6LX

P1_S

W7LX

P1_S

W3LX

P1_S

W4LX

P1_S

W5LX

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/A3

12

34

56

78

A B C D E F

Re

vie

we

r

Dra

ftm

an

iMX

8S

OM

L.

Gir

au

di

33

36

1.0

DD

/M

M/

YY

YY

PM

IC1

GN

DG

ND

C4

18

08

05

22

uF

10

V

L221uH

08

05

C4

19

10

V2

2u

F

V_D

DR

IO0

P1_S

W6LX

GN

DG

ND

C4

20

08

05

22

uF

10

V

L231uH

08

05

C4

21

10

V2

2u

F

V_1P

8

P1_S

W7LX

_R

ES

ET

_X

INT

TB

BE

NV

DD

OTP

VD

D_R

TC

VD

D_S

NV

SV

1P

8_S

CU

_IN

T

C2

05

04

02

1u

F1

0V

SD

AS

CL

STA

ND

BY

PW

RO

NW

DI

EW

AR

N

PG

OO

DS

D_

VS

ELE

CT

2.2

uF

10

V0

40

2

C3

27

GN

D

LD

O3 is u

nused b

ut enable

d,

cap is n

eeded for

sta

bili

ty

10

0n

FC

53

GN

D

GN

D

4.7

uF

C7

2

10

0n

FC

54

GN

D

4.7

uF

C7

3

10

0n

FC

55

GN

D

4.7

uF

C7

4

10

0n

FC

56

GN

D

4.7

uF

C7

5

10

0n

FC

57

GN

D

4.7

uF

C7

6

10

0n

FC

58

GN

D

4.7

uF

25

V0

60

3C

77

16

V1

00

nF

04

02

C5

9

move s

om

e p

ow

er

dis

sip

ation fro

mLD

O1 to d

iode o

n E

VB

there

were

2x

120O

hm

ferr

ites in p

ara

llel

C3

90

12

10

47

uF

6.3

V6

.3V

47

uF

12

10

C3

91

GN

DG

ND

pla

ce o

n b

ottom

, near

the follo

win

g p

ins:

VD

D_A

DC

_1P

8V

DD

_A

NA

0_1P

8_U

29

VD

D_A

NA

0_1P

8_U

31

VD

D_H

DM

I_R

X0_1P

8V

DD

_H

DM

I_T

X0_1P

8V

DD

_LV

DS

0_1P

8V

DD

_LV

DS

1_1P

8V

DD

_M

IPI_

CS

I0_1P

8V

DD

_M

IPI_

CS

I1_1P

8V

DD

_M

IPI_

DS

I0_1P

8V

DD

_M

IPI_

DS

I1_1P

8V

DD

_M

LB

_1P

8V

DD

_P

CIE

_IO

B_1P

8V

DD

_P

CIE

_LD

O_1P

8V

DD

_P

CIE

_S

AT

A0_P

LL_1P

8V

DD

_P

CIE

0_P

LL_1P

8V

DD

_P

CIE

1_P

LL_1P

8V

DD

_U

SB

_H

SIC

0_1P

8V

RE

FH

_A

DC

SD

_E

NA

BLE

FS

OB

open-d

rain

outp

ut

open-d

rain

outp

ut

open-d

rain

outp

ut

open-d

rain

outp

ut

inte

rnal pull-

up

GN

DG

ND

C4

22

08

05

22

uF

10

V

PN

S4

00

10

ER

2

DD

1

inte

rnal pull-

dow

n

inte

rnal pull-

dow

n

1

V_S

D1

C3

28

04

02

2.2

uF

10

V

GN

D

04

02

C4

39

25

V2

20

nF

V_M

AIN

V_C

PU

1

V_C

PU

0

V_D

DR

IO0

V_1P

8

L1

3 BLM

21

PG

22

1S

N1

0H

0H

L1

4 BLM

21

PG

22

1S

N1

V_1P

8

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

04

02

1u

F1

0V

C2

06

10

V1

uF

04

02

C2

07

C2

08

1u

F

04

02

10

V1

0V

1u

F

04

02

C2

09

04

02

1u

F1

0V

C2

10

1u

FC

21

1

10

V0

40

2

C2

12

04

02

1u

F1

0V

10

V1

uF

04

02

C2

13

V_1P

8_F

ILT

ER

V_1P

8_F

ILT

ER

part

num

ber

for

capacitors

suggeste

d b

y N

XP

if y

ou w

ant to

reduce p

art

num

bers

,use 4

xG

RT

21B

C81A

226M

E13.

On E

VB

, 100uF

has b

een u

sed

2x 2

.5A

= 5

A

2x 2

.5A

= 5

A

2.5

A

2.5

A

2.5

A

VD

D_IN

_S

W

VD

D_IN

_S

W

VD

D_IN

_S

W

VD

D_IN

_S

W

VD

D_IN

_S

W

VD

D_IN

_S

W

T8

Figure

A.33:

PMIC

1

97

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Sheet:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

/ A3

12

34

56

78

ABCDEF

Re

vie

we

r

Dra

ftma

n

iMX

8S

OM

L. G

irau

di

34

36

1.0

DD

/M

M/

YY

YY

PM

IC2

SW

1F

BS

W1IN

SW

1LX

SW

2F

BS

W2IN

SW

2LX

SW

3F

BS

W3IN

SW

3LX

SW

4F

BS

W4IN

SW

4LX

SW

5F

BS

W5IN

SW

5LX

SW

6F

BS

W6IN

SW

6LX

SW

7F

BS

W7IN

SW

7LX

XF

AIL

V1P

5D

V1P

5A

SY

NC

OU

T

RE

SE

TB

MC

U

VD

DIO

EW

AR

N

FS

OB

INT

B

PG

OO

D

VD

DO

TP

VIN

SC

LS

DA

ST

AN

DB

Y

SY

NC

IN

AM

UX

TB

BE

N

WD

I

XIN

TB

PW

RO

N

DGNDAGND

DNC1

EPAD

GN

D

GN

DG

ND

GN

D

GN

DG

ND

GN

D

GN

D

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

DG

ND

GN

D

LD

O1, L

DO

3 a

re u

nused b

ut e

nable

d,

cap is

needed fo

r sta

bility

open-d

rain

outp

ut

open-d

rain

outp

ut

open-d

rain

outp

ut

open-d

rain

outp

ut

inte

rnal p

ull-d

ow

n

inte

rnal p

ull-d

ow

n

VD

D_IN

VD

D_IN

V1P

8_S

CU

V_S

D2

PM

IC2_A

MU

X

P2_V

1P

5D

P2_V

1P

5A

P2_S

W1LX

P2_S

W1LX

P2_S

W2LX

P2_S

W2LX

P2_S

W3LX

P2_S

W4LX

P2_S

W5LX

P2_S

W6LX

P2_S

W7LX

P2_S

W3LX

P2_S

W4LX

P2_S

W5LX

P2_S

W6LX

P2_S

W7LX

_R

ES

ET

TB

BE

NV

DD

OTP

_IN

T

SD

AS

CL

STA

ND

BY

PW

RO

NW

DI

EW

AR

N

PG

OO

DS

D_

VS

ELE

CT

SD

_E

NA

BLE

FS

OB

V_G

PU

0

V_G

PU

1

V_M

EM

C

V_D

DR

IO1

V_3P

3

V_G

PU

0

V_G

PU

1

V_M

EM

C

V_D

DR

IO1

V_3P

3

C8

14

.7u

F

C6

21

00

nF

C8

04

.7u

F

C6

11

00

nF

C7

94

.7u

F

C6

01

00

nF

C3

31

04

02

10

V2

.2u

F

10

V1

uF

04

02

C2

19

22

uF

10

V

C4

36

08

05

10

V2

2u

F

08

05

C4

35

22

uF

10

V

C4

34

08

05

10

V2

2u

F

08

05

C4

33

C4

28

08

05

22

uF

10

V

10

V2

2u

F

08

05

C4

29

C4

32

08

05

22

uF

10

V

C4

30

08

05

22

uF

10

V

10

V2

2u

F

08

05

C4

31

10

V2

2u

F

08

05

C4

27

C7

84

.7u

F

C4

26

10

V2

2u

F

08

05

C4

25

08

05

22

uF

10

V

C4

24

10

V0

80

5

22

uF

C3

30

04

02

2.2

uF

10

V

C3

29

10

V2

.2u

F

04

02

C4

23

08

05

22

uF

10

V

C2

18

10

V1

uF

04

02

C2

17

10

V1

uF

04

02

C2

16

10

V1

uF

04

02

C2

15

10

V1

uF

04

02

C2

14

10

V1

uF

04

02

C4

40

04

02

22

0n

F2

5V

U27

PC

33P

F8200A

0E

S

57

1

5145

22

39

19

14

52

48

23

56

55

50

53

42

24

29

20

54

21

49

41

40

44

U27

PC

33P

F8200A

0E

S

36

37

38

34

35

30

33

32

31

10

11

12 9 8

13 6 7 2 5 4 3

22

0n

F2

5V

C4

41

04

02

10

V2

.2u

F

04

02

C3

32

10

V2

2u

F

08

05

C4

37

C6

60

40

21

00

nF

16

V

C8

40

60

32

5V

4.7

uF

C6

51

00

nF

C8

34

.7u

F

C6

41

00

nF

C8

24

.7u

F

C6

31

00

nF

2x 2

.5A

= 5

A

2x 2

.5A

= 5

A

2.5

A

2.5

A

2.5

A

VD

D_IN

_S

W

VD

D_IN

_S

W

VD

D_IN

_S

W

VD

D_IN

_S

W

VD

D_IN

_S

W

VD

D_IN

_S

W

VD

D_IN

_S

W

GN

D

90m

A c

urre

nt

over-ra

ted: a

sm

alle

r one c

ould

be s

ele

cte

d

VD

D_H

DM

I_R

X0_V

H_R

X_3P

3and V

DD

_O

TG

x_3P

3V

_3P

3

0H

BLM

21

PG

22

1S

N1

L1

5

16

V2

20

nF

04

02

C3

09

V_3P

3_F

ILT

ER

C2

20

04

02

1u

F1

0V

10

V1

uF

04

02

C2

21

C4

02

08

05

10

uF

10

V

LD

O12IN

LIC

ELL

LD

O2E

N

LD

O4IN

LD

O3IN

VS

ELE

CT

LD

O1O

UT

LD

O3O

UT

LD

O2O

UT

LD

O4O

UT

VS

NV

S

1.8

/3.3

V

17

46

43

27

26

16

15

25

18

28

47

PC

33P

F8200A

0E

S

U27

T9

L241uH1uH

L25L261uH1uH

L27L281uH1uH

L29L301uH

iMX

8 filte

ring: d

oes n

ot h

as to

be c

lose to

PM

ICs

Figu

reA.34:

PMIC

2

98

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle

:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot perm

itte

d.

Dis

egno e

seguito s

u C

AD

. N

on s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is a

pro

prieta

ry d

ocum

ent of Id

eas &

Motion s

.r.l. and m

ust not be c

opie

d o

r re

leased to third p

art

ies w

ithout auth

orization.

Questo

dis

egno e

' pro

prieta

' di Id

eas &

Motion s

.r.l. e n

on p

uo' e

ssere

rip

rodotto o

tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/A4

Jta

g c

onnecto

r: p

ush-p

ull

_R

ST_

IN

_R

ST_

DB

G

res

et_

cir

cu

it

L.

Gir

au

di

Re

vie

we

r

Dra

ftm

an

DD

/M

M/

YY

YY

iMX

8S

OM

36

35

1.0

_P

MIC

_P

OR

_R

ST

DS

7

3

1

2

BA

S4

0-

06

W

Fro

m s

marc

Fro

m P

MIC

Figure

A.35:

Reset

circuit

99

A – Schematic

Dra

wn b

y:

Checked:

Desig

n b

y:

Pro

ject:

Sheet S

ize:

Page T

itle:

Date

:

Vers

ion:

CA

D d

raw

ing. F

ree h

and c

hanges a

re n

ot p

erm

itted.

Dis

egno e

seguito

su C

AD

. Non s

ono a

mm

esse m

odific

he m

anuali.

This

dra

win

g is

a p

roprie

tary

docum

ent o

f Ideas &

Motio

n s

.r.l. and m

ust n

ot b

e c

opie

d o

r rele

ased to

third

partie

s w

ithout a

uth

oriz

atio

n.

Questo

dis

egno e

' pro

prie

ta' d

i Ideas &

Motio

n s

.r.l. e n

on p

uo' e

ssere

ripro

dotto

o tra

sm

esso a

terz

i senza p

revia

auto

rizzazio

ne.

Sheet:

/ A4

iMX

8S

OM

Dra

ftma

n

Re

vie

we

r

L. G

irau

di

Wire

les

s

DD

/M

M/

YY

YY

1.0

36

36

NC

_4

NC

_3

NC

_5

NC

_6

VB

AT

RT

C_C

LK

BT

_C

TS

/I2C

_S

CL_S

BT

_R

TS

/I2C

_S

DA

_S

BT

_R

XD

BT

_T

XD

_R

ES

ET

SD

_C

LK

/GP

IO8

SD

_C

MD

/SP

I_S

CK

SD

_D

AT

0/S

PI_

MIS

OS

D_D

AT

1/S

PI_

SS

NS

D_D

AT

2/S

PI_

MO

SI

SD

_D

AT

3/G

PIO

7

EP

_G

ND

GN

D_36

GN

D_28

GN

D_13

GN

D_1

GN

D_21

CH

IP_E

N

UA

RT

_R

XD

UA

RT

_T

XD

VD

DIO

_S

DIO

_C

FG

/SP

I_C

FG

GP

IO0

GP

IO3

GP

IO4

GP

IO17

GP

IO18

GP

IO19

GP

IO20

GP

IO21

_IR

Q

WiF

i

BT

33

35

32

31

30

29

15

14

34

2 12

16

17

19

21

1 13

28

36

37

27

26

25

24

23

227 89

10

11

20

18

6 5 3 4

AT

WIL

C3000-M

R110C

AG

ND

R1

50

04

02

1M

EG

1%

V_1P

8

C1

94

04

02

1u

F1

0V

C5

0

04

02

10

0n

F1

6V

GN

D

V_1P

8

3P

3_C

LE

AN

3P

3_C

LE

AN

V_3P

3

L4

BLM

21

PG

22

1S

N1

0H

GN

D

C1

95

04

02

1u

F1

0V

C5

1

04

02

10

0n

F1

6V

RTC

_C

K

_IR

Q

_R

ST

EN

BT_

UA

RT_

TX

BT_

UA

RT_

RX

SP

I2

RT

C_C

K

_IR

Q

_R

ST

EN

SP

I2

SP

I2_C

S0

SP

I2_S

CK

SP

I2_S

DI

SP

I2_S

DO

V_1P

8N

o m

ore

UA

RT

with

CT

S/R

TS

availa

ble

:m

ake th

e C

hip

see a

n a

lways a

sserte

d"R

equest to

send"

V_1P

8

R1

51

04

02

1M

EG

1%

1%

1M

EG

04

02

R1

52

GN

DG

ND

U13

Handshake s

igals

can b

e d

isable

d

R1

54

04

02

10

K

1%

1%

10

K0

40

2

R1

58

Figu

reA.36:

Wifi

andBlueto

othAdap

ter

100

Bibliography

[1] MIPI Alliance. MIPI Alliance Specification for Camera Serial Interface 2.2009.

[2] MIPI Alliance, ed. Specification for D-PHY. Version 1.2. 2014.

[3] Marvell Broadcom Hp. Reduced Gigabit Media Independent Interface (RGMII).Version 1.3. 2000.

[4] Marc Greenberg. LPDDR3 and LPDDR4: How Low-Power DRAM Can BeUsed in High Bandwidth Applications. Ed. by JEDEC. 2013. url: https://www.jedec.org/sites/default/files/M_Greenberg_Mobile%20Forum_

May_%202013_Final.pdf.

[5] Stephen H. Hall and Howard L. Heck. Advanced Signal Integrity for High-Speed Digital Designs. John Wiley & Sons, Inc., Mar. 2009. doi: 10.1002/9780470423899.

[6] LLC HDMI Licensing. High Definition Media Interface Specification v 1.4.2009.

[7] IPC. IPC-7351B. Generic Requirements for Surface Mount Design and LandPattern Standard. 2010.

[8] JEDEC, ed. Embedded Multi-Media Card (e•MMC) Electrical Standard (5.0).2013.

[9] JEDEC. Low Power Double Data Rate 4. 2014.

[10] Silicon Labs. PCI E XPRESS 3.1 J ITTER R EQUIREMENTS. 2015. url:https://www.silabs.com/documents/public/application- notes/

AN562.pdf.

[11] NXP. Flip Chip Plastic Ball Grid Array, Application Note. 2012. url: https://www.nxp.com/docs/en/package-information/FC-PBGAPRES.pdf.

[12] NXP. i.MX 8QuadMax Applications Processor Datasheet rev D. 2016.

[13] NXP. i.MX 8QuadMax Applications Processor Reference Manual. 2016.

[14] NXP. i.MX8 Applications Processors Family Fact Sheet. Sept. 27, 2016. url:https://www.nxp.com/docs/en/fact-sheet/IMX8FAMFS.pdf.

101

BIBLIOGRAPHY

[15] NXP. Level shifting techniques in I2C-bus design. 2007.

[16] NXP. PF8x00 Datasheet Rev. 2.0. 2018.

[17] PCI-SIG. PCI Express Base Specification Revision 3.0. 2010.

[18] Donovan Porter. 100BASE-T1 Ethernet: the evolution of automotive net-working. Ed. by Texas Instrument. 2018.

[19] SAE. J3016: Taxonomy and Definitions for Terms Related to Driving Au-tomation Systems for On-Road Motor Vehicles. 2014.

[20] NXP Semiconductor. MIPI–CSI2 Peripheral on i.MX6 MPUs. 2016.

[21] ON Semiconductor. A System Designer’s Guide for Building a PCIe ® ClockTree while Addressing Timing Challenges. 2015. url: http://www.onsemi.com/pub/Collateral/AND9202-D.PDF.

[22] SGET. Smart Mobility ARChitecture, Design Guide. SMARC Design Guide2.0. Mar. 23, 2017. url: https://www.sget.org/standards/smarc.html.

[23] SGET. Smart Mobility ARChitecture, Hardware Specification. Version 2.0.June 2, 2016. url: https://www.sget.org/fileadmin/user_upload/SMARC_Hardware_Specification_V200_Errata.zip.

[24] USB-IF. Universal Serial Bus Specification. Version 2.0. 2000.

102