38
Parameter Identification in Partial Differential Equations Martin Burger http://www.indmath.uni-linz.ac.at/people/burger Johannes Kepler Universität Linz Parameter Identification, Winter School Inverse Problems, Geilo 2 Differentiation of data Not strictly a parameter identification problem, but good motivation. Appears often as a subproblem. Given noisy observation of a function f, Find its derivative Parameter Identification, Winter School Inverse Problems, Geilo 3 Differentiation of data Pointwise noise at measurement points identically normally distributed with mean 0 and variance δ. Law of large numbers yields Parameter Identification, Winter School Inverse Problems, Geilo 4 Differentiation of data Example: Noise satisfies But error in derivative is large

Differentiation of data Parameter Identification in

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Differentiation of data Parameter Identification in

Parameter Identification in Partial Differential Equations

Martin Burger http://www.indmath.uni-linz.ac.at/people/burger

Johannes Kepler Universität LinzParameter Identification,

Winter School Inverse Problems, Geilo 2

Differentiation of data

Not strictly a parameter identification problem,but good motivation. Appears often as a subproblem.

Given noisy observation of a function f,

Find its derivative

Parameter Identification,Winter School Inverse Problems, Geilo 3

Differentiation of data

Pointwise noise at measurement points identically normally distributed with mean 0 and variance δ.

Law of large numbers yields

Parameter Identification,Winter School Inverse Problems, Geilo 4

Differentiation of data

Example:

Noise satisfies

But error in derivative is large

Page 2: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 5

Differentiation of data

Error:

Arbitrarily large since k can be arbitrarily large

Parameter Identification,Winter School Inverse Problems, Geilo 6

Conclusion 1

Parameter Identification,Winter School Inverse Problems, Geilo 7

Differentiation of dataAdditional information:Solution is smooth (e.g. twice differentiable)

Regularization: e.g. smoothing by elliptic PDE

Variational principle for elliptic PDEs: minimize

Parameter Identification,Winter School Inverse Problems, Geilo 8

Differentiaton of dataDetailed estimate:

Lecture notes, p. 7

Page 3: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 9

Computerized Tomography(A nice link between Austria & Norway)

Problem: reconstruct a spatial density f in a domain D from measurements of X-rays traveling through the domain.

X-rays travel along rays, parametrized by distance s from origin and its unit normal vector ω

Parameter Identification,Winter School Inverse Problems, Geilo 10

Computerized TomographyX-ray beam has intensity I

Model: decay of itensity in a small distance ∆t proportional to I, f, and distance

Limit ∆t to zero

Parameter Identification,Winter School Inverse Problems, Geilo 11

Computerized TomographyMeasurement: intensity at emitter and detector

Parameter identification problem for system of ordinary differential equations (first-order)

Overdetermined for given f since initial and final value are known

Parameter Identification,Winter School Inverse Problems, Geilo 12

Computerized TomographyIntegrate ODE

Leads to inversion of the Radon transform

Page 4: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 13

Computerized TomographyRadon Transform

Exact inversion formula by Johann Radon 1917.SVD computed by McCormick et. al. in 1960s, Nobel Prize for Medicine in the 1970

Parameter Identification,Winter School Inverse Problems, Geilo 14

Computerized TomographyRadial symmetry,

Parameter Identification,Winter School Inverse Problems, Geilo 15

Computerized TomographyRadial symmetry,

Abel Integral equation !

SVs decay with half speed as for differentiation

Parameter Identification,Winter School Inverse Problems, Geilo 16

Groundwater Filtration

Identification of diffusivity of sediments from an observation of the piezometric head (describing the flow)

Knowledge of diffusivity allows to draw conclusions about the structure of the groundwater

Page 5: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 17

Groundwater FiltrationMathematical model

Diffusivity a, piezometric head u (measured), density of water sources and sinks f

+ Appropriate boundary conditions (e.g. u=0)

Parameter Identification,Winter School Inverse Problems, Geilo 18

Groundwater FiltrationInstead of exact data, we only know noisy measurement

Typically the noise n(x) comes from identically normally distributed random variablesFrom a law of large numbers this gives an estimate

Parameter Identification,Winter School Inverse Problems, Geilo 19

Groundwater FiltrationConsider 1D version of inverse problem, forsimplicity with

We can integrate the equation to obtain

Hence, if the derivative of u does not vanish, a is determined uniquely (Identifiability)

Parameter Identification,Winter School Inverse Problems, Geilo 20

Groundwater FiltrationDetailed estimate:

Lecture notes, p. 9

Page 6: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 21

Groundwater FiltrationSome results (from Hanke, 1995)

Exact phantom

Parameter Identification,Winter School Inverse Problems, Geilo 22

Groundwater FiltrationReconstructions for two different noise levels(1% and 0.1%)

Parameter Identification,Winter School Inverse Problems, Geilo 23

Groundwater FiltrationReconstruction along the diagonal

Parameter Identification,Winter School Inverse Problems, Geilo 24

Groundwater FiltrationReconstructions of piecewise constant parameter, no noise (nonuniqueness curve), fine grid

Page 7: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 25

Groundwater FiltrationReconstructions of piecewise constant parameter, no noise (nonuniqueness curve), hierarchical grids

Parameter Identification,Winter School Inverse Problems, Geilo 26

Electrical Impedance Tomography

Application in Medical ImagingSet of electrodes placed around human chest, Response to various electrical impulses measured

Picture from RPI-EIT Project

Parameter Identification,Winter School Inverse Problems, Geilo 27

Electrical Impedance Tomography

Picture from RPI-EIT Project

Parameter Identification,Winter School Inverse Problems, Geilo 28

Electrical Impedance Tomography

Pictures from RPI-EIT Project

Page 8: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 29

Electrical Impedance Tomography

Mathematical model: Maxwell equations, reduced to potential equation

u is electrical potential, f applied voltage patterna denotes the (unknown) conductivity

Parameter Identification,Winter School Inverse Problems, Geilo 30

Electrical Impedance Tomography

Measurement: current density on the boundary for different voltage patterns

Idealized mathematical model: Dirichlet-Neumann map

Parameter Identification,Winter School Inverse Problems, Geilo 31

Electrical Impedance Tomography INVERSE CONDUCTIVITY PROBLEM

In practice finite number of measurements

N typically very large

Parameter Identification,Winter School Inverse Problems, Geilo 32

Electrical Impedance Tomography

To compute output, we have to solve solutions of N partial differential equations

Problem of extremely large scale

Page 9: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 33

Electrical Impedance Tomography

Interesting special case: piecewise constant conductivities

Real interest is the subset where a takes avalue different from a1 (e.g. a tumour)

Parameter Identification,Winter School Inverse Problems, Geilo 34

Semiconductor Devices

Related problem to impedance tomography appears for semiconductor devices: inverse dopant profiling

Parameter Identification,Winter School Inverse Problems, Geilo 35

Inverse Dopant Profiling

Identify the device doping profile from measurements Current-Voltage map

Analogous definitions of voltage and current, but more complicated mathematical model

Parameter Identification,Winter School Inverse Problems, Geilo 36

Mathematical ModelStationary Drift Diffusion Model: PDE system for potential V, electron density nand hole density p

in Ω (subset of R2)Doping Profile C(x) enters as source term

Page 10: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 37

Boundary ConditionsBoundary of Ω : homogeneous Neumann boundary conditions on ΓN and

on Dirichlet boundary ΓD (Ohmic Contacts)Parameter Identification,

Winter School Inverse Problems, Geilo 38

Device CharacteristicsMeasured on a contact Γ0 on ΓD :Outflow current density

Parameter Identification,Winter School Inverse Problems, Geilo 39

Numerical TestsTest for a P-N Diode

Real Doping Profile Initial Guess

Parameter Identification,Winter School Inverse Problems, Geilo 40

Numerical TestsDifferent Voltage Sources

Page 11: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 41

Numerical TestsReconstructions with first source

Parameter Identification,Winter School Inverse Problems, Geilo 42

Numerical TestsReconstructions with second source

Parameter Identification,Winter School Inverse Problems, Geilo 43

Polymer Crystallization

Parameter Identification,Winter School Inverse Problems, Geilo 44

Polymer CrystallizationMesoscale model for polymer crystallization

ξ = degree of crystallinityu,v = surface densities

T = temperature G = growth rate

N = nucleation

rate

Page 12: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 45

Polymer CrystallizationSource term

Parameter Identification,Winter School Inverse Problems, Geilo 46

Polymer CrystallizationTraditional way of determining nucleation rate as function of temperature:- Make separate experiment for each value of T- Count (by eyes !!!) the final number of crystals (typically >> 106).- Divide by volume

Extremely expensive, extremely time-consuming !

Parameter Identification,Winter School Inverse Problems, Geilo 47

Polymer CrystallizationIdea: determine nucleation rate as function of temperature by single nonisothermal experiment

Measured data: temperature T at the boundary of the sample Degree of crystallinity at final time

Parameter Identification,Winter School Inverse Problems, Geilo 48

Polymer CrystallizationResults

Page 13: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 49

Polymer CrystallizationResults

Parameter Identification,Winter School Inverse Problems, Geilo 50

Polymer CrystallizationResults

Parameter Identification,Winter School Inverse Problems, Geilo 51

Polymer CrystallizationReconstruction error vs noise level

Parameter Identification,Winter School Inverse Problems, Geilo 52

Polymer CrystallizationReconstruction error vs noise level

Page 14: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 53

Polymer CrystallizationIteration numbers

Parameter Identification,Winter School Inverse Problems, Geilo 54

Polymer CrystallizationIteration numbers

Parameter Identification,Winter School Inverse Problems, Geilo 55

Iterative RegularizationFor nonlinear inverse problems, iterative regularization is of even higher importance as for linear ones We need to perform iteration to minimize nonlinear Tikhonov functional anyway

Start from least-squares functional

Parameter Identification,Winter School Inverse Problems, Geilo 56

Iterative RegularizationGradient of the least-squares functional

Perform simple gradient descent:

„Landweber iteration“

Page 15: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 57

Iterative RegularizationWhere is the regularization parameter ??!!

Parameter Identification,Winter School Inverse Problems, Geilo 58

Iterative RegularizationRegularization by appropriate early stopping, e.g. discrepancy principle

Each step of Landweber iteration is well-posed, so we obtain iterative regularization method

Parameter Identification,Winter School Inverse Problems, Geilo 59

Iterative RegularizationAnalysis of Landweber iteration: Hanke-Neubauer-Scherzer 1994, Scherzer 1995

Usual semi-convergence properties as for linear problems, but restriction on the nonlinearity of the problem (replacing regularity of )

Parameter Identification,Winter School Inverse Problems, Geilo 60

Iterative RegularizationLandweber iteration is forward Euler time discretization (with time step τ of the flow)

„Asymptotical regularization“ (Tautenhahn 1994)Iteration

Page 16: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 61

Iterative RegularizationWe can consider other time discretizations:Backward Euler

„Iterated Tikhonov Regularization“ (Hanke-Groetsch 1999, Groetsch-Scherzer 1999)

Parameter Identification,Winter School Inverse Problems, Geilo 62

Iterative RegularizationWe can consider other time discretizations:Semi-Implicit Euler

„Levenberg-Marquardt“ (Hanke 1995)

Arbitrary Runge-Kutta methods possibly, even inconsistent ones (Rieder, 2005)

Parameter Identification,Winter School Inverse Problems, Geilo 63

Iterative RegularizationLevenberg-Marquardt can be rewritten to

Tikhonov regularization of the linear Newton-equation

Parameter Identification,Winter School Inverse Problems, Geilo 64

Iterative RegularizationGeneral approach for Newton-type methods:Apply linear regularization to

„Iteratively regularized Gauss-Newton“ (Kaltenbacher-Neubauer-Scherzer 1996, Kaltenbacher 1997)„Newton-CG“ (Hanke, 1998)

Page 17: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 65

Iterative Regularization„Newton-Landweber“ (Kaltenbacher 1999)„Broyden“ (Kaltenbacher, 1997)„Multigrid / Discretization“ (Kaltenbacher, 2000-2003)

In particular for parameter identification:„Levenberg-Marquardt SQP“ (B-Mühlhuber 2002)„Newton-Kaczmarcz“ (B-Kaltenbacher 2004)

Parameter Identification,Winter School Inverse Problems, Geilo 66

Total Variation Denoising

Parameter Identification,Winter School Inverse Problems, Geilo 67

Total Variation Denoising

Parameter Identification,Winter School Inverse Problems, Geilo 68

TV-ImagesBasic problem in denoising:

given noisy version g of image f, find

„optimal“ approximation u of f

Basic problem in deblurring:

given noisy version g of Kf, find

„optimal“ approximation u of f

Page 18: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 69

TV-ImagesWhat is optimal ?

Satisfy other criterion, e.g., minimization

over a class of approximations

Parameter Identification,Winter School Inverse Problems, Geilo 70

ROF-Model

What is a suitable class of approximations ?

Discrepancy principle: allow images with

with σ being the noise level:

Parameter Identification,Winter School Inverse Problems, Geilo 71

ROF-Model

Rudin-Osher-Fatemi 1989 (ROF):

Minimize total variation

subject to

Parameter Identification,Winter School Inverse Problems, Geilo 72

ROF-Model

Deblurring:

Minimize total variation

subject to

Page 19: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 73

ROF-Model

Acar-Vogel 1994:

ROF is regularization method (well-

posedness + convergence as σ to zero)

Chambolle-Lions 1997:

Solution unique, there exists Lagrange

multiplier λ, problem equivalent to

Parameter Identification,Winter School Inverse Problems, Geilo 74

ROF-Model

Acar-Vogel 1994:

ROF is regularization method (well-

posedness + convergence as σ to zero)

Chambolle-Lions 1997:

Solution unique, there exists Lagrange

multiplier λ, problem equivalent to

Parameter Identification,Winter School Inverse Problems, Geilo 75

Total Variation

Rigorous definition of total variation

Parameter Identification,Winter School Inverse Problems, Geilo 76

Total Variation

BV includes discontinuous functions:

1D example

Page 20: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 77

Total Variation

1D example

Parameter Identification,Winter School Inverse Problems, Geilo 78

Total Variation

Formal optimality for TV-Denoising

Term on the right-hand side corresponds to mean curvature of level sets of u

Parameter Identification,Winter School Inverse Problems, Geilo 79

Duality

Consider TV-regularization

Parameter Identification,Winter School Inverse Problems, Geilo 80

DualityExchange inf and sup

Solve inner inf problem for u

Page 21: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 81

DualityRemains sup problem for g

Rewrite equivalently

Parameter Identification,Winter School Inverse Problems, Geilo 82

DualityIntroduce

Dual TV problem (Chambolle 2003)

Dual space of BV

Parameter Identification,Winter School Inverse Problems, Geilo 83

Stair-CasingLecture notes p.20

Parameter Identification,Winter School Inverse Problems, Geilo 84

ROF-Model

Meyer 2001 (and others before):

ROF has a systematic error, since

This means that jumps in the reconstructed image are smaller than jumps in the true image

Page 22: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 85

Noise Decomposition

How to resolve the systematic error ?

Take some λ, and minimize TV-functional

to obtain . Then take residual („noise“)

Parameter Identification,Winter School Inverse Problems, Geilo 86

Noise Decomposition

Minimize

to obtain next iterate

The second step may increase total

variation !

Parameter Identification,Winter School Inverse Problems, Geilo 87

Iterated Total Variation

Obtain new iterate by minimizing

then decompose noise

Need not change the code, just the data !Parameter Identification,

Winter School Inverse Problems, Geilo 88

Some Results

Page 23: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 89

Some Results

Parameter Identification,Winter School Inverse Problems, Geilo 90

Some Results

Parameter Identification,Winter School Inverse Problems, Geilo 91

Some Results

Parameter Identification,Winter School Inverse Problems, Geilo 92

Some Results

Page 24: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 93

Some Results

Parameter Identification,Winter School Inverse Problems, Geilo 94

Convergence Analysis

So why does that work ???

Expand fitting term, throw away constant

terms:

Parameter Identification,Winter School Inverse Problems, Geilo 95

Convergence Analysis

Optimality condition implies

Write equivalent optimization problem

Parameter Identification,Winter School Inverse Problems, Geilo 96

Convergence Analysis

Hence, iterated TV is „proximal point algorithm“

Page 25: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 97

Convergence Analysis

The second term is called Bregman distance

with

Parameter Identification,Winter School Inverse Problems, Geilo 98

Convergence Analysis

Example: quadratic case

yields

Iterated Tikhonov / Levenberg-Marquardt Method !

Parameter Identification,Winter School Inverse Problems, Geilo 99

Inverse TV FlowDoes the reconstruction depend on λ ?

To understand the dependence on the

parameter, consider limit λ → 0.

Let λN = T/N, set tk = k λN. We compute the

solution of the iterated TV flow with this specific parameter and set

Linear interpolation for other times.Parameter Identification,

Winter School Inverse Problems, Geilo 100

Inverse TV Flow

We obtain a limiting flow,

This flow is uniquely defined

Formally,

Page 26: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 101

Inverse TV FlowThe „inverse TV flow“ can be considered as

an „inverse scale space method“ (Scherzer-Weickert 99)

Start with zero image, and gradually insert smaller and smaller scales. Noise should return in the end, this happened in experiments

Parameter Identification,Winter School Inverse Problems, Geilo 102

Inverse TV Flow

The parameter λ can be interpreted as a time step for an implicit discretization of the inverse TV flow

Should work well and be independent of the

parameter, as long as λ is small enough. This can be observed in experiments, too.

Parameter Identification,Winter School Inverse Problems, Geilo 103

Nonlinear Inverse Problems

The algorithm can immediately be generalized to arbitrary linear and even nonlinear inverse problems:

Find next iterate as minimizer of

Parameter Identification,Winter School Inverse Problems, Geilo 104

Nonlinear Inverse Problems

Example: estimate diffusion coefficient q in

from measurement of u

Operator F: q → u(q)

Application: find material layers in ground-water modeling (piecewise constant)

Page 27: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 105

Nonlinear Inverse Problems

Exact data

Iterate 1

Parameter Identification,Winter School Inverse Problems, Geilo 106

Nonlinear Inverse Problems

Exact data

Iterate 2

Parameter Identification,Winter School Inverse Problems, Geilo 107

Nonlinear Inverse Problems

Exact data

Iterate 3

Parameter Identification,Winter School Inverse Problems, Geilo 108

Nonlinear Inverse Problems

Exact data

Iterate 4

Page 28: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 109

Nonlinear Inverse Problems

Exact data

Iterate 5

Parameter Identification,Winter School Inverse Problems, Geilo 110

Nonlinear Inverse Problems

Exact data

Iterate 6

Parameter Identification,Winter School Inverse Problems, Geilo 111

Nonlinear Inverse Problems

Exact data

Iterate 10

Parameter Identification,Winter School Inverse Problems, Geilo 112

Nonlinear Inverse Problems

Exact data

Iterate 20

Page 29: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 113

Nonlinear Inverse Problems

Exact data

Iterate 50

Parameter Identification,Winter School Inverse Problems, Geilo 114

Nonlinear Inverse Problems

Exact data

Iterate 100

Parameter Identification,Winter School Inverse Problems, Geilo 115

Nonlinear Inverse Problems

Exact data

Iterate 200

Parameter Identification,Winter School Inverse Problems, Geilo 116

Nonlinear Inverse Problems

1% noise

Iterate 1

Page 30: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 117

Nonlinear Inverse Problems

1% noise

Iterate 2

Parameter Identification,Winter School Inverse Problems, Geilo 118

Nonlinear Inverse Problems

1% noise

Iterate 3

Parameter Identification,Winter School Inverse Problems, Geilo 119

Nonlinear Inverse Problems

1% noise

Iterate 4

Parameter Identification,Winter School Inverse Problems, Geilo 120

Nonlinear Inverse Problems

1% noise

Iterate 5

Page 31: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 121

Nonlinear Inverse Problems

1% noise

Iterate 10

Parameter Identification,Winter School Inverse Problems, Geilo 122

Nonlinear Inverse Problems

1% noise

Iterate 50

Parameter Identification,Winter School Inverse Problems, Geilo 123

Nonlinear Inverse Problems

10% noise

Iterate 1

Parameter Identification,Winter School Inverse Problems, Geilo 124

Nonlinear Inverse Problems

10% noise

Iterate 2

Page 32: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 125

Nonlinear Inverse Problems

10% noise

Iterate 3

Parameter Identification,Winter School Inverse Problems, Geilo 126

Nonlinear Inverse Problems

10% noise

Iterate 4

Parameter Identification,Winter School Inverse Problems, Geilo 127

Nonlinear Inverse Problems

10% noise

Iterate 5

Parameter Identification,Winter School Inverse Problems, Geilo 128

Nonlinear Inverse Problems

10% noise

Iterate 10

Page 33: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 129

Parameter Identification

Parameter Identification,Winter School Inverse Problems, Geilo 130

Implementation AspectsLandweber iteration: Discretize parameter Discretize state + state equationCompute gradient by adjoint methodTry to use same kind of discretization for adjoint as for state equation („Discretized Adjoint = Adjoint of Discretized Problem“)For multiple state equations compute gradients corresponding to each state equation immediately

Parameter Identification,Winter School Inverse Problems, Geilo 131

Implementation AspectsLandweber iteration with Black Box Solver: Discretize parameter Discretize state + state equation (determined by solver)If adjoint method not possible, try to compute gradients by finite differencingFor multiple state equations compute gradients corresponding to each state equation immediately

Parameter Identification,Winter School Inverse Problems, Geilo 132

Implementation AspectsQuasi-Newton Methods (BFGS): Discretize parameter Discretize state + state equation (determined by solver)Compute gradients by adjoint method, use adjoint to update quasi-Newton matrixSolve linear system for update

Page 34: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 133

Implementation AspectsNewton Methods (LM / IRGN / NCG): Discretize parameter Discretize state + state equation Never compute Newton-Matrix (NOT SPARSE)!!

Try to use iterative method for computing the Newton step, only implement application of and its adjoint (two PDEs)

Parameter Identification,Winter School Inverse Problems, Geilo 134

Implementation AspectsOne shot methods: Discretize parameter + state + state equation + adjoint + adjoint equation Solve the full KKT system simultaneously, e.g.

Parameter Identification,Winter School Inverse Problems, Geilo 135

Implementation AspectsOne shot methods: KKT system is sparse and symmetricKKT system is not positive definite (no CG !) Use BiCGStab, MINRES, QMR or GMRESApply appropriate preconditioning, note that there is a small parameter (α), acting like singular perturbationPreconditioning strategies: Battermann-Sachs 2000, Battermann-Heinckenschloss 2001, Ascher-Haber 2001-2003,B-Mühlhuber 2002, Griewank 2005

Parameter Identification,Winter School Inverse Problems, Geilo 136

Kaczmarcz MethodsFor problems like impedance tomography, the operators are of the form

Idea: perform multiplicative splitting (like in Gauss-Seidel), cyclic iteration over the N subproblems

Page 35: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 137

Kaczmarcz MethodsSubproblem j:

Landweber-Kaczmarcz (Natterer 1996, Kowar-Scherzer 2003)

Parameter Identification,Winter School Inverse Problems, Geilo 138

Kaczmarcz MethodsLevenberg-Marquardt Kaczmarcz (B-Kaltenbacher 2004)State equation:Linear KKT:

Parameter Identification,Winter School Inverse Problems, Geilo 139

Kaczmarcz MethodsSimple model problem: identify q in

from measurements

for different sources

Parameter Identification,Winter School Inverse Problems, Geilo 140

Numerical SolutionNewton-Kaczmarz approach is equivalent to minimizing

for in each step, subject to

Page 36: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 141

Numerical SolutionSince we need another function to realize the H-1/2-norm, corresponding KKT system is 4 x 4

Parameter Identification,Winter School Inverse Problems, Geilo 142

Numerical SolutionWith boundary conditions

and

Parameter Identification,Winter School Inverse Problems, Geilo 143

Numerical ResultsNumerical experiment with N=20 localized sources gj

(5 on each side)

Exact solution

Constant initial value

Parameter Identification,Winter School Inverse Problems, Geilo 144

Numerical ResultsIterates 1, 2, 3, 4, 5, 6

Page 37: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 145

Numerical ResultsIterates 10, 15, 20, 40, 60, 80 (1/2,3/4,1,2,3,4)

Parameter Identification,Winter School Inverse Problems, Geilo 146

Numerical ResultsResiduals and Error

Parameter Identification,Winter School Inverse Problems, Geilo 147

Numerical ResultsNumerical experiment with N=20 localized sources gj

(5 on each side)

Exact solution

Constant initial value

Parameter Identification,Winter School Inverse Problems, Geilo 148

Numerical ResultsIterates 1, 6, 11, 16, 21, 41

Page 38: Differentiation of data Parameter Identification in

Parameter Identification,Winter School Inverse Problems, Geilo 149

Numerical ResultsIterates 80, 120, 160, 240, 320, 400 (4,6,8,12,16,20)

Parameter Identification,Winter School Inverse Problems, Geilo 150

Numerical ResultsResiduals and Error