36
Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen Support: AFOSR and NSF SIAM CSE 09 Miami, FL March 2009

Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Discrete Empirical Interpolation

for Nonlinear Model Reduction

S. Chaturantabut and D.C. Sorensen

Support: AFOSR and NSF

SIAM CSE 09 Miami, FL March 2009

Page 2: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Projection Methods for MOR

Brief Intro to Gramian Based Model Reduction

Proper Orthogonal Decomposition (POD)

A Problem with POD

Nonlinear MOR: Discrete Empirical Interpolation (DEIM)

Variant of EIM : Barrault, Maday, Nguyen and Patera (2004)

Neural Modeling: Local Reduction ⇒ Many Interactions

Page 3: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Gramian Based Model Reduction

Proper Orthogonal Decomposition (POD)

y(t) = f(y(t),u(t)), z = g(y(t),u(t))

The Gramian

P =

∫ ∞

oy(τ)y(τ)Tdτ

Eigenvectors of P

P = WS2WT

Orthogonal Basisy(t) = WSw(t)

Page 4: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

PCA or POD Reduced Basis

Snapshot Approximation to P

P ≈ 1

m

m∑j=1

y(tj)y(tj)T = YYT

Truncate SVD : Y = WSVT ≈WkSkVTk

Low Rank Approximation

y ≈Wk yk(t)

Galerkin condition – Global Basis

˙yk = WTk f(Wk yk(t),u(t))

Global Approximation Error ? (H2 bound for LTI)

‖y −Wk yk‖2 ≈ σk+1

Page 5: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

POD vs. FEM

I Both are Galerkin Projection

I POD - Global Basis fns. vs FEM - Local Basis fns.

I FEM - Complex Behavior via Mesh Refinement/ Higher OrderHigh Dimension - Sparse Matrices

I POD - Complex Behavior contained in Global BasisLow Dimension - Dense Matrices

I Caveat: POD is ad hoc: Must sample rich set of inputs andparameter settings

I Qx: How to automate parameter/input sampling for POD

Page 6: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Problem Setting

d

dty(t) = Ay(t) + F(y(t)), (1)

I y : [0,T ] 7→ Rn,I A ∈ Rn×n,I F : Rn 7→ Rn, nonlinear function F(y(t))j = F (yj(t)).I E.g. FD discretized system of nonlinear PDEs ⇒ Large n.

Reduced system (dim k n):

I y(t)→Wk y(t), Wk ∈ Rn×k

d

dty(t) = WT

k AWk︸ ︷︷ ︸k×k

y(t) + WTk︸︷︷︸

k×n

F(Wk y(t))︸ ︷︷ ︸n×1

. (2)

⇒ Computational complexity of nonlinear term still depends on n.

Page 7: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Nonlinear Approximation

I Define f(t) := F(Wk y(t)) and the nonlinear term

F(y(t)) := WTk︸︷︷︸

k×n

f(t)︸︷︷︸n×1

. ⇒ dependence on n

I Goal: Approx f(t) by projecting on U ∈ Rn×m, m n

f(t) ≈ Uc(t)

I ⇒ Approximation of nonlinear term:

F(y(t)) ≈ WTk U︸ ︷︷ ︸

precomp:k×m

c(t)︸︷︷︸m×1

⇒ independence of n

I How to determine c(t)?.....Interpolation!

Page 8: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Interpolation

Consider overdetermined linear system (n >> m):Want:

f(t) ≈ Uc(t)

Select m rows ℘1, . . . , ℘m of U

Determine c(t) from m-by-m linear system:

f~℘(t) = U~℘c(t)

PT f(t) = (PTU)c(t)

P = [e℘1 , . . . , e℘m ] ∈ Rn×m

PT “extracts rows” ℘1, . . . , ℘m.

Page 9: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Complexity Reduction

c(t) = U−1~℘ f~℘(t)

= (PTU)−1PT f(t)

PT f(t) = PTF(Wk y(t))

= F(PTWk y(t))

Complexity m · k

Page 10: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Interpolation

I Interpolation approximation of f(t)

f(t) = Uc(t) = U(PTU)−1PT f(t) = P f(t)

I Interpolation ⇒ Projection:

P := U(PTU)−1PT is an oblique projector onto spanU.

I The approximation is exact at entries ℘1, . . . , ℘m:

PT f(t) = PTU(PTU)−1PT f(t) = PT f(t)

I How to select the interpolated indices ℘1, . . . , ℘m ?

“Discrete Empirical Interpolation Method (DEIM)”

Page 11: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Discrete Empirical Interpolation Method (DEIM)

INPUT: u1, . . . ,um ∈ Rn(linearly independent)

OUTPUT: ~℘ = [℘1, . . . , ℘m]

I [ρ, ℘1] = max |u1|U = [u1], ~℘ = [℘1],

I for j = 2 to m

1. u← uj

2. Solve U~℘c = u~℘ for c

3. r = u−Uc

4. [ρ, ℘j ] = max|r|

5. U← [U u], ~℘←[

~℘℘i

]

Page 12: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

DEIM Point Selection

0 20 40 60 80 100−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2EIM# 4

uUc r = u−Uccurrent pointprevious points

0 20 40 60 80 100−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3EIM# 5

uUc r = u−Uccurrent pointprevious points

0 20 40 60 80 100−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4EIM# 6

uUc r = u−Uccurrent pointprevious points

0 20 40 60 80 100−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15First 6 EIM points and input bases

Page 13: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

DEIM vs POD ERROR

‖f − f‖2 ≤ CEIME∗.

E∗ = ‖(I−UUT )f‖2 optimal 2-norm error (POD)

CEIM =(max‖M−1‖1, ρ−1(1 + ‖M−1PTu‖1)

)(1 + ‖a‖1),

If uimi=1 orthonormal and

I M = PT U, where P , U are from previous iterations in EIM ,

I U = [U u], p = e℘m , u are from current iteration of EIM,

I aT = pT UM−1,

Page 14: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Approximation of the Error Bound

For µ ∈ D , ‖f(µ)− f(µ)‖2 ≤ CEIME∗(µ)

where

I E∗(µ) = ‖(I−UUT )f(µ)‖2I f(µ) = U(PTU)−1PT f(µ)

I Range(U) ≈M = spanf(µ)|µ ∈ D

⇒ Must compute f(µ) to obtain E∗(µ) for the error bound.

Snapshot matrix: F = [f(µ1), . . . , f(µns )] ∈ Rn×ns ,

I Put U = [u1, . . . ,um] ∈ Rn×m ∼ leading left sing. vects. of FThen E∗(µ) . σm+1

‖f(µ)− f(µ)‖2 . CEIMσm+1.

Page 15: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

DEIM : s(x; µ) = (1− x)cos(3πµ(x + 1))e−(1+x)µ

µ ∈ [1, π]

I x = [x1, . . . , xn]T , xi equidistant points in [−1, 1]

I Using 51 snapshots uniformly selected from [1, π] to constructPOD basis

0 10 20 30 40 50 6010−20

10−15

10−10

10−5

100

105 Singular values of 51 Snapshots

−1 −0.5 0 0.5 1−5

−4

−3

−2

−1

0

1

2

3EIM points and POD bases (1−6)

PODbasis 1PODbasis 2PODbasis 3PODbasis 4PODbasis 5PODbasis 6EIM pts

Page 16: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

DEIM : s(x ; µ) = (1− x)cos(3πµ(x + 1))e−(1+x)µ

I Full dim = 100, EIM dim = 10I Good approximation for arbitrary value of µ ∈ [1, π]

−1 −0.5 0 0.5 1−2

−1

0

1

2µ = 1.17

exactEIM approx

−1 −0.5 0 0.5 1−2

−1

0

1

2µ = 1.5

exactEIM approx

−1 −0.5 0 0.5 1−2

−1

0

1

2µ = 2.3

exactEIM approx

−1 −0.5 0 0.5 1−2

−1

0

1

2µ = 3.1

exactEIM approx

Page 17: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Average Error Bound

0 10 20 30 40 50 6010−15

10−10

10−5

100

105

m (dim EIM/POD)

Avg E

rror

Avg Error: (1/nµ)sum

µ|| f(µ)−fm(µ)|| and Avg Error Bound

err EIM−POD(true)err POD(true)err bound EIM−PODerr bound EIM−POD(SVD)singular values

Page 18: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Discrete EIM for 2D

Consider a nonlinear parametrized functions : D 7→ Rnx×ny defined by

s(xi , yj ;µ) =1√

(xi − µ1)2 + (yj − µ2)2 + 0.12,

I Spatial grid points (xi , yj) ∈ Ω = [0.1, 0.9]2

are equally spaced on Ω, for i = 1, . . . , nx

j = 1, . . . , ny .

I Parameterµ = (µ1, µ2) ∈ D = [−1,−0.01]2 ⊂ R2.

I POD basis are constructed from 225snapshots selected from equally-spaced gridpoints on parameter domain D.

0 5 10 15 20 2510−4

10−2

100

102

104Singular Values of Snapshots

05

1015

20

0

10

200

2

4

6

Page 19: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

00.5

10

0.510

0.05

0.1

x

POD basis #1

y 00.5

10

0.51

−0.5

0

0.5

x

POD basis #2

y 00.5

10

0.51

−0.2

0

0.2

x

POD basis #3

y

00.5

10

0.51

−0.5

0

0.5

x

POD basis #4

y 00.5

10

0.51

−0.5

0

0.5

x

POD basis #5

y 00.5

10

0.51

−0.5

0

0.5

x

POD basis #6

y

Page 20: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1. 2.

3.

4.

5.

6.7.

8.

9. 10.

11.

12.

13.

14.15.

16.

17.

18.

19.

20.

EIM points

x

y

Figure: First 20 points selected by Discrete EIM from input POD basis

Page 21: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

0.20.4

0.60.8

0.20.4

0.60.8

1

2

3

4

x

Full dim= 400,[µ1,µ2] = [−0.05,−0.05]

y

s(x,

y;µ)

0.20.4

0.60.8

0.20.4

0.60.8

1

2

3

4

x

POD: dim = 6, L2 error: 0.0082015

y

s(x,

y;µ)

0.20.4

0.60.8

0.20.4

0.60.8

1

2

3

4

x

EIM: dim = 6, L2 error: 0.018181

y

s(x,

y;µ)

Figure: Compare the original nonlinear function (dim= 400) with POD

and EIM approximations (dim=6) at parameter µ = (−0.05,−0.05).

Page 22: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

0 5 10 15 2010−6

10−4

10−2

100

102

104

Reduced dim

Avg error

PODEIMError BoundError Bound(approx)

0 5 10 15 2010−2

10−1

100

101

Reduced dim

CPU time, Avg ratio: tPOD/tEIM= 58.5367

PODEIM

I Avg err = 1nµ

Pnµ

i=1 ‖s(·; µi )− s(·; µi )‖2, nµ = 625.

I µi = (µi1, µ

i2) ∈ D.

I Original dimension = 400.

Page 23: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

EIM Steps

yt = Ay + F(y), y(0) = 0

1) Run trajectory and collect snapshots Y = [y1, y2, . . . ym]perhaps with several different inputs and parameter values.

2) Truncate SVD of snapshots to get a POD basis for Trajectory

3) Collect nonlinear snapshots F = [F(y1),F(y2), . . . ,F(ym)]

4) Truncate SVD of nonlinear snapshots to get another POD basisfor the nonlinear term

5) Select EIM interpolation points and approximate nonlinear termvia collocation in the non-linear POD basis

6) Construct the nonlinear ROM from the reduced linear andnonlinear terms

Page 24: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

The FitzHugh-Nagumo(F-N) Equations

Let x ∈ [0, L], t ≥ 0,

εvt(x , t) = ε2vxx (x , t) + f (v(x , t))− w(x , t)

wt(x , t) = bv(x , t)− γw(x , t),

where f (v) = v(v − 0.1)(1− v) with initialconditions and boundary conditions:

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, L]

vx (0, t) = −i0(t), vx (L, t) = 0, t ≥ 0

where L = 1, ε = 0.015, b = 0.5, γ = 2,i0(t) = 50000t3exp(−15t), t ∈ [0, 2].

I Neural modeling: v = voltagevariable, w= recovery variable.

I Simplified version of theHodgkin-Huxley.

0 20 40 60 80 10010−20

10−10

100

1010 Singular values of the solution snapshots

Singular Val of vSingular Val for w

Page 25: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

F-N: POD=30, EIM=10

click figure for movie

Page 26: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

F-N: POD=30, EIM=30

click figure for movie

Page 27: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

F-N: Average Relative Error

0 20 40 60 80 10010−8

10−6

10−4

10−2

100

POD dim

Aver

age

Rela

tive

Erro

r

Error EIM:(1/nt)sumt||yFD(t) −yEIM(t)||/||yFD(t)||

EIMdim 5EIMdim 20EIMdim 30EIMdim 40EIMdim 50EIMdim 60EIMdim 70EIMdim 80EIMdim 90EIMdim 100Standard POD

Figure: Error: EIM vs FULL

E2 := 1nt

Pntj=1

‖yFD (tj )−yEIM (tj )‖2

‖yFD (tj )‖2.

0 20 40 60 80 10010−8

10−6

10−4

10−2

100

EIM dim

Aver

age

Rela

tive

Erro

r

Error (1/nt)sumt||yPOD(t) −yEIM(t)||/||yPOD(t)||

PODdim 20PODdim 30PODdim 40PODdim 50PODdim 60PODdim 70PODdim 80PODdim 90PODdim 100

Figure: Error: EIM vs POD

E3 := 1nt

Pntj=1

‖yPOD (tj )−yEIM (tj )‖2

‖yPOD (tj )‖2.

Page 28: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

FitzHugh-Nagumo(FN) Limit Cycleεvt(x , t) = ε2vxx (x , t) + f (v(x , t))− w(x , t) + c

wt(x , t) = bv(x , t)− γw(x , t) + c, c = 0.05

I Modeling cardiac electrical activity: v = voltage , w= recoveryI Periodic solutions with limit cycles.

0 20 40 60 80 10010−20

10−10

100

1010 Singular values of the snapshots

Singular Val of vSingular Val of wSingular Val of f(v)

00.5

1

−10

120

0.05

0.1

0.15

0.2

x

Phase−Space diagram of full−order system

v(x,t)

w(x

,t)

−0.5 0 0.5 1 1.50

0.05

0.1

0.15

0.2

v(x,t)

w(x,

t)

Phase−Space diagram of full−order system

Page 29: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

F-N Lim Cycle:

I Full dim = 1024 Reduced dim: POD=5/EIM=5

click figure for movie

Page 30: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

F-N Lim Cycle: Avg Relative Error DEIM

0 20 40 60 80 10010−12

10−10

10−8

10−6

10−4

10−2

100

POD dim

Aver

age

rela

tive

Erro

rError EIM (periodic FN):(1/nt)sumt||y

FD(t) −yEIM(t)||/||yFD(t)||

EIMdim 1EIMdim 3EIMdim 5EIMdim 10EIMdim 20EIMdim 30EIMdim 40EIMdim 50EIMdim 60EIMdim 70EIMdim 80EIMdim 90EIMdim 100Standard POD

Page 31: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Reduced Order Neural Modeling

Steve Cox Tony Kellems

LINEAR MODELSBalanced Truncation Optimal H2

Nan Xiao and Derrick Roos Ryan Nong

Complex Model (Dim 160 K) → 20 variable ROM

NONLINEAR MODELSEmpirical Interpolation (EIM) - Patera et al.

Saifon Chaturantabut T. Kellems

Nonlinear H-H Neuron Model (Dim 1198) → 30 variable ROM

Complex nonlinear behavior well approximated

Page 32: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Neuron Cell

90µm

Page 33: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Linear ROM Results on Realistic Neuron

AR-1-20-04-A (Rosenkranz lab)Full system size 6726 Reduced system size 25

60µm

B

0 20 40 60 80 100−1

0

1

2

3

4Comparison of Soma Voltages

Time (ms)

Som

a P

oten

tial w

.r.t.

res

t (m

V)

NonlinearLinearizedReduced (k = 25)

0 20 40 60 80 100 12010

−12

10−10

10−8

10−6

10−4

10−2

Errors in Soma Voltage (Lin. vs. Reduced)

Time (ms)

Som

a V

olta

ge E

rror

(m

V)

Abs. ErrorRel. Error

Page 34: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

EIM Reduction of Hodgkin-Huxley Fiber

Three Inputs

0 10 20 30 40 50 60−80

−60

−40

−20

0

20

40

60Forked neuron: voltages at node 10

Time (ms)

Vol

tage

(m

V)

Full (N = 1198)

Reduced (k,nm = 30)

Page 35: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

EIM Reduction of HH : 3 inputs

Voltage Profile at Various Times (Full vs ROM)

0 0.2 0.4−75

−70

−65

0 0.2 0.4−76

−74

−72

−70

0 0.2 0.4−76

−74

−72

−70

0 0.2 0.4−76

−74

−72

0 0.2 0.4−78

−76

−74

−72

0 0.2 0.4−78

−76

−74

−72

0 0.2 0.4−80

−70

−60

0 0.2 0.4−80

−60

−40

−20

0 0.2 0.4−100

−50

0

50

0 0.2 0.4−100

−50

0

50

0 0.2 0.4−100

−50

0

50

0 0.2 0.4−100

−50

0

50

0 0.2 0.4−100

−50

0

50

0 0.2 0.4−100

−50

0

50

0 0.2 0.4−100

−50

0

50

0 0.2 0.4−100

−50

0

50

0 0.2 0.4−100

−50

0

0 0.2 0.4−70

−60

−50

−40

0 0.2 0.4−70

−60

−50

0 0.2 0.4−70

−65

−60

−55

0 0.2 0.4−66

−65.5

−65

−64.5

0 0.2 0.4−66

−65.5

−65

−64.5

0 0.2 0.4−65.5

−65

−64.5

0 0.2 0.4−65.5

−65

−64.5

−64

0 0.2 0.4−65

−64.5

−64

0 0.2 0.4−65

−64.5

−64

−63.5

0 0.2 0.4−65

−64

−63

−62

0 0.2 0.4−66

−64

−62

−60

0 0.2 0.4−66

−64

−62

−60

0 0.2 0.4−66

−64

−62

−60

0 0.2 0.4−66

−64

−62

−60

0 0.2 0.4−65

−64

−63

−62

0 0.2 0.4−65

−64

−63

−62

Page 36: Discrete Empirical Interpolation for Nonlinear Model …sorensen/Talks/SIAM_CSE09/...Discrete Empirical Interpolation for Nonlinear Model Reduction S. Chaturantabut and D.C. Sorensen

Summary

I CAAM TR09-05http://www.caam.rice.edu/ sorensen/

Empirical Gramian Based Model Reduction: ( POD )

Efficient Approximation of Nonlinear Term (DEIM)Complexity of nonlinear term proportional to no. reduced vars.

DEIM Point Selection Algorithm

Demonstrated Accuracy and EfficiencyNonlinear MOR via DEIM

Neural Modeling - Single Cell ROM ⇒ Many InteractionsExample of important class of problems