13
Distance dependence of charge carrier injection into DNA

Distance dependence of charge carrier injection into DNA

Embed Size (px)

Citation preview

Distance dependence of charge carrier injection into DNA

Kinetic scheme for hole injection, hopping and trapping in DNA

E

(X+)*

Hole Trap

G G

A A

C CT T

G

A

CT

X+

N

HN

OOP

H

O

OO-

Cl

MeO

X+-Labeled DNA duplexes

3‘ 5‘

A X+

T A

T A

GC

T A

A

T A

T A

T A

X+

GC

3‘ 5‘

A

T A

T A

X+

T A

GC

3‘ 5‘

XAG

X+AG

1(X+)*AG

0

0.5

1.0

Wavelength [nm]

Ab

sorb

ance

/Flu

ores

cen

ce

[a.u

.]

400 600500

Structural Characterization

• Melting Points• CD Spectra• NMR Structure

transition dipole moments of ACMA vs. duplex axis: ~70-75° consistent with time-resolved fluorescence polarisation (65-90°)

H6,H8 H1‘

H2‘‘

H2‘

MeasuredCalculated

Restraints :• NOEs (136 intra DNA + 7 inter ACMA-DNA) 0 violations (>0,2 Å)• Anisotropy of chemical shifts

QF-ACMA-NMR Struktur 1 03-10-21.ppt

NMR structure of 5‘ GCGTAAX+AATGCG duplex

Griesinger/Neubauer 2003

Kinetics of photo-induced guanine oxidation via (X+)*

-1 0 10 100 1000

-1,0

-0,5

0,0

0,5

1,0

455 nm Pump / 500 nm Probe

X+(AT) X+G X+AG

A (

a.u.

)

Time (ps)

X+AT CGC TAT TAT TAX+ ATT TAT CGC-3’

X+GA GCG TTA TAA GX+A TAA TAT GCG-3’

X+AGA GCG TTA TAG AX+A TAA TAT GCG-3’

Duplex ES (ns) CS (ns) CR (ns)X+G 0.003 0.003 0.030X+AG 6.9 11.2 ----X+ AT 18.0 ---- ----

kG / kAG ~ 4000“” ~ 2.4 Å-1

Factors controlling nonadiabatic charge transfer

Marcus formula:

classical nuclear dynamics

ET rate k determined by distance

dependant 3 terms

– effective electronic coupling HDA

– free energy change G

– reorganization energy

2

22 1exp

4 ( )4 ( )DA

G R Rk H R

R kTR kT

X+Z 5’-GCG TTA TAA ZX+A TAA TAT GCGX+AZ 5’-GCG TTA TAZ AX+A TAA TAT GCGX+AAZ 5’-GCG TTA AZA AX+A TAA TAT GCG

NH

O

PO O

O

O

PO O

O NH

Cl

H3CO

+

[

[

X+ =

Distance dependent activation energy of hole transfer rates in DNA duplex

Temperature Range: 245-305 K

HF-Analysis of Ea and k-03-10-21.ppt

How to analyze activation energies and rates

TkE

expT

Ak

B

a21

2

/)λ(V

A

weak contribution

Duplex Ea [eV] kFET [s-1]

(T=285 K) [s-1]

X+Z < 0.015 2.0 1012 6.2 1013

X+AZ 0.09 ± 0.01 9.3 1010 6.3 1013

X+AAZ 0.20 ± 0.02 4.6 107 2.8 1012

X+G 0.08 ± 0.04 2.0 1011 9.1 1013

X+AG 0.20 ± 0.04 6.5 107 4.0 1012

4

GE

2

a

Tk/EFET

BaeTkA

Distance dependence of reorganisation energy

λ

λGEa

4

2

Duplex Ea [eV] FET [eV]

X+G 0.08 ± 0.04 0.6 ± 0.1

X+AG 0.20 ± 0.04 1.0 ± 0.2

X+Z < 0.015 0.6 ± 0.1

X+AZ 0.09 ± 0.01 1.1 ± 0.1

X+AAZ 0.20 ± 0.02 1.4 ± 0.1

+ + ½ + ½

Small D/A distance&Smaller

Large D/A distance&Larger

Initial states Transition states

+ + ½ + ½

Reorganisation energy for the simple case of a self-exchange reaction

(G=0)

sopDAs εεRrr

)e(λ111

2

1

2

1

21

2

Distance dependence of the medium reorganization energy

stopDAADs Rrr

e

11121

21

)( 2

Marcus Two-Sphere-Model:

rD rA 4.5 Å

Optimization of charge transport energetics

Minimization of medium reorganization energy

• Short D/A distances

• Nonpolar environment

On the distance dependence of charge transfer in DNA Who did the work?

M.E. Michel-Beyerle Group: Design of Oligonucleotides and fs pump-probe spectroscopy Stephan Hess (Thesis 2002) & M. Götz (Thesis 2002) William B. Davis (now at Washington State at Pullman) Till von Feilitzsch & Gagik Gurzadyan at present

Nanosecond pump-probe spectroscopy Isabella. Naydenova, Reinhard Haselsberger & Alex Ogrodnik

Collaborations Fs Broadband Absorption spectrocopy N. P. Ernsting , S. A. Kovalenko & J. L. Pérez Lustres (HU Berlin)

NMR Structure C. Griesinger & H. Neubauer (MPI Göttingen)

Thermal Injection & Charge Transport B. Giese (U. Basel)

Quantum Chemical Computations & MD Simulations N. Rösch & A. Voityuk (TU München)

Modelling of Charge Transfer & Transport Dynamics M. Bixon & J. Jortner (Tel Aviv U.) M. D. Newton (Brookhaven)

Funding

VW-Stiftung DFG SFB 377

EU 5th & 6th Frame Program