33
14 June 2005 EXO SLAC DOE Pgm Rev M. Brei denbach 1 D.Leonard, A.Piepke Physics Dept, University of Alabama, Tuscaloosa AL P.Vogel Physics Dept Caltech, Pasadena CA A.Bellerive, M.Bowcock, M.Dixit, I.Ekchtout, C.Hargrove, D.Sinclair, V.Strickland Carleton University, Ottawa, Canada W.Fairbank Jr., S.Jeng, K.Hall Colorado State University, Fort Collins CO M.Moe Physics Dept UC Irvine, Irvine CA D.Akimov, A.Burenkov, M.Danilov, A.Dolgolenko, A.Kovalenko, D.Kovalenko, G.Smirnov, V.Stekhanov ITEP Moscow, Russia J.Farine, D.Hallman, C.Virtue Laurentian University, Canada M.Hauger, F.Juget, L.Ounalli, D.Schenker, J-L.Vuilleumier, J-M.Vuilleumier, P.Weber Physics Dept University of Neuchatel, Switzerland M.Breidenbach, R.Conley, C.Hall, D.McKay, A.Odian, C.Prescott, P.Rowson, J.Sevilla, K.Skarpaas, K.Wamba SLAC, Menlo Park CA R.DeVoe, B.Flatt, G.Gratta, M.Green, F.LePort, R.Neilson, A.Pocar, S.Waldman, J.Wodin Physics Dept Stanford University, Stanford CA Enriched Xenon Observatory for double beta decay

D.Leonard, A.Piepke Physics Dept, University of Alabama, Tuscaloosa AL

  • Upload
    tahlia

  • View
    38

  • Download
    4

Embed Size (px)

DESCRIPTION

E nriched X enon O bservatory for double beta decay. D.Leonard, A.Piepke Physics Dept, University of Alabama, Tuscaloosa AL P.Vogel Physics Dept Caltech, Pasadena CA A.Bellerive, M.Bowcock, M.Dixit, I. Ekchtout, C.Hargrove, D.Sinclair, V.Strickland - PowerPoint PPT Presentation

Citation preview

Page 1: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 1

D.Leonard, A.Piepke Physics Dept, University of Alabama, Tuscaloosa AL

P.Vogel Physics Dept Caltech, Pasadena CA

A.Bellerive, M.Bowcock, M.Dixit, I.Ekchtout, C.Hargrove, D.Sinclair, V.StricklandCarleton University, Ottawa, Canada

W.Fairbank Jr., S.Jeng, K.HallColorado State University, Fort Collins CO

M.MoePhysics Dept UC Irvine, Irvine CA

D.Akimov, A.Burenkov, M.Danilov, A.Dolgolenko, A.Kovalenko, D.Kovalenko, G.Smirnov, V.StekhanovITEP Moscow, Russia

J.Farine, D.Hallman, C.Virtue

Laurentian University, Canada

M.Hauger, F.Juget, L.Ounalli, D.Schenker, J-L.Vuilleumier, J-M.Vuilleumier, P.Weber Physics Dept University of Neuchatel, Switzerland

M.Breidenbach, R.Conley, C.Hall, D.McKay, A.Odian, C.Prescott, P.Rowson, J.Sevilla, K.Skarpaas, K.Wamba SLAC, Menlo Park CA

R.DeVoe, B.Flatt, G.Gratta, M.Green, F.LePort, R.Neilson, A.Pocar, S.Waldman, J.Wodin Physics Dept Stanford University, Stanford CA

Enriched Xenon Observatoryfor double beta decay

Page 2: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 2

Outline

• Why EXO • EXO 200 Description, Capabilities and Status• SLAC Personnel

• EXO 200 Progress Carter Hall Breakout• Ba Tagging R&D Peter Rowson Breakout

Page 3: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 3

Main challenge in 0νββ decay

1) Very large fiducial mass (tons) need large-scale isotopic enrichment2) Reduce and control backgrounds in qualitatively new ways existing experiments are already background limited, unlikely to gain big factors without new techniques

For no background

For a backgroundscaling like Nt

Need 2) to fully utilize 1) and make a worthwhile experiment

NtTm /1/1 02/1

4/102/1 /1/1 NtTm

Page 4: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 4

ββ decay experiments are at the leadingedge of “low background” techniques

• Final state ID: 1) “Geochemical”: search for an abnormal abundance of (A,Z+2) in a material containing (A,Z) 2) “Radiochemical”: store in a mine some material (A,Z) and after some time try to find (A,Z+2) in it + Very specific signature + Large live times [particularly for 1)] + Large fiducial masses - Possible only for a few isotopes [in the case of 1)] - No distinction between 0ν, 2ν or other modes

• “Real time”: ionization or scintillation is detected in the decay a) “Homogeneous”: source=detector b) “Heterogeneous”: source≠detector + Energy/some tracking available [can distinguish modes] + In principle universal (b) - Many γ backgrounds can fake signature - Exposure is limited by human patience

EXO is designed to combine these two techniquesfor a uncontroversial result

Page 5: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 5

Xe is ideal for a large experiment

•No need to grow crystals•Can be re-purified during the experiment•No long lived Xe isotopes to activate•Can be easily transferred from one detector to another if new technologies become available•Noble gas: easy(er) to purify•136Xe enrichment easier and safer: - noble gas (no chemistry involved) - centrifuge feed rate in gram/s, all mass useful - centrifuge efficiency ~ Δm. For Xe 4.7 amu•129Xe is a hyperpolarizable nucleus recently FDA approved for lung NMR tomography… a joint enrichment program ?

Page 6: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 6

Xe offers a qualitatively new tool against background:136Xe 136Ba++ e- e- final state can be identified using optical spectroscopy (M.Moe PRC44 (1991) 931)

Ba+ system best studied(Neuhauser, Hohenstatt,Toshek, Dehmelt 1980)Very specific signature

“shelving”Single ions can be detectedfrom a photon rate of 107/s

•Important additional constraint•Huge background reduction

2P1/2

4D3/2

2S1/2

493nm

650nm

metastable 47s

Page 7: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 7

The Ba-tagging, added to the Xe TPC rejectionPower, provides the tools to develop a background-free

next-generation ββ experiment

Energy resolution is still the all-important parameter to separate the mode from

EXO fiducial mass between 1 and 10 tons,of 136Xe at 80% depending on the statusof the field when we finalize the design

Page 8: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 8

Conceptual scheme of a large LXe detectorwith Ba extraction

Page 9: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 9

The roadmap to the background free discoveryof Majorana neutrinos and the neutrino mass scale

Gain practicewith Batrapping andspectroscopyin Xe and other gases

Learn about physicsand economics of Xe enrichmenton a grand scale

Enrich a large amountof Xe (200 kg)

Design and build a large, ton scaleexperiment with Ba tagging

Improve the energyresolution in LXe

Design & build alarge size, lowbackground prototypeLXe 0νββ detector

Measure 2νββ in136Xe, gain operationalexperience, reach thebest 0νββ sensitivity

Build a fully functionalion grab, transfer,trap, spectroscopy cell

Gain practicewith Ba grabbing and release

DoneIn progressTo do

Investigatedirect taggingin LXe

Page 10: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 10

Assumptions: 1) 80% enrichment in 1362) Intrinsic low background + Ba tagging eliminate all radioactive background3) Energy res only used to separate the 0ν from 2ν modes: Select 0ν events in a ±2σ interval centered around the 2.481MeV endpoint4) Use for 2νββ T1/2>1·1022yr (Bernabei et al. measurement)

* (E)/E = 1.4% obtained in EXO R&D, Conti et al Phys Rev B 68 (2003) 054201† (E)/E = 1.0% considered as an aggressive but realistic guess with large light collection area‡ Rodin et al Phys Rev C 68 (2003) 044302# Courier et al. Nucl Phys A 654 (1999) 973c

EXO neutrino effective mass sensitivity

Case Mass(ton)

Eff.(%)

Run Time(yr)

σE/E @ 2.5MeV

(%)

2νββBackground

(events)

T1/20ν

(yr, 90%CL)

Majorana mass(meV)

QRPA‡ NSM#

Conservative 1 70 5 1.6* 0.5 (use 1) 2*1027 50 68

Aggressive 10 70 10 1† 0.7 (use 1) 4.1*1028 11 15

Page 11: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 11

EXO-200:an intermediate detector without Ba tagging

•Need to test detector technology, particularly the LXe option: A 200 kg chamber is close to the largest Xe detector ever built and hence good training ground

•Essential to understand backgrounds from radioactivity: 200 kg is the minimum size for which the self-shielding is important and there is negligible surface inefficiency

•Using 136Xe can hope to measure the “background” mode: 200 kg is needed to have a chance (if do not see the mode then is really good news for the large experiment !!)

•The production logistics and quality of 136Xe need to be tested: Need a reasonably large quantity to test production•Already a respectable (20x) decay experiment •No need for Ba tagging at this scale

Page 12: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 12

Assumptions: 1) 200kg of Xe enriched to 80% in 1362) σ(E)/E = 1.4% obtained in EXO R&D, Conti et al Phys Rev B 68 (2003) 0542013) Low but finite radioactive background: 20 events/year in the ±2σ interval centered around the 2.481MeV endpoint4) Negligible background from 2νββ (T1/2>1·1022yr R.Bernabei et al. measurement)

EXO-200kg Majorana mass sensitivity

Case Mass(ton)

Eff.(%)

Run Time(yr)

σE/E @ 2.5MeV

(%)

RadioactiveBackground

(events)

T1/20ν

(yr, 90%CL)

Majorana mass(eV)

QRPA NSM

Prototype 0.2 70 2 1.6* 40 6.4*1025 0.27† 0.38♦

† Rodin et al Phys Rev C 68 (2003) 044302♦ Courier et al. Nucl Phys A 654 (1999) 973cWhat if Klapdor’s observation is correct ?

Central value T1/2 (Ge) = 1.2+3-0.5 ·1025, ±3σ range (0.24eV – 0.58eV)

(Phys. Lett. B 586 (2004) 198-212)

In 200kg EXO, 2yr: •Worst case (QRPA, upper limit) 15 events on top of 40 events bkgd 2σ

•Best case (NSM, lower limit) 162 events with 40 bkgd 8.5σ

Page 13: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 13

Status of 2ν mode in 136Xe

2νββ decay has never been observed in 136Xe. Some of the lower limits on its half life are close to (and in

one case below) the theoretical expectation.

T1/2 (yr) evts/year in the 200kg prototype(no efficiency applied)

Experimental limit

Leuscher et al >3.6·1020 <1.3 M

Gavriljuk et al >8.1·1020 <0.6 M

Bernabei et al >1.0·1022 <48 k

Theoretical prediction

QRPA (Staudt et al) [T1/2max] =2.1·1022 =23 k

QRPA (Vogel et al) =8.4·1020 =0.58 M

NSM (Caurier et al) (=2.1·1021) (=0.23 M)

EXO-200 should definitely resolve this issue

Page 14: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 14

200 kg 136Xe test production completed in spring ’03 (80% enrichment)

•Largest highly enriched stockpile not related to nuclear industry•Largest sample of separated ββ isotope (by ~factor of 10)

Page 15: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 15

EXO-200: a 200kg LXe TPC with scintillation readout in a ultra-low background cryostat/shielding

~1.7m

Heat exchange/shieldingfluid

200 kg chamber

Ultra-low activitycopper

Page 16: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 16

EXO-200 Xe handling and purificationsystem ready in cleanroom

SAES Zr purifier

RGA

valves and instrumentationmanifold

turbo pump

electronics rack

Recovery compressors duefor delivery in Jun 05

Page 17: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 17

Recirculation essential

Conclusion: common impurities (O2, H2O, CO2) efficiently removed by purifier, recirculation.

EXO-200 goal

l > 400 cm

t ~ 4 ms

0.1 ppb O2 equivalent

Page 18: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 18

1 kV/cm

~570 keV

EXO R&D showed the way to improved energy resolution in LXe: Use (anti)correlations between

ionization and scintillation signals

Page 19: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 19

Anti-correlated ionization and scintillation improves the energy resolution in LXe

Ionization alone:σ(E)/E = 3.8% @ 570 keV

or 1.8% @ Qββ

Ionization & Scintillation:σ(E)/E = 3.0% @ 570 keV

or 1.4% @ Qββ

(a factor of 2 better than the Gotthard TPC)

Compilationof Xe resolution

results

EXO ioniz + scint

E.Conti et al. Phys. Rev. B: 68 054201

EXO-200 will collect 3-4 timesas much scintillation…

further improvement possible

EXO ioniz only

Page 20: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 20

EXO-200 TPC basics

• The detector measures both the ionization electrons and the scintillation light to get best energy resolution.

– In addition, the position of the decay is measured to get spatial distributions and (for later) the position of the Ba ion.

– Info on event topology also important for background separation.

• The detector is a cylinder of 44 cm ID by 44 cm inner length.

• The cylinder is split by a cathode plane at the center so there are two symmetric drift regions. The cathode runs at negative HV.

– Max HV is ~ 70kV (~3.5 kV/cm drift). Energy resolution improves with drift field, but there are arguments that separation of 1 vs 2 primary electrons might be better at lower fields. field optimization is an important mission of EXO-200

• Readout “style”:– Crossed wires, 100μm wires, 3mm pitch, ganged in groups of 3 48ch x, 48ch y, total 96 ch per 1/2 detector (Pad readout rejected because of high channel count)

Page 21: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 21

Page 22: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

Unmounted LAAPD from Advanced Photonix Special gold-less production for us

QE > 1 at 175nm

Gain set at 100-150

V~1500VΔV < ±0.5V ΔT < ±1K APD is the driver for temperature stabilityLeakage current OK cold

APDs are ideal for our application: - very clean & light-weight, - very sensitive to VUV

Channel count: 2*300

Page 23: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 23

Teflon vessel

• In engineering phase• Teflon has advantages: - ultra-low activity - LXe compatible - Good VUV reflector• Teflon has disadvantages: - relatively weak plastic - large, non-uniform CTE• Weld everything together: - minimize materials - automatically match CTE• PFA and some very special PTFE can be welded (with some effort)• Standard technique involves re-baking of part• Special “fusion” clamp technology being developed under DoE SBIR-I with APT. Excellent progress being made: we have ionization and scintillation detected in a “all teflon” chamber. This is a (technical) first !• “Can opener” has to be designed

Page 24: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 24

Welded test chamber uses the same grid/APDs structure just

tested

Page 25: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 25

4 “all teflon” vessels built: all He-leak tested OK

• Body made out of parts sintered and fused in the oven• Recirculation pipes preformed and welded with hot clamp• Large seal welded with hot clamp

One vessel contains a fully functionalionization AND scintillation detector

Page 26: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 26

Front-end board Trigger module

Electronics nearly ready: final (small) mods on front end boards following review on Jun 6, 2005

Page 27: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 27

Modular clean rooms at Stanford

Page 28: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 28

Massive effort on material radioactive qualification using:

• NAA (MIT-Alabama)• Low background γ-spectroscopy (Neuchatel, Alabama)• α- counting (Alabama, Stanford, SLAC, Carleton)• Radon counting (Laurentian)• High performance GD-MS and ICP-MS (Commercial, Canadian Inst. Standards)

At present the database of characterized materials includes 77 entries

MC simulation of backgrounds at Alabama and Stanford/SLAC

The impact of every screw within the Pb shielding is evaluated before acceptance

Page 29: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 29

Modules arrive here and are transferred to WIPP flatcar. Flatcar is moved to waste handling shaft and lowered into mine. Flatcar load rating: 67,000 lbs.

Modules are then moved to NExA and placed in position and connected. Distance traveled ~ 2100 ft.

EXO-200 at WIPP

Page 30: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 30

EXO-200 home underground: (NExA)

Page 31: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 31

Personnel

• Physicists: M.Breidenbach, C.Hall, D.McKay, A.Odian, C.Prescott, P.Rowson, K.Wamba

• Engineers: J.Sevilla, K.Skarpaas, D. Freytag, R. Herbst, J. Hodgson• Techs: R.Conley, P. Tung• Admins: N. Haulman

• FTES (FY05):

• Physicists (Profs + Perm Staff) 2.7• Physicists (Post-docs) 0.9• Physicists (Students) 0.9• Engineers (Mech) 1.4• Engineers (Electronic) 0.7• Techs 1.2• Admin 0.1• Other 0.1

• Total 8.1

Page 32: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 32

SLAC Involvement

• EXO is a small, very collaborative organization.• SLAC is involved in all aspects of EXO except:

– Laser tagging of extracted Ba (but very involved in the extraction)

– Laser tagging of Ba in the bulk Xe– Radiopurity measurements (except for GDMS techniques)

Page 33: D.Leonard, A.Piepke  Physics Dept, University of Alabama, Tuscaloosa AL

14 June 2005 EXO SLAC DOE Pgm Rev M. Breidenbach 33

EXO-200 very soon will be ready

•Largest double beta decay detector ever•Largest amount of separated isotope (by a factor of 10) in hand•Tie for the largest Xe detector ever… But we are - ultra-clean - enriched xenon•First liquid bath cooled/shielded LXe detector•First Ionization & Scintillation LXe detector•First massive use of APDs for scintillation readout•First teflon detector vessel

Conclusions