142
Documentation EP31xx EtherCAT Box Modules with configurable analog inputs 2.2.0 2015-09-11 Version: Date:

Documentation EP31xx - Beckhoff description is only intended for the use of trained specialists in control ... Failure to follow the safety instructions associated with this symbol

  • Upload
    lyquynh

  • View
    219

  • Download
    1

Embed Size (px)

Citation preview

Documentation

EP31xx

EtherCAT Box Modules with configurable analog inputs

2.2.02015-09-11

Version:Date:

Table of contents

Table of contents1 Foreword .................................................................................................................................................... 5

1.1 Notes on the documentation............................................................................................................. 51.2 Safety instructions ............................................................................................................................ 61.3 Documentation issue status.............................................................................................................. 7

2 Product overview....................................................................................................................................... 92.1 EtherCAT Box - Introduction............................................................................................................. 92.2 Module overview............................................................................................................................. 112.3 EP3162-0002 - Introduction............................................................................................................ 122.4 EP3162-0002 - Techincal data ....................................................................................................... 132.5 EP3174-0002 - Introduction............................................................................................................ 142.6 EP3182-1002 - Introduction............................................................................................................ 152.7 EP3184-0002 - Introduction............................................................................................................ 162.8 EP3184-1002 - Introduction............................................................................................................ 172.9 EP3174, EP3184 – Technical Data ................................................................................................ 18

3 Mounting and Cabling............................................................................................................................. 203.1 Mounting ......................................................................................................................................... 20

3.1.1 Dimensions ......................................................................................................................... 203.1.2 Fixing .................................................................................................................................. 213.1.3 Nut torque for connectors ................................................................................................... 22

3.2 EtherCAT ........................................................................................................................................ 243.2.1 EtherCAT connection.......................................................................................................... 243.2.2 EtherCAT - Fieldbus LEDs.................................................................................................. 25

3.3 Power supply .................................................................................................................................. 263.3.1 Power Connection............................................................................................................... 263.3.2 Status LEDs for power supply............................................................................................. 293.3.3 Power cable conductor losses M8 ...................................................................................... 303.3.4 Conductor losses 7/8" ......................................................................................................... 30

3.4 Cabling............................................................................................................................................ 323.5 UL Requirements............................................................................................................................ 343.6 ATEX Notes .................................................................................................................................... 35

3.6.1 ATEX - Special conditions .................................................................................................. 353.6.2 BG2000-0000 - EtherCAT Box protection enclosure .......................................................... 363.6.3 ATEX Documentation ......................................................................................................... 38

4 EP3162-0002 - Signal connection .......................................................................................................... 394.1 Analog voltage inputs M12 ............................................................................................................. 394.2 Analog current inputs M12.............................................................................................................. 40

5 EP3174-0002 - Signal connection .......................................................................................................... 425.1 Analog voltage inputs M12 ............................................................................................................. 425.2 Analog current inputs M12.............................................................................................................. 43

6 EP3182-1002 - Signal connection .......................................................................................................... 456.1 Analog voltage inputs, digital outputs M12 ..................................................................................... 456.2 Analog current inputs, digital outputs M12...................................................................................... 46

7 EP3184-0002 - Signal connection .......................................................................................................... 487.1 Analog voltage inputs M12 ............................................................................................................. 487.2 Analog current inputs M12.............................................................................................................. 49

8 EP3184-1002 - Signal connection .......................................................................................................... 50

EP31xx 3Version: 2.2.0

Table of contents

8.1 Analog voltage inputs M12 ............................................................................................................. 508.2 Analog current inputs M12.............................................................................................................. 51

9 Commissioning and configuration ........................................................................................................ 529.1 Inserting into the EtherCAT network............................................................................................... 529.2 Configuration via TwinCAT System Manager................................................................................. 559.3 Settings and operating modes ........................................................................................................ 649.4 Notices on analog specifications ................................................................................................... 719.5 Data flow and correction calculation ............................................................................................... 769.6 CoE Interface.................................................................................................................................. 799.7 EtherCAT state machine................................................................................................................. 849.8 EP31x2 - Object Overview.............................................................................................................. 869.9 EP31x4 - Object Overview.............................................................................................................. 909.10 EP31x2 - Object description and parameterization ........................................................................ 989.11 EP31x4 - Object description and parameterization ...................................................................... 1119.12 EP3162-0002 - Galvanic isolation of the channels ....................................................................... 1319.13 Restoring the delivery state .......................................................................................................... 132

10 Process image ....................................................................................................................................... 13310.1 EP3162-0002 – Process image .................................................................................................... 13310.2 EP3174-0002 - Process image..................................................................................................... 13410.3 EP3182-1002 - Process image..................................................................................................... 13510.4 EP3184-0002 - Process image..................................................................................................... 13610.5 EP3184-1002 - Process image..................................................................................................... 137

11 Appendix ................................................................................................................................................ 13811.1 General operating conditions........................................................................................................ 13811.2 EtherCAT Box - Accessories ........................................................................................................ 13911.3 Support and Service ..................................................................................................................... 140

EP31xx4 Version: 2.2.0

Foreword

1 Foreword

1.1 Notes on the documentationThis description is only intended for the use of trained specialists in control and automation engineering whoare familiar with the applicable national standards.It is essential that the following notes and explanations are followed when installing and commissioningthese components.

The responsible staff must ensure that the application or use of the products described satisfy all therequirements for safety, including all the relevant laws, regulations, guidelines and standards.

DisclaimerThe documentation has been prepared with care. The products described are, however, constantly underdevelopment.For that reason the documentation is not in every case checked for consistency with performance data,standards or other characteristics.In the event that it contains technical or editorial errors, we retain the right to make alterations at any timeand without warning.No claims for the modification of products that have already been supplied may be made on the basis of thedata, diagrams and descriptions in this documentation.

TrademarksBeckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TwinSAFE®, XFC®and XTS® are registeredtrademarks of and licensed by Beckhoff Automation GmbH.Other designations used in this publication may be trademarks whose use by third parties for their ownpurposes could violate the rights of the owners.

Patent PendingThe EtherCAT Technology is covered, including but not limited to the following patent applications andpatents:EP1590927, EP1789857, DE102004044764, DE102007017835with corresponding applications or registrations in various other countries.

The TwinCAT Technology is covered, including but not limited to the following patent applications andpatents:EP0851348, US6167425 with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,Germany

Copyright© Beckhoff Automation GmbH & Co. KG, Germany.The reproduction, distribution and utilization of this document as well as the communication of its contents toothers without express authorization are prohibited.Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of apatent, utility model or design.

EP31xx 5Version: 2.2.0

Foreword

1.2 Safety instructions

Safety regulationsPlease note the following safety instructions and explanations!Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,commissioning etc.

Exclusion of liabilityAll the components are supplied in particular hardware and software configurations appropriate for theapplication. Modifications to hardware or software configurations other than those described in thedocumentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualificationThis description is only intended for trained specialists in control, automation and drive engineering who arefamiliar with the applicable national standards.

Description of symbolsIn this documentation the following symbols are used with an accompanying safety instruction or note. Thesafety instructions must be read carefully and followed without fail!

DANGER

Serious risk of injury!Failure to follow the safety instructions associated with this symbol directly endangers thelife and health of persons.

WARNING

Risk of injury!Failure to follow the safety instructions associated with this symbol endangers the life andhealth of persons.

CAUTION

Personal injuries!Failure to follow the safety instructions associated with this symbol can lead to injuries topersons.

Attention

Damage to the environment or devicesFailure to follow the instructions associated with this symbol can lead to damage to the en-vironment or equipment.

Note

Tip or pointerThis symbol indicates information that contributes to better understanding.

EP31xx6 Version: 2.2.0

Foreword

1.3 Documentation issue statusVersion Changes2.2.0 • EP3162-0002 - Analog voltage inputs M12 updated

• EP3162-0002 – Analog current inputs M12 updated• EP3162-0002 – Galvanic isolation of the channels updated• Notices on analog specifications added• Cabling updated

2.1.0 • EP3162-0002 added• chapter “EP31x2 - Object description and parameterization” added• chapter “EP31x4 - Object description and parameterization” updated• chapter “EP31x2 – Object Overview” added• chapter “EP31x4 – Object Overview” updated• chapter “Nut torque for connectors” updated• chapter “Power supply” updated

2.0.0 • Migration1.5.0 • description of connection for analog current inputs (M12) overworked

• chapter “Settings and operating modes” updated1.4.0 • signal settings added

• connection diagrams updated1.3.0 • object description updated1.2.0 • technical data updated

• overview of EtherCAT cables extended• mounting and cabling updated

1.1.0 • description of status LED extended• object description extended• technical data updated

1.0.1 • object description corrected1.0.0 • description of status LED overworked0.6 • EP3182-1002 added

• accessories added• nut torque for connectors added• object description corrected

0.5 • first preliminary version

Firm and hardware versionThe documentation refers to the firm and hardware status that was valid at the time it was prepared.

The properties of the modules are subject to continuous development and improvement. Modules havingearlier production statuses cannot have the same properties as modules with the latest status. Existingproperties, however, are always retained and are not changed, so that these modules can always bereplaced by new ones.

The firmware and hardware version (delivery state) can be found in the batch number (D number) printed atthe side of the EtherCAT Box.

Syntax of the batch number (D number)D: WW YY FF HH

EP31xx 7Version: 2.2.0

Foreword

WW - week of production (calendar week)YY - year of productionFF - firmware versionHH - hardware version

Example with D No. 29 10 02 01:

29 - week of production 2910 - year of production 201002 - firmware version 0201 - hardware version 01

EP31xx8 Version: 2.2.0

Product overview

2 Product overview

2.1 EtherCAT Box - IntroductionThe EtherCAT system has been extended with EtherCAT Box modules with protection class IP 67. Throughthe integrated EtherCAT interface the modules can be connected directly to an EtherCAT network without anadditional Coupler Box. The high-performance of EtherCAT is thus maintained into each module.

The extremely low dimensions of only 126 x 30 x 26.5 mm (h x w x d) are identical to those of the FieldbusBox extension modules. They are thus particularly suitable for use where space is at a premium. The smallmass of the EtherCAT modules facilitates applications with mobile I/O interface (e.g. on a robot arm). TheEtherCAT connection is established via screened M8 connectors.

Fig. 1: EtherCAT Box Modules within an EtherCAT network

The robust design of the EtherCAT Box modules enables them to be used directly at the machine. Controlcabinets and terminal boxes are now no longer required. The modules are fully sealed and therefore ideallyprepared for wet, dirty or dusty conditions.

Pre-assembled cables significantly simplify EtherCAT and signal wiring. Very few wiring errors are made, sothat commissioning is optimized. In addition to pre-assembled EtherCAT, power and sensor cables, field-configurable connectors and cables are available for maximum flexibility. Depending on the application, thesensors and actuators are connected through M8 or M12 connectors.

The EtherCAT modules cover the typical range of requirements for I/O signals with protection class IP67:

• digital inputs with different filters (3.0 ms or 10 μs)• digital outputs with 0.5 or 2 A output current• analog inputs and outputs with 16 bit resolution• Thermocouple and RTD inputs• Stepper motor modules

XFC (eXtreme Fast Control Technology) modules, including inputs with time stamp, are also available.

EP31xx 9Version: 2.2.0

Product overview

Fig. 2: EtherCAT Box with M8 connections for sensors/actuators

Fig. 3: EtherCAT Box with M12 connections for sensors/actuators

Note

Basic EtherCAT documentationYou will find a detailed description of the EtherCAT system in the Basic System Documen-tation for EtherCAT, which is available for download from our website (www.beckhoff.com)under Downloads.

Note

XML filesYou will find XML files (XML Device Description Files) for Beckhoff EtherCAT modules onour website (www.beckhoff.com) under Downloads, in the Configuration Files area.

EP31xx10 Version: 2.2.0

Product overview

2.2 Module overviewTable 1: Analog input modules, 24 VDC

Module Number of analoginputs

Number of digitaloutputs

Signal connection Comment

EP3162-0002[ 12]

2 0 2 x M12 2wo configurableanalog single-ended inputs

EP3174-0002[ 14]

4 0 4 x M12 four configurableanalog differentialinputs

EP3182-1002[ 15]

2 2 2 x M12 two configurableanalog single-ended inputstwo digital outputs

EP3184-0002[ 16]

4 0 4 x M12 four configurableanalog single-ended inputs

EP3184-1002[ 17]

4 0 2 x M12 four configurableanalog single-ended inputs

EP31xx 11Version: 2.2.0

Product overview

2.3 EP3162-0002 - Introduction

Fig. 4: EP3162-0002

EP3162-0002 | 2-channel analog input ± 10 V or 0/4…20 mA, with galvanic isolation,single-ended, 16 bitThe EP3162-0002 EtherCAT Box has two analog inputs which can be individually parameterised, so thatthey process signals either in the -10…+10 V or the 0/4…20 mA range. The voltage or input current isdigitised with a resolution of 16 bits, and is transmitted (electrically isolated) to the higher-level automationdevice. The two input channels are galvanically isolated. The input filter and therefore the conversion timesare configurable in a wide range. If required, the inputs can be scaled differently, and automatic limitmonitoring is also available. EtherCAT is used for parameterisation purposes. The parameters are stored inthe module.

Quick links

Installation [ 20]Configuration [ 55]

EP31xx12 Version: 2.2.0

Product overview

2.4 EP3162-0002 - Techincal dataTechnical data EP3162-0002Fieldbus EtherCATBus interface 2 x M8 socket (green), shielded, screw typeNumber of inputs 2Input / output connections 2 x M12, socketConnection type single endedSignal type configurable:

0…+10 V-10…+10 V0…20 mA4…20 mA-20…+20 mA

Internal resistance > 200 kΩ (typ. 85 Ω + diode voltage)Common-mode voltage UCM max. 35 VResolution 16 bit (incl. sign)Input filter configurableInput filter limit frequency 5 kHzConversion time ~ 100 µsNominal voltage 24 V DC (-15 %/+20 %)Distributed clocks yesMeasuring error < ± 0,3 % (relative to full scale value)Module electronic supply derived from control voltage US

Module electronic currentconsumption

typically 120 mA

Sensor supply UA (derived from US), DC, any value up to 30 VSupply current of the analog inputs 50 mA (100 mA peak)Power supply connection Feed: 1 x M8 plug, 4-pin; Onward connection: 1 x M8 socket, 4-pinBit width in the process image input: 2 x 16 bit

status: 4 x 8 bitElectrical isolation 500 V fieldbus, 300 V signals/signalSpecial features Galvanic isolation of the channelsWeight approx. 165 gPermissible ambient temperatureduring operation

-25…+60 °C

Permissible ambient temperatureduring storage

-40…+85 °C

Vibration / shock resistance conforms to EN60068-2-6 / EN60068-2-27EMC resistance/emission conforms to EN 61000-6-2 / EN 61000-6-4Protection class IP 65/66/67 (conforms to EN 60529)Installation position variableApprovals CE, cULus

EP31xx 13Version: 2.2.0

Product overview

2.5 EP3174-0002 - Introduction

EtherCAT Box with four configurable analog differential inputsThe EP3174-0002 EtherCAT Box has four analog inputs which can be individually parameterized, so thatthey process signals either in the -10…+10 V or the 0/4…20 mA range.

The voltage or input current is digitized with a resolution of 16 bits, and is transmitted (electrically isolated) tothe higher-level automation device.

The four input channels have differential inputs and possess a common, internal ground potential. The inputfilter and therefore the conversion times are configurable in a wide range.

If required, the inputs can be scaled differently, and automatic limit monitoring is also available. EtherCAT isused for parameterization purposes. The parameters are stored in the module.

Quick links

Installation [ 20] Configuration [ 55]

EP31xx14 Version: 2.2.0

Product overview

2.6 EP3182-1002 - Introduction

EtherCAT Box with two configurable analog inputs and two digital outputs

Analog inputs (single-ended)The EP3182-1002 EtherCAT Box has two analog inputs which can be individually parameterized, so thatthey process signals either in the -10…+10 V or the 0/4…20 mA range.

The voltage or input current is digitized with a resolution of 16 bits, and is transmitted (electrically isolated) tothe higher-level automation device.

The two input channels have single-ended inputs and possess a common, internal ground potential. Theinput filter and therefore the conversion times are configurable in a wide range.

If required, the inputs can be scaled differently, and automatic limit monitoring is also available. EtherCAT isused for parameterization purposes. The parameters are stored in the module.

Digital outputsFurthermore the EP3182-1002 EtherCAT Box has two digital outputs to connect binary control signals fromthe controller to the actuators at the process level.

This 2 outputs (sink/source type) are intended to switch logic in or outputs with a minimum impedance of 10kOhm (e.g. reset inputs of digital sensors) handle load currents of up to 2 mA. They are short circuit proofand indicate their status through light emitting diodes.

The signals are also connected via the two M12 connectors

EP31xx 15Version: 2.2.0

Product overview

Quick links

Installation [ 55] Configuration [ 55]

Also see about this2 Mounting [ 20]

2.7 EP3184-0002 - Introduction

EtherCAT Box with four configurable analog single-ended inputsThe EP3184-0002 EtherCAT Box has four analog inputs which can be individually parameterized, so thatthey process signals either in the -10…+10 V or the 0/4…20 mA range.

The voltage or input current is digitized with a resolution of 16 bits, and is transmitted (electrically isolated) tothe higher-level automation device.

The four input channels have single-ended inputs and possess a common, internal ground potential. Theinput filter and therefore the conversion times are configurable in a wide range.

If required, the inputs can be scaled differently, and automatic limit monitoring is also available. EtherCAT isused for parameterization purposes. The parameters are stored in the module.

Quick links

Installation [ 55] Configuration [ 55]

Also see about this

EP31xx16 Version: 2.2.0

Product overview

2 Mounting [ 20]

2.8 EP3184-1002 - Introduction

EtherCAT Box with four configurable analog single-ended inputsThe EP3184-1002 EtherCAT Box has four analog inputs which can be individually parameterized, so thatthey process signals either in the -10…+10 V or the 0/4…20 mA range.

Two inputs at a time are integrated into connectors 1 and 3. Connectors 2 and 4 are unused.

The voltage or input current is digitized with a resolution of 16 bits, and is transmitted (electrically isolated) tothe higher-level automation device.

The four input channels have single-ended inputs and possess a common, internal ground potential. Theinput filter and therefore the conversion times are configurable in a wide range.

If required, the inputs can be scaled differently, and automatic limit monitoring is also available. EtherCAT isused for parameterization purposes. The parameters are stored in the module.

Quick links

Installation [ 55] Configuration [ 55]

Also see about this2 Mounting [ 20]

EP31xx 17Version: 2.2.0

Product overview

2.9 EP3174, EP3184 – Technical DataTechnical data EP3174-0002 EP3184-0002 EP3184-1002 EP3182-1002Fieldbus EtherCATFieldbus connection 2 x M8 socket (green)Number of inputs 4 2Input / outputconnections

4 x M12 socket[ 42]

4 x M12 socket[ 48]

4 x M12 socket[ 50]

4 x M12 socket[ 45]

Connection type 2-wire, 4-wire single ended single ended single endedSignal type Configurable:

0…+10 V-10…+10 V0…20 mA4…20 mA

Internal resistance > 200 kΩ (typ. 85 Ω + diode voltage)Common-modevoltage UCM

max. 35 V

Resolution 16 bit (incl. sign)Input filter configurableInput filter limitfrequency

5 kHz

Conversion time ~ 100 µsMeasuring error < ± 0,3 % (relative to full scale value)Number of outputs 0 0 0 2Rated output voltage - - - 24 VDC

Internal resistance - - - app. 2350 ΩOutput current - - - 2 mA (short circuit

proof)Module electronicsupply

derived from control voltage US

Module electroniccurrent consumption

typically 120 mA

Sensor supply from load supply voltage UP, DC, any value up to 30 VPower supplyconnection

Feed: 1 x M8 plug, 4-pinOnward connection: 1 x M8 socket, 4-pin

Process image Inputs: 4 x 16 BitStatus: 4 x 8 Bit

Electrical isolation Control voltage / fieldbus: yesPermissible ambienttemperature duringoperation

-25°C…+60°C 0°C…55°C0°C…+55°C (according to ATEX, seespecial conditions [ 35])0°C…55°C (according to cULus see ULRequirements [ 34])

Permissible ambienttemperature duringstorage

-40°C…+85°C -25°C…+85°C

Vibration / shockresistance

conforms to EN 60068-2-6 / EN 60068-2-27

EMC resistance /emission

conforms to EN 61000-6-2 / EN 61000-6-4

Protection class IP65, IP66, IP67 (conforms to EN 60529)

EP31xx18 Version: 2.2.0

Product overview

Technical data EP3174-0002 EP3184-0002 EP3184-1002 EP3182-1002Installation position variableApprovals CE, cULus, ATEX CE

EP31xx 19Version: 2.2.0

Mounting and Cabling

3 Mounting and Cabling

3.1 Mounting

3.1.1 Dimensions

Fig. 5: Dimensions of the EtherCAT Box Modules

All dimensions are given in millimeters.

Housing properties

EtherCAT Box lean body wide bodyHousing material PA6 (polyamide)Casting compound PolyurethaneMounting two fastening holes Ø 3 mm for M3 two fastening holes Ø 3 mm for M3

two fastening holes Ø 4,5 mm for M4Metal parts Brass, nickel-platedContacts CuZn, gold-platedPower feed through max. 4 AInstallation position variableProtection class IP65, IP66, IP67 (conforms to EN 60529) when screwed togetherDimensions (H x W x D) ca. 126 x 30 x 26,5 mm ca. 126 x 60 x 26,5 mmWeight approx. 125 g, depending on module type approx. 250 g, depending on module

type

EP31xx20 Version: 2.2.0

Mounting and Cabling

3.1.2 Fixing

Note

Note or pointerWhile mounting the modules, protect all connectors, especially the IP-Link, against contam-ination! Only with connected cables or plugs the protection class IP67 is guaranteed! Un-used connectors have to be protected with the right plugs! See for plug sets in the cata-logue.

Modules with narrow housing are mounted with two M3 bolts.Modules with wide housing are mounted with two M3 bolts to the fixing holes located at the corners ormounted with two M4 bolts to the fixing holes located centrally.

The bolts must be longer than 15 mm. The fixing holes of the modules are not threaded.

When assembling, remember that the fieldbus connectors increases the overall height. See chapteraccessories.

Mounting Rail ZS5300-0001The mounting rail ZS5300-0001 (500 mm x 129 mm) allows the time saving assembly of modules.

The rail is made of stainless steel, 1.5 mm thick, with already pre-made M3 threads for the modules. The railhas got 5.3 mm slots to mount it via M5 screws to the machine.

Fig. 6: Mounting Rail ZS5300-000

The mounting rail is 500 mm long, that way 15 narrow modules can be mounted with a distance of 2 mmbetween two modules. The rail can be cut to length for the application.

Mounting Rail ZS5300-0011The mounting rail ZS5300-0011 (500 mm x 129 mm) has in addition to the M3 treads also pre-made M4treads to fix 60 mm wide modules via their middle holes.

Up to 14 narrow or 7 wide modules may be mixed mounted.

EP31xx 21Version: 2.2.0

Mounting and Cabling

3.1.3 Nut torque for connectors

M8 connectorsIt is recommended to pull the M8 connectors tight with a nut torque of 0.4 Nm.

Fig. 7: EtherCAT Box with M8 connectors

M12 connectorsIt is recommended to pull the M12 connectors tight with a nut torque of 0.6 Nm.

Fig. 8: EtherCAT Box with M8 and M12 connectors

EP31xx22 Version: 2.2.0

Mounting and Cabling

7/8" connectorsIt is recommended to pull the 7/8" connectors tight with a nut torque of 1.5 Nm.

Fig. 9: 7/8" connectors

Torque socket wrenches

Fig. 10: ZB8801 torque socket wrench

Note

Ensure the right torqueUse the torque socket wrenches available by Beckhoff to pull the connectors tight (see ac-cessories)!

Also see about this2 EtherCAT Box - Accessories [ 139]

EP31xx 23Version: 2.2.0

Mounting and Cabling

3.2 EtherCAT

3.2.1 EtherCAT connectionFor the incoming and ongoing EtherCAT connection,

• the EtherCAT Box (EPxxxx) has two M8 sockets, marked in green• the Coupler Box (FBB-x110) has two M12 sockets

Fig. 11: EtherCAT Box: M8 (30 mm housing)

Fig. 12: EtherCAT Box: M8 60 mm housing (EP9214 for example )

Fig. 13: Coupler Box: M12

AssignmentThere are various different standards for the assignment and colors of connectors and cables for Ethernet/EtherCAT.

EP31xx24 Version: 2.2.0

Mounting and Cabling

Ethernet/EtherCAT Plug connector Cable StandardSignal Descrip-

tionM8 M12 RJ451 ZB9010, ZB9020,

ZB9030, ZB9032,ZK1090-6292,ZK1090-3xxx-xxxx

ZB9031 and oldversionsof ZB9030, ZB9032,ZK1090-3xxx-xxxx

TIA-568B

Tx + TransmitData+

Pin 1 Pin 1 Pin 1 yellow2 orange/white3 white/orange

Tx - TransmitData-

Pin 4 Pin 3 Pin 2 orange2 orange3 orange

Rx + ReceiveData+

Pin 2 Pin 2 Pin 3 white2 blue/white3 white/green

Rx - ReceiveData-

Pin 3 Pin 4 Pin 6 blue2 blue3 green

Shield Shield Housing Shroud Screen Screen Screen

1) colored markings according to EN 61918 in the four-pin RJ45 connector ZS1090-00032) wire colors according to EN 619183) wire colors

Note

Assimilation of color coding for cable ZB9030, ZB9032 and ZK1090-3xxxx-xxxx (with M8 connectors)For unification the prevalent cables ZB9030, ZB9032 and ZK1090-3xxx-xxxx this meansthe pre assembled cables with M8 connectors were changed to the colors of EN61918 (yel-low, orange, white, blue).So different color coding exists. But the electrical properties areabsolutely identical.

EtherCAT connectorsThe following connectors can be supplied for use in Beckhoff EtherCAT systems.

Designation Plug connector CommentZS1090-0003 RJ45 four-pin, IP20, for field assemblyZS1090-0004 M12 four-pin, IP67, for field assemblyZS1090-0005 RJ45 eight-pin, IP20, for field assembly,

suitable for Gigabit EthernetZS1090-0006 M8 four-pin, IP67, for field assemblyZS1090-0007 M8 socket four-pin, IP67, for field assembly, for ZB903x cableZS1090-1006 M8 plug four-pin, IP67, for field assembly up to OD = 6.5 mmZS1090-1007 M8 socket four-pin, IP67, for field assembly up to OD = 6.5 mm

3.2.2 EtherCAT - Fieldbus LEDs

Fig. 14: EtherCAT-LEDs

EP31xx 25Version: 2.2.0

Mounting and Cabling

LED display

LED Display MeaningIN L/A off no connection to the preceding EtherCAT module

Lit LINK: connection to the preceding EtherCAT moduleflashing ACT: Communication with the preceding EtherCAT module

OUT L/A off no connection to the following EtherCAT moduleLit LINK: connection to the following EtherCAT moduleflashing ACT: Communication with the following EtherCAT module

Run off Status of the EtherCAT module is Initflashes quickly Status of the EtherCAT module is pre-operationalflashes slowly Status of the EtherCAT module is safe-operationalLit Status of the EtherCAT module is operational

Note

EtherCAT statusesThe various statuses in which an EtherCAT module may be found are described in the Ba-sic System Documentation for EtherCAT, which is available for download from our website(www.beckhoff.com) under Downloads.

3.3 Power supply

3.3.1 Power ConnectionThe feeding and forwarding of supply voltages is done via two M8 connectors at the bottom end of themodules:

• IN: left M8 connector for feeding the supply voltages• OUT: right M8 connector for forwarding the supply voltages

Fig. 15: EtherCAT Box, Connectors for power supply

Fig. 16: Pin assignment M8, Power In and Power Out

EP31xx26 Version: 2.2.0

Mounting and Cabling

Table 2: PIN assignment

Pin Voltage1 Control voltage Us, +24 VDC

2 Auxiliary voltage Up, +24 VDC

3 GNDs* *) may be connected internally to each other depending on the module: see specificmodule descriptions4 GNDp*

The pins M8 connectors carry a maximum current of 4 A.

Two LEDs display the status of the supply voltages.

Attention

Don't confuse the power connectors with the EtherCAT connectors!Never connect the power cables (M8, 24 VDC) with the green marked EtherCAT sockets ofthe EtherCAT Box Modules! This can damage the modules!

Control voltage Us: 24 VDC

Power is supplied to the fieldbus, the processor logic, the inputs and the sensors from the 24 VDC controlvoltage Us. The control voltage is electrically isolated from the fieldbus circuitry.

Auxiliary voltage Up 24 VDC

The Auxiliary voltage Up supplies the digital outputs; it can be brought in separately. If the load voltage isswitched off, the fieldbus functions and the power supply and functionality of the inputs are retained.

Redirection of the supply voltagesThe IN and OUT power connections are bridged in the module (not IP204x-Bxxx and IE204x). The supplyvoltages Us and Up can thus easily be transferred from EtherCAT Box to EtherCAT Box.

Attention

Pay attention to the maximum permissible current!Pay attention also for the redirection of the supply voltages Us and Up, the maximum per-missible current for M8 connectors of 4 A must not be exceeded!

Supply via EP92x4-0023 PowerBox modulesIf the machine requires higher current or if the EtherCAT Box Modules are installed far away from the controlcabinet with included power supply, the usage of four cannel power distribution modules EP9214 or EP9224(with integrated data logging, see www.beckhoff.com/EP9224) is recommended.

With these modules intelligent power distribution concepts with up to 2 x 16 A and a maximum of 2.5 mm²cable cross-section can be realized.

EP31xx 27Version: 2.2.0

Mounting and Cabling

Fig. 17: EP92x4-0023, Connectors for Power In and Power Out

Fig. 18: Pin assignment 7/8”, Power In and Power Out

EP31xx28 Version: 2.2.0

Mounting and Cabling

Electrical isolation

Digital modulesIn the digital input/output modules, the grounds of the control voltage (GNDs) and the auxiliary voltage(GNDp) are connected to each other!

Check this at the documentation of each used EtherCAT Box.

Analog modulesIn the analog input/output modules the grounds of the control voltage (GNDs) and the auxiliary voltage(GNDp) are separated from each other in order to ensure electrical isolation of the analog signals from thecontrol voltage.

In some of the analog modules the sensors or actuators are supplied by Up - this means, for instance, that inthe case of 0...10 V inputs, any reference voltage (0...30 V) may be connected to Up; this is then available tothe sensors (e.g. smoothed 10 V for measuring potentiometers).

Details of the power supply may be taken from the specific module descriptions.

Attention

Electrical isolation may be cancelled!If digital and analog fieldbus boxes are connected directly via four-core power leads, theanalog signals in the fieldbus boxes may be no longer electrically isolated from the controlvoltage!

3.3.2 Status LEDs for power supply

Fig. 19: Status LEDs for power supply

LED display

LED Display MeaningUs (Control voltage) off The power supply voltage Us is not present

green illuminated The power supply voltage Us is presentred illuminated Because of overload (current > 0.5 A) the sensor supply

generated from power supply voltage Us was switched off forall sensors fed from this.

Up (Auxiliary voltage) off The power supply voltage Up is not presentgreen illuminated The power supply voltage Up is present

EP31xx 29Version: 2.2.0

Mounting and Cabling

3.3.3 Power cable conductor losses M8The ZK2020-xxxx-yyyy power cables should not exceed the total length of 15 m at 4 A (with continuation).When planning the cabling, note that at 24 V nominal voltage, the functionality of the module can no longerbe assured if the voltage drop reaches 6 V. Variations in the output voltage from the power supply unit mustalso be taken into account.

Fig. 20: Power cable conductor losses

Example8 m power cable with 0.34 mm² cross-section has a voltage drop of 3.2 V at 4 A.

Note

EP92x4 Power Distribution ModulesWith EP9214 and EP9224 Power Distribution Modules intelligent concepts for voltage sup-ply are available. Further information may be found under www.beckhoff.com/EP9224.

3.3.4 Conductor losses 7/8"In the case of the power cables ZK2030-xxxx-yyy, a total length of 15 m should not be exceeded at 16 A.When wiring, note that with a rated voltage of 24 V the function of the modules can no longer be guaranteedfrom a voltage drop of 6 V. Variations in the output voltage from the power supply unit must also be takeninto account.

EP31xx30 Version: 2.2.0

Mounting and Cabling

Fig. 21: ZK2030-xxxx-yyy - Conductor losses

Alternatively, larger cable cross-section can be used, e.g. 2.5 mm2.

EP31xx 31Version: 2.2.0

Mounting and Cabling

3.4 CablingA list of the EtherCAT cable, power cable, sensor cable, Ethernet-/EtherCAT connectors and the fieldassembled connectors can be found at the following link: http://download.beckhoff.com/download/document/catalog/main_catalog/english/Beckhoff_EtherCAT-Box-Accessories.pdf

You can find the corresponding data sheets at the following link: http://beckhoff.de/english/fieldbus_box/data_sheets.htm?id=69033899254355

EtherCAT cable

Fig. 22: ZK1090-3131-0xxx

For connecting EtherCAT devices only shielded Ethernet cables that meet the requirements of at leastcategory 5 (CAT5) according to EN 50173 or ISO/IEC 11801 should be used.

Note

Recommendations about cablingYou may get detailed recommendations about cabling EtherCAT from the documentation"Recommendations for the design of the infrastructure for EtherCAT/Ethernet", that is avail-able for download at www.Beckhoff.com.

EtherCAT uses 4 wires for signal transfer.Due to automatic cable detection (auto-crossing) symmetric (1:1) or cross-over cables can be used betweenEtherCAT devices from Beckhoff.

EP31xx32 Version: 2.2.0

Mounting and Cabling

Power cable

Fig. 23: ZK2020-3132-0xxx

Sensor cable

Fig. 24: ZK2000-7171-0xxx

EP31xx 33Version: 2.2.0

Mounting and Cabling

3.5 UL RequirementsThe installation of the EtherCAT Box Modules certified by UL has to meet the following requirements.

Supply voltage

CAUTION

CAUTION!• by a 24 VDC supply voltage, supplied by an isolating source and protected by means of

a fuse (in accordance with UL248), rated maximum 4 Amp, or• by a 24 VDC power source, that has to satisfy NEC class 2.

A NEC class 2 power supply shall not be connected in series or parallel with another(class 2) power source!

CAUTION

CAUTION!To meet the UL requirements, the EtherCAT Box Modules must not be connected to unlim-ited power sources!

Networks

CAUTION

CAUTION!To meet the UL requirements, EtherCAT Box Modules must not be connected to telecom-munication networks!

Ambient temperature range

CAUTION

CAUTION!To meet the UL requirements, EtherCAT Box Modules has to be operated only at an ambi-ent temperature range of 0 to 55°C!

Marking for ULAll EtherCAT Box Modules certified by UL (Underwriters Laboratories) are marked with the following label.

Fig. 25: UL label

EP31xx34 Version: 2.2.0

Mounting and Cabling

3.6 ATEX Notes

3.6.1 ATEX - Special conditions

WARNING

Observe the special conditions for the intended use of EtherCAT Box mod-ules in potentially explosive areas – directive 94/9/EU.

• The certified components are to be installed in the BG2000-0000 protection enclosure[ 36] that guarantees a protection against mechanical hazards!

• If the temperatures during rated operation are higher than 70°C at the feed-in points ofcables, lines or pipes, or higher than 80°C at the wire branching points, then cablesmust be selected whose temperature data correspond to the actual measured tempera-ture values!

• Observethe permissible ambient temperature range of 0 - 55°C for the use of EtherCATBox modules in potentially explosive areas!

• Measures must be taken to protect against the rated operating voltage being exceededby more than 40% due to short-term interference voltages!

• The connections of the certified components may only be connected or disconnected ifthe supply voltage has been switched off or if a non-explosive atmosphere is ensured!

StandardsThe fundamental health and safety requirements are fulfilled by compliance with the following standards:

• EN 60079-0: 2006• EN 60079-15: 2005

MarkingThe EtherCAT Box modules certified for potentially explosive areas bear the following marking:

II 3 G Ex nA II T4 DEKRA 11ATEX0080 X Ta: 0 - 55°C

II 3 G Ex nA nC IIC T4 DEKRA 11ATEX0080 X Ta: 0 - 55°C

Batch number (D number)The EtherCAT Box modules bear a batch number (D number) that is structured as follows:

D: WW YY FF HH

EP31xx 35Version: 2.2.0

Mounting and Cabling

WW - week of production (calendar week)YY - year of productionFF - firmware versionHH - hardware version

Beispiel mit Ser. Nr.: 29 10 02 01:

29 - week of production 2910 - year of production 201002 - firmware version 0201 - hardware version 01

3.6.2 BG2000-0000 - EtherCAT Box protection enclosure

WARNING

Risk of electric shock and damage of device!Bring the EtherCAT system into a safe, powered down state before starting installation, dis-assembly or wiring of the modules!

ATEX

The BG2000-0000 protection enclosure has to be mounted over a single EtherCAT Box to fulfill the specialconditions according to ATEX [ 35].

InstallationPut the cables for EtherCAT, power supply and sensors/actuators through the hole of the BG2000-0000protection enclosure.

Fig. 26: BG2000-0000, putting the cables

Fix the wires for EtherCAT, power supply and sensors/actuators to the EtherCAT Box.

EP31xx36 Version: 2.2.0

Mounting and Cabling

Fig. 27: BG2000-0000, fixing the cables

Mount the BG2000-0000 protection enclosure over the EtherCAT Box.

Fig. 28: BG2000-0000, mounting the protection enclosure

EP31xx 37Version: 2.2.0

Mounting and Cabling

3.6.3 ATEX Documentation

Note

Notes about operation of EtherCAT Box Modules (EPxxxx-xxxx) in potentiallyexplosive areas (ATEX)Pay also attention to the continuative documentationNotes about operation of EtherCATBox Modules (EPxxxx-xxxx) in potentially explosive areas (ATEX) that is available in thedownload area of the Beckhoff homepage http:\\www.beckhoff.com!

EP31xx38 Version: 2.2.0

EP3162-0002 - Signal connection

4 EP3162-0002 - Signal connection

4.1 Analog voltage inputs M12

One single ended input per socketAnalog input, -10 to +10 V or 0 to +10 V

Fig. 29: Analog Voltage inputs M12, Channel 1

Fig. 30: Analog voltage inputs M12, Channel 2

For more information, refer to the EP3162-0002 – Galvanic isolation of the channels [ 131] chapter.

Status LEDs at the M12 connectors

EP31xx 39Version: 2.2.0

EP3162-0002 - Signal connection

Fig. 31: Status LEDs at the M12 connectors

Connector LED Display MeaningM12 socket No. 1-4 R

leftoff no data transmission to A/D convertergreen data transmission to A/D converter

Eright

off correct operationred Error: wire breakage or measured value out of range

The device is functioning correctly if the Run LED is lit and the Error LED is unlit.

4.2 Analog current inputs M12

One single ended input per socketAnalog input, 0 to 20 mA, 4 to 20 mA or -20 to 20 mA

Fig. 32: Analog current inputs M12, channel 1

EP31xx40 Version: 2.2.0

EP3162-0002 - Signal connection

Fig. 33: Analog current inputs M12, channel 2

For more information, refer to the EP3162-0002 – Galvanic isolation of the channels [ 131] chapter.

Status LEDs at the M12 connectors

Fig. 34: Status LEDs at the M12 connectors

Connector LED Display MeaningM12 socket No. 1-4 R

leftoff no data transmission to A/D convertergreen data transmission to A/D converter

Eright

off correct operationred Error: wire breakage or measured value out of range

The device is functioning correctly if the Run LED is lit and the Error LED is unlit.

EP31xx 41Version: 2.2.0

EP3174-0002 - Signal connection

5 EP3174-0002 - Signal connection

5.1 Analog voltage inputs M12

One differential input per socket

Analog inputs, -10 to +10 VThe signal is measured using a differential signal.

Fig. 35: Analog voltage inputs M12

Status LEDs at the M12 connectors

Connector LED Display MeaningM12 socket No. 1-4 R

leftoff no data transmission to A/

D convertergreen data transmission to A/D

converterEright

off correct operationrot Error: wire breakage or

measured value out ofrange

EP31xx42 Version: 2.2.0

EP3174-0002 - Signal connection

The device is functioning correctly if the Run LED is lit and the Error LED is unlit.

Note

GND connectionsIf sensors with not isolated GNDs are connected to the Box, the sensors GND has to beconnected with the GNDp of the Box.

5.2 Analog current inputs M12

One differential input per socket

Analog input, 0 to 20 mA or 4 to 20 mAThe signal is measured using a differential signal.

Fig. 36: Analog current inputs M12

Status LEDs at the M12 connectors

Connector LED Display MeaningM12 socket No. 1-4 R

leftoff no data transmission to A/

D convertergreen data transmission to A/D

converterEright

off correct operationrot Error: wire breakage or

measured value out ofrange

EP31xx 43Version: 2.2.0

EP3174-0002 - Signal connection

The device is functioning correctly if the Run LED is lit and the Error LED is unlit.

Note

GND connectionsIf sensors with not isolated GNDs are connected to the Box, the sensors GND has to beconnected with the GNDp of the Box.

EP31xx44 Version: 2.2.0

EP3182-1002 - Signal connection

6 EP3182-1002 - Signal connection

6.1 Analog voltage inputs, digital outputs M12

One single ended input and one digital output per socket

Analog input, -10 to +10 V, digital output

Fig. 37: Analog voltage inputs, digital outputs M12

Status LEDs at the M12 connectors

Connector LED Display MeaningM12-Buchse Nr. 1-2 R

leftoff analog input: no data

transmission to A/Dconverter

green analog input: datatransmission to A/Dconverter

rot error at analog input: wirebreakage or measuredvalue out of range

1right

off digital output is not setgreen digital output is set

EP31xx 45Version: 2.2.0

EP3182-1002 - Signal connection

The device is functioning correctly if the left LED shines green.

6.2 Analog current inputs, digital outputs M12

One single ended input and one digital output per socket

Analog input, 0 to 20 mA or 4 to 20 mA, digital output

Fig. 38: Analog current inputs, digital outputs M12

Status LEDs at the M12 connectors

Connector LED Display MeaningM12-Buchse Nr. 1-2 R

leftoff analog input: no data

transmission to A/Dconverter

green analog input: datatransmission to A/Dconverter

rot error at analog input: wirebreakage or measuredvalue out of range

1right

off digital output is not setgreen digital output is set

EP31xx46 Version: 2.2.0

EP3182-1002 - Signal connection

The device is functioning correctly if the left LED shines green.

EP31xx 47Version: 2.2.0

EP3184-0002 - Signal connection

7 EP3184-0002 - Signal connection

7.1 Analog voltage inputs M12

One single ended input per socket

Analog input, -10 to +10 V

Fig. 39: Analog voltage inputs M12

Status LEDs at the M12 connectors

Connector LED Display MeaningM12 socket No. 1-4 R

leftoff no data transmission to A/

D convertergreen data transmission to A/D

converterEright

off correct operationrot Error: wire breakage or

measured value out ofrange

The device is functioning correctly if the Run LED is lit and the Error LED is unlit.

Note

GND connectionsIf sensors with not isolated GNDs are connected to the Box, the sensors GND has to beconnected with the GNDp of the Box.

EP31xx48 Version: 2.2.0

EP3184-0002 - Signal connection

7.2 Analog current inputs M12

One single ended input per socket

Analog input, 0 to 20 mA or 4 to 20 mA

Fig. 40: Analog current inputs M12

Status LEDs at the M12 connectors

Connector LED Display MeaningM12 socket No. 1-4 R

leftoff no data transmission to A/

D convertergreen data transmission to A/D

converterEright

off correct operationrot Error: wire breakage or

measured value out ofrange

The device is functioning correctly if the Run LED is lit and the Error LED is unlit.

Note

GND connectionsIf sensors with not isolated GNDs are connected to the Box, the sensors GND has to beconnected with the GNDp of the Box.

EP31xx 49Version: 2.2.0

EP3184-1002 - Signal connection

8 EP3184-1002 - Signal connection

8.1 Analog voltage inputs M12

Two single ended inputs per socket

Analog inputs, -10 to +10 V

Fig. 41: Analog voltage inputs M12

Status LEDs at the M12 connectors

Connector LED Display MeaningM12 socket No. 1-4 R

leftoff no data transmission to A/

D convertergreen data transmission to A/D

converterEright

off correct operationrot Error: wire breakage or

measured value out ofrange

The channel is functioning correctly if the Run LED is lit and the Error LED is unlit.

EP31xx50 Version: 2.2.0

EP3184-1002 - Signal connection

8.2 Analog current inputs M12

Two single ended inputs per socket

Analog input, 0 to 20 mA or 4 to 20 mA

Fig. 42: Analog current inputs M12

Status LEDs at the M12 connectors

Connector LED Display MeaningM12 socket No. 1-4 R

leftoff no data transmission to A/

D convertergreen data transmission to A/D

converterEright

off correct operationrot Error: wire breakage or

measured value out ofrange

The channel is functioning correctly if the Run LED is lit and the Error LED is unlit.

EP31xx 51Version: 2.2.0

Commissioning and configuration

9 Commissioning and configuration

9.1 Inserting into the EtherCAT network

Note

Installation of the latest XML device descriptionPlease ensure that you have installed the latest XML device description in TwinCAT. Thiscan be downloaded from the Beckhoff website (http://www.beckhoff.de/english/download/elconfg.htm?id=1983920606140) and installed according to the installation instructions.

At the Beckhoff TwinCAT System Manager the configuration tree can be build in two different ways:

• by scanning [ 52] for existing hardware (called "online") and

• by manual inserting/appending [ 52] of fieldbus devices, couplers and slaves.

Automatic scanning in of the box• The EtherCAT system must be in a safe, de-energized state before the EtherCAT modules are

connected to the EtherCAT network!• Switch on the operating voltage, open the TwinCAT System Manager (Config mode), and scan in the

devices (see Fig. 1). Acknowledge all dialogs with "OK", so that the configuration is in "FreeRun"mode.

Fig. 43: Scanning in the configuration (I/O Devices -> right-click -> Scan Devices...)

Appending a module manually• The EtherCAT system must be in a safe, de-energized state before the EtherCAT modules are

connected to the EtherCAT network!• Switch on the operating voltage, open the TwinCAT System Manager (Config mode)• Append a new I/O device. In the dialog that appears select the device EtherCAT (Direct Mode), and

confirm with OK.

EP31xx52 Version: 2.2.0

Commissioning and configuration

Fig. 44: Appending a new I/O device (I/O Devices -> right-click -> Append Device...)

Fig. 45: Selecting the device EtherCAT

• Append a new box.

Fig. 46: Appending a new box (Device -> right-click -> Append Box...)

• In the dialog that appears select the desired box (e.g. EP2816-0008), and confirm with OK.

EP31xx 53Version: 2.2.0

Commissioning and configuration

Fig. 47: Selecting a Box (e.g. EP2816-0008)

Fig. 48: Appended Box in the TwinCAT tree

EP31xx54 Version: 2.2.0

Commissioning and configuration

9.2 Configuration via TwinCAT System ManagerIn the left-hand window of the TwinCAT System Manager, click on the branch of the EtherCAT Box you wishto configure.

In the right-hand window of the TwinCAT System manager, various tabs are now available for configuringthe EtherCAT Box.

General tab

Name Name of the EtherCAT deviceId Number of the EtherCAT deviceType EtherCAT device typeComment Here you can add a comment (e.g. regarding the

system).Disabled Here you can deactivate the EtherCAT device.Create symbols Access to this EtherCAT slave via ADS is only

available if this control box is activated.

EP31xx 55Version: 2.2.0

Commissioning and configuration

EtherCAT tab

Type EtherCAT device typeProduct/Revision Product and revision number of the EtherCAT deviceAuto Inc Addr. Auto increment address of the EtherCAT device. The

auto increment address can be used for addressingeach EtherCAT device in the communication ringthrough its physical position. Auto incrementaddressing is used during the start-up phase whenthe EtherCAT master allocates addresses to theEtherCAT devices. With auto increment addressingthe first EtherCAT slave in the ring has the address0000hex. For each further slave the address isdecremented by 1 (FFFFhex, FFFEhex etc.).

EtherCAT Addr. Fixed address of an EtherCAT slave. This address isallocated by the EtherCAT master during the start-upphase. Tick the control box to the left of the input fieldin order to modify the default value.

Previous Port Name and port of the EtherCAT device to which thisdevice is connected. If it is possible to connect thisdevice with another one without changing the order ofthe EtherCAT devices in the communication ring,then this combination field is activated and theEtherCAT device to which this device is to beconnected can be selected.

Advanced Settings This button opens the dialogs for advanced settings.

The link at the bottom of the tab points to the product page for this EtherCAT device on the web.

Process Data tabProcess Data tab

Indicates the configuration of the process data. The input and output data of the EtherCAT slave arerepresented as CANopen process data objects (PDO). The user can select a PDO via PDO assignment andmodify the content of the individual PDO via this dialog, if the EtherCAT slave supports this function.

EP31xx56 Version: 2.2.0

Commissioning and configuration

Sync ManagerSync Manager

Lists the configuration of the Sync Manager (SM).If the EtherCAT device has a mailbox, SM0 is used for the mailbox output (MbxOut) and SM1 for the mailboxinput (MbxIn).SM2 is used for the output process data (outputs) and SM3 (inputs) for the input process data.

If an input is selected, the corresponding PDO assignment is displayed in the PDO Assignment list below.

PDO AssignmentPDO Assignment

PDO assignment of the selected Sync Manager. All PDOs defined for this Sync Manager type are listedhere:

• If the output Sync Manager (outputs) is selected in the Sync Manager list, all RxPDOs are displayed.• If the input Sync Manager (inputs) is selected in the Sync Manager list, all TxPDOs are displayed.

The selected entries are the PDOs involved in the process data transfer. In the tree diagram of the SystemManager these PDOs are displayed as variables of the EtherCAT device. The name of the variable isidentical to the Name parameter of the PDO, as displayed in the PDO list. If an entry in the PDO assignmentlist is deactivated (not selected and greyed out), this indicates that the input is excluded from the PDOassignment. In order to be able do select a greyed out PDO, the currently selected PDO has to bedeselected first.

EP31xx 57Version: 2.2.0

Commissioning and configuration

Note

Activation of PDO assignment• the EtherCAT slave has to run through the PS status transition cycle (from pre-opera-

tional to safe-operational) once (see Online tab [ 61]),

• and the System Manager has to reload the EtherCAT slaves ( button)

PDO listList of all PDOs supported by this EtherCAT device. The content of the selected PDOs is displayed in thePDO Content list. The PDO configuration can be modified by double-clicking on an entry.

Column DescriptionIndex PDO index.Size Size of the PDO in bytes.Name Name of the PDO.

If this PDO is assigned to a Sync Manager, it appears as a variable ofthe slave with this parameter as the name.

Flags F Fixed content: The content of thisPDO is fixed and cannot bechanged by the System Manager.

M Mandatory PDO. This PDO ismandatory and must therefore beassigned to a Sync Manager!Consequently, this PDO cannot bedeleted from the PDO Assignmentlist

SM Sync Manager to which this PDO is assigned. If this entry is empty, thisPDO does not take part in the process data traffic.

SU Sync unit to which this PDO is assigned.

PDO ContentIndicates the content of the PDO. If flag F (fixed content) of the PDO is not set the content can be modified.

DownloadIf the device is intelligent and has a mailbox, the configuration of the PDO and the PDO assignments can bedownloaded to the device. This is an optional feature that is not supported by all EtherCAT slaves.

PDO AssignmentIf this check box is selected, the PDO assignment that is configured in the PDO Assignment list isdownloaded to the device on startup. The required commands to be sent to the device can be viewed in theStartup [ 58] tab.

PDO ConfigurationIf this check box is selected, the configuration of the respective PDOs (as shown in the PDO list and thePDO Content display) is downloaded to the EtherCAT slave.

Startup tabStartup

The Startup tab is displayed if the EtherCAT slave has a mailbox and supports the CANopen over EtherCAT(CoE) or Servo drive over EtherCAT protocol. This tab indicates which download requests are sent to themailbox during startup. It is also possible to add new mailbox requests to the list display. The downloadrequests are sent to the slave in the same order as they are shown in the list.

EP31xx58 Version: 2.2.0

Commissioning and configuration

Column DescriptionTransition Transition to which the request is sent. This can

either be• the transition from pre-operational to safe-

operational (PS), or• the transition from safe-operational to

operational (SO).If the transition is enclosed in "<>" (e.g. <PS>), themailbox request is fixed and cannot be modified ordeleted by the user.

Protocol Type of mailbox protocolIndex Index of the objectData Date on which this object is to be downloaded.Comment Description of the request to be sent to the mailbox

Move Up This button moves the selected request up by oneposition in the list.

Move Down This button moves the selected request down by oneposition in the list.

New This button adds a new mailbox download request tobe sent during startup.

Delete This button deletes the selected entry.Edit This button edits an existing request.

CoE - Online tabCoE - Online tab

The additional CoE - Online tab is displayed if the EtherCAT slave supports the CANopen over EtherCAT(CoE) protocol. This dialog lists the content of the object list of the slave (SDO upload) and enables the userto modify the content of an object from this list. Details for the objects of the individual EtherCAT devices canbe found in the device-specific object descriptions.

EP31xx 59Version: 2.2.0

Commissioning and configuration

Table 3: Object list display

Column DescriptionIndex Index and sub-index of the object

EP31xx60 Version: 2.2.0

Commissioning and configuration

Column DescriptionName Name of the objectFlags RW The object can be read, and data

can be written to the object (read/write)

RO The object can be read, but nodata can be written to the object(read only)

P An additional P identifies the objectas a process data object.

Value Value of the object

Update List The Update list button updates all objects in thedisplayed list

Auto Update If this check box is selected, the content of theobjects is updated automatically.

Advanced The Advanced button opens the Advanced Settingsdialog. Here you can specify which objects aredisplayed in the list.

Online - via SDO Information If this option button is selected, the list of the objectsincluded in the object list of the slave is uploadedfrom the slave via SDO information. The list belowcan be used to specify which object types are to beuploaded.

Offline - via EDS File If this option button is selected, the list of the objectsincluded in the object list is read from an EDS fileprovided by the user.

Online tabOnline tab

EP31xx 61Version: 2.2.0

Commissioning and configuration

Table 4: State Machine

Init This button attempts to set the EtherCAT device tothe Init state.

Pre-Op This button attempts to set the EtherCAT device tothe pre-operational state.

Op This button attempts to set the EtherCAT device tothe operational state.

Bootstrap This button attempts to set the EtherCAT device tothe Bootstrap state.

Safe-Op This button attempts to set the EtherCAT device tothe safe-operational state.

Clear Error This button attempts to delete the fault display. If anEtherCAT slave fails during change of state it sets anerror flag.Example: An EtherCAT slave is in PREOP state (pre-operational). The master now requests the SAFEOPstate (safe-operational). If the slave fails duringchange of state it sets the error flag. The current stateis now displayed as ERR PREOP. When the ClearError button is pressed the error flag is cleared, andthe current state is displayed as PREOP again.

Current State Indicates the current state of the EtherCAT device.Requested State Indicates the state requested for the EtherCAT

device.

DLL StatusIndicates the DLL status (data link layer status) of the individual ports of the EtherCAT slave. The DLL statuscan have four different states:

Status DescriptionNo Carrier / Open No carrier signal is available at the port, but the port

is open.

EP31xx62 Version: 2.2.0

Commissioning and configuration

Status DescriptionNo Carrier / Closed No carrier signal is available at the port, and the port

is closed.Carrier / Open A carrier signal is available at the port, and the port is

open.Carrier / Closed A carrier signal is available at the port, but the port is

closed.

Table 5: File Access over EtherCAT

Download With this button a file can be written to the EtherCATdevice.

Upload With this button a file can be read from the EtherCATdevice.

EP31xx 63Version: 2.2.0

Commissioning and configuration

9.3 Settings and operating modesSettings and operating modes

Contents• Settings [ 64]

• Representation [ 65]• Siemens Bits [ 66]• Underrange, Overrange [ 66]• Limit 1 and Limit 2 [ 66]

• Operating modes [ 64]• Synchronous operation mode [ 68]• Distributed Clocks (DC) operation mode [ 68]• Filter operation mode [ 69]

SettingsSettings

Setting the analog signal type, Index F800:0nIn delivery state all channels of EP31xx are set for analog voltage measuring (-10 ... +10 V).

Attention

Set signal type properly before connecting the sensorsSet the right signal type before connecting the sensors.

At CoE object 0xF800:0n [ 116] this setting can be done for each channel individually. Changes are effectiveimmediately.

Fig. 49: EP31x4-0002: Selection of the signal type

With the EP31x2 the signal type -20…+20 mA can also be selected (see following figure).

EP31xx64 Version: 2.2.0

Commissioning and configuration

Fig. 50: EP31x2-0002: Selection of the signal type

Presentation, index 80n0:02

80n0:02 [ 111]Presentation

In the delivery state, the measured value is output in two's complement format (signed integer).Index 80n0:02 [ 111] offers the possibility to change the method of representation of the measured value.

Signed Integer representationSigned Integer representation

The negative output value is represented in two’s complement (negated + 1).Maximum representation range for 16 bits = -32768 to +32767dec

Input signal Value+/- 10 V 0...20 mA 4...20 mA 0...10 V Decimal Hexadecimal10 V 20 mA 20 mA 10 V 32767 0x7FFF5 V 10 mA 12 mA 5 V 16383 0x3FFF0 V 0 mA 4 mA 0 V 0 0x0000-5 V - - - -16383 0xC001-10 V - - - -32767 0x8000

Overview of other representations

Unsigned Integer representationThe output value is represented with 15-bit resolution without sign, therefore polarity detection is no longerpossible.Maximum representation range for 16 bits = 0 to +32767dec

Absolute value with MSB as sign - representationThe output value is displayed in magnitude-sign format: MSB=1 (highest bit) in the case of negative values.Maximum representation range for 16 bits = -32768 to +32767dec

Input values (+/- 10 V) representation (values dec. / values hex.)unsigned integer absolute value with MSB as sign

10 32767 / 0x7FFF 32767 / 0x7FFF5 V 16383 / 0x3FFF 16383 / 0x3FFF0 V 0 / 0x0000 0 / 0x0000-5 16384 / 0x4000 [-16384] / 0xC000-10 32767 / 0x7FFF [-32767] / 0xFFFF

EP31xx 65Version: 2.2.0

Commissioning and configuration

Note

Presentation typeThe presentation types Unsigned Integer and Absolute value with MSB as sign have nofunction for unipolar modules. There is no change in the presentation in the positive range.

Siemens Bits, index 80n0:0580n0:05 Siemens Bits

If this bit is set, status displays are superimposed on the lowest three bits. In the error case "overrange" or"underrange", bit 0 is set.

Undershoot and overshoot of the measuring range (under-range, over-range), index60n0:01, 60n0:02

60n0:0 [ 124]2 60n0:0 [ 124]1Overrange and Underrange

In the chapter Data flow and correction calculation you will find a depict illustration of the correctioncalculation of the raw data to the output data, if the limit values are exceeded.

Note

Error bit (Index 60n0:07)The Error bit is set, if the measuring range is over- or undershot. For the 4...20 mA setting,an over- or undershot will be caused from approx. 3.5 mA.

Limit 1 and Limit 2, index 80n0:13, index 80n0:14

80n0:14 [ 111] 80n0:13 [ 111]Limit 2 and Limit 1

If the value exceeds or falls below these values, which can be entered in the indices 80n0:13 [ 111] and80n0:14 [ 111], then the bits in the indices 60n0:03 [ 124] and 60n0:05 [ 124] are set accordingly (seeexample below). The indices 80n0:07 [ 111] or 80n0:08 [ 111] respectively serve to activate the limit valuemonitoring.

Output Limit n (2-bit):

• 0: not active• 1: Value is smaller than the limit value• 2: Value is larger than the limit value• 3: Value is equal to the limit value

Note

Limit evaluationThe limit evaluation assumes a signed representation. The conversion to the desired repre-sentation (index 80n0:02) only takes place after the limit evaluation.

EP31xx66 Version: 2.2.0

Commissioning and configuration

Note

Linking in the PLC with 2-bit values• PLC:

IEC61131-PLC contains no 2-bit data type that can be linked with this process data di-rectly. In order to transmit the limit information, therefore, define an input byte, e.g.

and link the limit to the VariableSizeMismatch dialog, as described in chapter processdata.

• Additional task2-bit variables can be created in the System Manager.

Fig. 2: Linking of 2-bit variable to additional task

Example

Channel 1; Limit 1 and Limit 2 enabled, Limit 1 = 2.8 V, Limit 2 = 7.4 V, representation: signed integer

Entry in index (Limit 1):8000:13 [ 111](2.8 V / 10 V) x 216 / 2 - 1 = 9.174dec

Entry in index (Limit 2):8000:14 [ 111](7.4 V / 10 V) x 216 / 2 - 1 = 24.247dec

Output:

Input channel 1 Index 6000:03 [ 124] Index 6000:05 [ 124]1.8 V 0x01hex, (Limit 1, limit value

undershot)0x01hex, (Limit 2, limit valueundershot)

2.8 V 0x03hex, (Limit 1, limit valuereached)

0x01hex, (Limit 2, limit valueundershot)

4.2 V 0x02hex, (Limit 1, limit valueexceeded)

0x01hex, (Limit 2, limit valueundershot)

8.5 V 0x02hex, (Limit 1, limit valueexceeded)

0x02hex, (Limit 2, limit valueexceeded)

Operating modesOperating modes

EP31xx 67Version: 2.2.0

Commissioning and configuration

The EP31xx supports three different operating modes:

• Freerun (filter on, timer interrupt)• Synchron (filter off, SyncManager interrupt)• and DC (DC Sync interrupt)

Fig. 3: Relationship of operating modes

The module switches between the Freerun (filter on) and Synchron modes by activating/deactivating the filtervia the index. The module remains in OP mode during this process. The changeover may result in longersampling times and step changes in the process data until the filters have assumed a steady state.

DC mode can only be used when the filters are switched off. Likewise, it is not possible to switch the filterson in DC mode. The DC mode is parameterized via the DC tab in the TwinCAT System Manager.

Note

Combinations of filters, FastOp mode and Synchronization modeOther combination options of filter, FastOp mode and Synchronization mode are expresslynot recommended.

Synchron modeSynchron mode

In synchron mode process data are generated frame-triggered, so that a new value is available with eachPLC cycle. In the EL31xx modules synchron mode is used automatically (filter off, no DC). The minimumcycle times are 80 µs (EL31x1/EL31x2), and 120 µs (EL31x4) for standard IPCs.

DC modeDC mode

EP31xx68 Version: 2.2.0

Commissioning and configuration

In DC mode the process data are requested via DC interrupt. This results in the temporal jitter between twoframes being equalised, so that the sampling time is uniform across the system. The DC mode requiresminimum cycle times of 100 µs (EL31x1/EL31x2) or 150 µs (EL31x4) for standard IPCs. In input-basedmode the sync interrupt is shifted automatically, so that the process data are ready just before the currentprocess data cycle.

Filter mode (FIR and IIR), index 80n0:06, 80n0:15

80n0:15 [ 111] 80n0:06 [ 111]Filter mode

The EP31xx modules incorporate a digital filter which, depending on its settings, can adopt thecharacteristics of a Finite Impulse Response filter (an FIR filter), or an Infinite Impulse Response filter (anIIR filter). The filter can also be deactivated.The filter is deactivated by defalut. For activation with Index 8000:06 [ 111], please read the following note:

Note

Activation of the filter via Index 8000:06 and setting the filter characteristicsvia index 8000:15The filter frequencies are set for all channels of the EP31xx modules centrally via index8000:15 (channel 1). The corresponding indices 80n0:15 of the other channels have no pa-rameterization function.

FIR filterThe filter performs a notch filter function and determines the conversion time of the module. It isparameterized via the index 8000:15. The higher the filter frequency, the faster the conversion time. A 50 Hzand a 60 Hz filter are available.Notch filter means that the filter has zeros (notches) in the frequency response at the filter frequency andmultiples thereof, i.e. it attenuates the amplitude at these frequencies.

The FIR filter functions as a non-recursive filter.

typical attenuation curve of notch filter at 50 Hz

Filter characteristics FIR filter (1- to 4-channel modules)Filter Attenuation Limit frequency (-3 dB) Conversion time50 Hz FIR > 50 dB 22 Hz 625 µs

EP31xx 69Version: 2.2.0

Commissioning and configuration

Filter characteristics FIR filter (1- to 4-channel modules)Filter Attenuation Limit frequency (-3 dB) Conversion time60 Hz FIR > 40 dB 26 Hz 521 µs

IIR filterThe filter with IIR characteristics is a discrete time, linear, time invariant filter that can be set to eight levels(level 1 = weak recursive filter, up to level 8 = strong recursive filter).The IIR can be understood to be a moving average value calculation after a low-pass filter.

By means of the synchronization mode FreeRun, the IIR filter works with an internal cycle time of 180 µs (1or 2 channels) or 500 µs (4 channels).

Table 6: Filter characteristics for IIR filter

IIR filter -3 dB Limit frequency for a 50 µs sample timeIIR 1 400 HzIIR 2 220 HzIIR 3 100 HzIIR 4 50 HzIIR 5 24 HzIIR 6 12 HzIIR 7 6,2 HzIIR 8 3,0 Hz

EP31xx70 Version: 2.2.0

Commissioning and configuration

9.4 Notices on analog specificationsBeckhoff I/O devices (terminals, boxes) with analog inputs are characterized by a number of technicalcharacteristic data; refer to the technical data in the respective documents.

Some explanations are given below for the correct interpretation of these characteristic data.

Full scale valueAn I/O device with an analog input measures over a nominal measuring range that is limited by an upper anda lower limit (initial value and end value); these can usually be taken from the terminal/box designation. Therange between the two limits is called the measuring span and corresponds to the equation (end value -initial value). Analogous to pointing devices this is the measuring scale (see IEC 61131) or also the dynamicrange. For analog I/O devices from Beckhoff the rule is that the limit with the largest value is chosen as thefull scale value of the respective product (also called the reference value) and is given a positive sign. Thisapplies to both symmetrical and asymmetrical measuring spans.

For the above examples this means:

• Measuring range 0 to 10 V: asymmetric unipolar, full scale value = 10 V, measuring span = 10 V• Measuring range 4 to 20 mA: asymmetric unipolar, full scale value = 20 mA, measuring span = 16 mA• Measuring range -200 to 1370 °C: asymmetric bipolar, full scale value = 1370 °C, measuring span =

1570 °C• Measuring range -10 to +10 V: symmetric bipolar, full scale value = 10 V, measuring span = 20 V

This applies equally for analog output terminals/boxes.

± Measuring error [% of the full scale value] (also: measurement error)The relative measuring error is referenced to the full scale value and is calculated as the quotient of thelargest numerical deviation from the true value (‘measuring error’) referenced to the full scale value.

The measuring error is generally valid for the entire permitted operating temperature range, also called the‘usage error limit’ and contains random and systematic portions of the referred device (i.e. ‘all’ influencessuch as temperature, inherent noise, aging, etc.).

It always to be regarded as a positive/negative span with ±, even if it is specified without ± in some cases.

The maximum deviation can also be specified directly.

Example: Measuring range 0 to 10 V and measuring error < ± 0.3 % full scale value → maximum deviation± 30 mV in the permissible operating temperature range.

EP31xx 71Version: 2.2.0

Commissioning and configuration

Notice: since this specification also includes the temperature drift, a significantly lower measuring error canusually be assumed in case of a constant ambient temperature and thermal stabilization of the device. Thisapplies equally for analog output terminals/boxes.

Single-ended/differential typificationFor analog inputs Beckhoff makes a basic distinction between two types: single-ended (SE) and differential(DIFF), referring to the difference in electrical connection with regard to the potential difference.

The diagram shows two-channel versions of an SE module and a DIFF module as examples for all multi-channel versions.

Notice: Dashed lines indicate that the respective connection may not necessarily be present in each SE orDIFF module.

The basic rule:

• Analog measurements always take the form of voltage measurements between two potential points.For voltage measurements a large R is used, in order to ensure a high impedance. For currentmeasurements a small R is used as shunt. If the purpose is resistance measurement, correspondingconsiderations are applied.

Beckhoff generally refers to these two points as input+/signal potential and input-/reference po-tential.

For measurements between two potential points two potentials have to be supplied. Regarding the terms "single-wire connection" or "three-wire connection", please note the fol-

lowing for pure analog measurements: three- or four-wire connections can be used for sensorsupply, but are not involved in the actual analog measurement, which always takes place be-tween two potentials/wires. In particular this also applies to SE, even though the term suggestthat only one wire is required.

• The term "electrical isolation" should be clarified in advance. Beckhoff IO modules feature 1…8 ormore analog channels; with regard to the channel connection a distinction is made in terms of:

how the channels WITHIN a module relate to each other, or how the channels of SEVERAL modules relate to each other.

The property of electrical isolation indicates whether the channels are directly connected to each other.

• Beckhoff terminals/boxes always feature electrical isolation between the field/analog side and the bus/EtherCAT side. In other words, if two analog terminals/boxes are not connected via the power contacts,the modules are effectively electrically isolated.

EP31xx72 Version: 2.2.0

Commissioning and configuration

• If channels within a module are electrically isolated, or if a single-channel module has no powercontacts, the channels are effectively always differential. See also explanatory notes below. Differentialchannels are not necessarily electrically isolated.

• Analog measuring channels are subject to technical limits, both in terms of the recommended operatingrange (continuous operation) and the destruction limit. Please refer to the respective terminaldocumentation for further details.

Explanation

• Differential Differential measurement is the most flexible concept. The user can freely choose both con-

nection points, input+/signal potential and input-/reference potential, within the framework ofthe technical specification.

A differential channel can also be operated as SE, if the reference potential of several sensorsis linked. This interconnection may take place via the system GND.

Since a differential is configured symmetrically internally (see diagram), there will be a mid-po-tential (X) between the two supplied potentials that is the same as the internal ground/refer-ence ground for this channel. If several DIFF channels are used in a module without electricalisolation, the technical property VCM (common-mode voltage) indicates the degree to whichthe mean voltage of the channels may differ.

The internal reference ground may be accessible as connection point at the terminal/box, in or-der to stabilize a defined GND potential in the terminal/box. In this case it is particularly impor-tant to pay attention to the quality of this potential (noiselessness, voltage stability). At thisGND point a wire may be connected to make sure that VCM,max is not exceeded in the differen-tial sensor cable. If differential channels are not electrically isolated, usually only one VCM,max ispermitted. If the channels are electrically isolated this limit should not apply, and the channelsvoltages may differ up to the specified separation limit.

Differential measurement in combination with correct sensor wiring has the special advantagethat any interference affecting the sensor cable (ideally the feed and return line are arrangedside by side, so that interference signals have the same effect on both wires) has very little ef-fect on the measurement, since the potential of both lines varies jointly (hence the term com-mon mode). In simple terms: Common-mode interference has the same effect on both wires interms of amplitude and phasing.

Nevertheless, the suppression of common-mode interference within a channel or betweenchannels is subject to technical limits, which are specified in the technical data.

• Single Ended If the analog circuit is designed as SE, the input/reference wire is internally fixed to a certain

potential that cannot be changed. This potential must be accessible from outside on at leastone point for connecting the reference potential, e.g. via the power contacts.

In other words, in situations with several channels SE offers users the option to avoid returningat least one of the two sensor cables to the terminal/box (in contrast to DIFF). Instead, the ref-erence wire can be consolidated at the sensors, e.g. in the system GND.

A disadvantage of this approach is that the separate feed and return line can result in voltage/current variations, which a SE channel may no longer be able to handle. See common-modeinterference. A VCM effect cannot occur, since the module channels are internally always 'hard-wired' through the input/reference potential.

Typification of the 2/3/4-wire connection of current sensorsCurrent transducers/sensors/field devices (referred to in the following simply as ‘sensor’) with the industrial0/4-20 mA interface typically have internal transformation electronics for the physical measured variable(temperature, current, etc.) at the current control output. These internal electronics must be supplied withenergy (voltage, current). The type of cable for this supply thus separates the sensors into self-supplied orexternally supplied sensors:

• Self-supplied sensors The sensor draws the energy for its own operation via the sensor/signal cable + and -. So that

enough energy is always available for the sensor’s own operation and open-circuit detection ispossible, a lower limit of 4 mA has been specified for the 4-20 mA interface; i.e. the sensor al-lows a minimum current of 4 mA and a maximum current of 20 mA to pass.

EP31xx 73Version: 2.2.0

Commissioning and configuration

For a 2-wire connection; see IEC60381-1 Such current transducers generally represent a current sink and thus like to sit between + and

– as a ‘variable load’. Refer also to the sensor manufacturer’s information.

Therefore, they are to be connected according to the Beckhoff terminology as follows:

• preferably to ‘single-ended’ inputs if the +Supply connections of the terminal/box are also to be used -connect to +Supply and Signal

• the sensor draws the energy/operating voltage for its own operation from 2 supply cables of its own.One or two further sensor cables are used for the signal transmission of the current loop:

1. sensor cable: according to the Beckhoff terminology such sensors are to be connected to ‘single-ended’ inputs in 3 cables with +/-/Signal lines and if necessary FE/shield

2. sensor cables: In the case of sensors with 4-wire connection according to +-/+Signal/-Signal, you mustcheck whether +Signal may be connected to +Supply or –Signal to –Supply.

Yes: then you can connect accordingly to a Beckhoff ‘single-ended’ input. the Beckhoff ‘differential’ input for +Signal and –Signal is to be selected; +Supply and –Supply

are to be connected via additional cables.

Notice: expert organisations such as NAMUR demand a usable measuring range <4 mA/>20 mA for errordetection and adjustment, see also NAMUR NE043. The Beckhoff device documentation must be consultedin order to see whether the respective device supports such an extended signal range. In general thepolarity/direction of current is to be observed due to the internal diode!

EP31xx74 Version: 2.2.0

Commissioning and configuration

Fig. 51: 2/3/4 wire connection as single-ended or differential connection technology

EP31xx 75Version: 2.2.0

Commissioning and configuration

9.5 Data flow and correction calculation

DataflowThe flowchart below shows demonstrative the dataflow of the EP31xx (processing of the raw data).

Fig. 52: Flowchart of the dataflow EP31xx

Calculation of correctionThe next four figures show the correcting calculation of the raw values to the output values if the limits areover- or undershot.

EP31xx (+/- 10 V or +/- 10 mA)

Fig. 53: Dataflow with correction calculation for +/- 10 V or +/- 10 mA

EP31xx (0…20 mA)

EP31xx76 Version: 2.2.0

Commissioning and configuration

Fig. 54: Dataflow with correction calculation for 0…20 mA

EP31xx (4…20 mA)

Fig. 55: Dataflow with correction calculation for 4…20 mA

EP31xx (0---10 V)

Fig. 56: Dataflow with correction calculation for 0…10 V

CalibrationManufacturer compensation, index 80n0:0B

The manufacturer compensation is enabled via index 80n0:0B. Parameterization takes place via the indices

• 80nF:01 offset (manufacturer compensation)• 80n0:02 gain (manufacturer compensation)

User compensation, index 80n0:0A

EP31xx 77Version: 2.2.0

Commissioning and configuration

The user compensation is enabled via index 80n0:0A. Parameterization takes place via the indices

• 80n0:17 offset (user compensation)• 80n0:18 gain (user compensation)

User scaling, index 80n0:01

The user scaling is enabled via index 80n0:01. Parameterization takes place via the indices

• 80n0:11 offset (user scaling)• 80n0:12 gain (user scaling)

Note

Vendor calibrationThe manufacturer reserves the authority for the basic calibration of the terminals/boxes.The vendor calibration is therefore reserved.

Process data calculationThe terminal/box records measured values continuously and places the raw value of its A/D converter intothe ADC raw value object 80nE:01. The calculation of the correction with the manufacturers calibrationvalues takes place after each acquisition of the analog signal. User scaling then follows (optionally):

YH= (XADC-BH) * AH Measured value following manufacturer calibration (corresponds to XADC, if index 80n0:0Bis inactive)

YA= (YH-BA) * AA Measured value following user calibration (corresponds to YH, if index 80n0:0A is inactive)

YS= YA * AS * 22-16 + BS Measured value following user scale (corresponds to YA, if index 80n0:01 isinactive)

Key

Name Designation IndexXADC Output value of the A/D converter 80nE:01BH Manufacturer calibration offset (only changeable if the object „Producer codeword

F008“ is set)80nF:01

AH Manufacturer calibration gain (only changeable ist he object „Producer codewordF008“ is set)

80nF:02

YH Measuring value after manufacturer calibration -BA User calibration offset 80n0:11AA User calibration gain 80n0:12YS Measuring value after manufacturer calibration -BS User scaling offset (can be activated via index 80n0:0A) 80n0:17AS User scaling gain (can be activated via index 80n0:0A) 80n0:18YS Process data for controller, measuring value after manufacturer calibration -

EP31xx78 Version: 2.2.0

Commissioning and configuration

9.6 CoE Interface

General descriptionThe CoE interface (CANopen over EtherCAT) is used for parameter management of EtherCAT devices.EtherCAT slaves or the EtherCAT master manage fixed (read only) or variable parameters which theyrequire for operation, diagnostics or commissioning.

CoE parameters are arranged in a table hierarchy. In principle, the user has read access via the fieldbus.The EtherCAT master (TwinCAT System Manager) can access the local CoE lists of the slaves viaEtherCAT in read or write mode, depending on the attributes.

Different CoE parameter types are possible, including string (text), integer numbers, Boolean values or largerbyte fields. They can be used to describe a wide range of features. Examples of such parameters includemanufacturer ID, serial number, process data settings, device name, calibration values for analogmeasurement or passwords.

The order is specified in 2 levels via hexadecimal numbering: (main)index, followed by subindex. The valueranges are

• Index: 0…65535• Subindex: 0…255

A parameter localized in this way is normally written as x8010:07, with preceding "x" to identify thehexadecimal numerical range and a colon between index and subindex.

The relevant ranges for EtherCAT fieldbus users are:

• x1000: This is where fixed identity information for the device is stored, including name, manufacturer,serial number etc., plus information about the current and available process data configurations

• x8000: This is where the operational and functional parameters for all channels are stored, such asfilter settings or output frequency

Other important ranges are:

• x4000: In some EtherCAT devices the channel parameters are stored here (as an alternative to thex8000 range).

• x6000: Input PDOs ("input" from the perspective of the EtherCAT master)• x7000: Output PDOs ("output" from the perspective of the EtherCAT master)

Note

AvailabilityNot every EtherCAT device must have a CoE list.Simple I/O modules without dedicated processor usually have no variable parameters andtherefore no CoE list..

If a device has a CoE list, it is shown in the TwinCAT System Manager as a separate tab with a listing of theelements:

EP31xx 79Version: 2.2.0

Commissioning and configuration

Fig. 57: CoE-Online tab

The figure above shows the CoE objects available in device "EL2502", ranging from x1000 to x1600. Thesubindices for x1018 are expanded.

Data managementSome parameters, particularly the setting parameters of the slave, are configurable and writeable. This canbe done in write or read mode

• via the System Manager (see the figure above) by clicking. This is useful for commissioning of thesystem/slaves. Click on the row of the index to be parameterised and enter a value in the "SetValue"dialog.

• from the control system/PLC via ADS, e.g. through blocks from the TcEtherCAT.lib library. This isrecommended for modifications while the system is running or if no System Manager or operating staffare available.

Note

Data managementIf slave CoE parameters are modified online, Beckhoff devices store any changes in a fail-safe manner in the EEPROM, i.e. the modified CoE parameters are still available after arestart.The situation may be different with other manufacturers.

Start-up list

Note

Startup listChanges in the local CoE list of the terminal are lost if the terminal is replaced. If a termi-nal is replaced with a new Beckhoff terminal, it will have the default settings. It is thereforeadvisable to link all changes in the CoE list of an EtherCAT slave with the Startup list of theslave, which is processed whenever the EtherCAT fieldbus is started. In this way a replace-ment EtherCAT slave can automatically be parameterised with the specifications of theuser.If EtherCAT slaves are used which are unable to store local CoE values permanently, theStartup list must be used.

EP31xx80 Version: 2.2.0

Commissioning and configuration

Recommended approach for manual modification of CoE parameters• Make the required change in the System Manager. The values are stored locally in the EtherCAT slave• If the value is to be stored permanently, enter it in the Startup list. The order of the Startup entries is

usually irrelevant.

Fig. 58: Startup list in the TwinCAT System Manager

The Startup list may already contain values that were configured by the System Manager based on the ESIspecifications. Additional application-specific entries can be created.

Online/offline listWhile working with the TwinCAT System Manager, a distinction has to be made whether the EtherCATdevice is "available", i.e. switched on and linked via EtherCAT and therefore online, or whether aconfiguration is created offline without connected slaves.

In both cases a CoE list as shown in Fig. 1 is displayed. The connectivity is shown as offline/online.

If the slave is offline

• The offline list from the ESI file is displayed. In this case modifications are not meaningful or possible• The configured status is shown under Identity• No firmware or hardware version is displayed, since these are features of the physical device• Offline is shown in red

EP31xx 81Version: 2.2.0

Commissioning and configuration

Fig. 59: Offline list

If the slave is online

• The actual current slave list is read. This may take several seconds, depending on the size and cycletime

• The actual identity is displayed• The firmware and hardware version of the equipment according to the electronic information is

displayed• Online is shown in green

Fig. 60: Online list

EP31xx82 Version: 2.2.0

Commissioning and configuration

Channel-based orderThe CoE list is available in EtherCAT devices that usually feature several functionally equivalent channels.For example, a 4-channel analog 0..10 V input terminal also has 4 logical channels and therefore 4 identicalsets of parameter data for the channels. In order to avoid having to list each channel in the documentation,the placeholder "n" tends to be used for the individual channel numbers.

In the CoE system 16 indices, each with 255 subindices, are generally sufficient for representing all channelparameters. The channel-based order is therefore arranged in 16dec /10hex steps. The parameter range x8000exemplifies this:

• Channel 0: parameter range x8000:00 ... x800F:255• Channel 1: parameter range x8010:00 ... x801F:255• Channel 2: parameter range x8020:00 ... x802F:255• …

This is generally written as x80n0.

Detailed information on the CoE interface can be found in the EtherCAT system documentation on theBeckhoff website

EP31xx 83Version: 2.2.0

Commissioning and configuration

9.7 EtherCAT state machineThe state of the EtherCAT slave is controlled via the EtherCAT State Machine (ESM). Depending upon thestate, different functions are accessible or executable in the EtherCAT slave. Specific commands must besent by the EtherCAT master to the device in each state, particularly during the bootup of the slave.

A distinction is made between the following states:

• Init• Pre-Operational• Safe-Operational and• Operational• Boot

The regular state of each EtherCAT slave after bootup is the OP state.

Fig. 61: EtherCAT state machine

InitAfter switch-on the EtherCAT slave in the Init state. No mailbox or process data communication is possible.The EtherCAT master initializes sync manager channels 0 and 1 for mailbox communication.

Pre-Operational (Pre-Op)During the transition between Init and Pre-Op the EtherCAT slave checks whether the mailbox was initializedcorrectly.

In Pre-Op state mailbox communication is possible, but not process data communication. The EtherCATmaster initializes the sync manager channels for process data (from sync manager channel 2), the FMMUchannels and, if the slave supports configurable mapping, PDO mapping or the sync manager PDOassignment. In this state the settings for the process data transfer and perhaps terminal-specific parametersthat may differ from the default settings are also transferred.

Safe-Operational (Safe-Op)During transition between Pre-Op and Safe-Op the EtherCAT slave checks whether the sync managerchannels for process data communication and, if required, the distributed clocks settings are correct. Beforeit acknowledges the change of state, the EtherCAT slave copies current input data into the associated DP-RAM areas of the EtherCAT slave controller (ECSC).

EP31xx84 Version: 2.2.0

Commissioning and configuration

In Safe-Op state mailbox and process data communication is possible, although the slave keeps its outputsin a safe state, while the input data are updated cyclically.

Operational (Op)Before the EtherCAT master switches the EtherCAT slave from Safe-Op to Op it must transfer valid outputdata.

In the Op state the slave copies the output data of the masters to its outputs. Process data and mailboxcommunication is possible.

BootIn the Boot state the slave firmware can be updated. The Boot state can only be reached via the Init state.

In the Boot state mailbox communication via the file access over EtherCAT (FoE) protocol is possible, but noother mailbox communication and no process data communication.

EP31xx 85Version: 2.2.0

Commissioning and configuration

9.8 EP31x2 - Object Overview

Note

EtherCAT XML Device DescriptionThe description correspond to the display of the CoE objects from the EtherCAT XML De-vice Description. It is strongly recommended to download the latest revision of the corre-sponding XML file from the Beckhoff website (http://beckhoff.de/english/download/el-confg.htm?id=1983920606140) and follow the installation instructions.

Index Name Flags Default Wert1000 [ 103] Device type RO 0x012C1389

(19665801dez)1008 [ 103] Device name RO EP3174-0002

1009 [ 103] Hardware version RO 01

100A [ 103] Software version RO 01

1011[ 98]:0

Subindex Restore default parameters RO 0x01 (1dez)1011:01 SubIndex 001 RW 0x00000000 (0dez)

1018[ 104]:0

Subindex Identity RO 0x04 (4dez)1018:01 Vendor ID RO 0x00000002 (2dez)1018:02 Product code RO 0x0C664052

(208027730dez)1018:03 Revision RO 0x00100002

(1048578dez)1018:04 Serial number RO 0x00000000 (0dez)

10F0[ 104]:0

Subindex Backup parameter handling RO 0x01 (1dez)10F0:01 Checksum RO 0x00000000 (0dez)

1A00[ 105]:0

Subindex AI TxPDO-Map Standard Ch.1 RO 0x11 (11dez)1A00:01 Subindex 001 RO 0x6000:01, 11A00:02 Subindex 002 RO 0x6000:02, 11A00:03 Subindex 003 RO 0x6000:03, 21A00:04 Subindex 004 RO 0x6000:05, 21A00:05 Subindex 005 RO 0x6000:07, 11A00:06 Subindex 006 RO 0x0000:00, 11A00:07 Subindex 007 RO 0x0000:00, 51A00:08 Subindex 008 RO 0x6000:0E, 11A00:09 Subindex 009 RO 0x6000:0F, 11A00:0A Subindex 010 RO 0x6000:10, 11A00:0B Subindex 011 RO 0x6000:11, 16

1A01[ 105]:0

Subindex AI TxPDO-Map Standard Ch.2 RO 0x11 (11dez)1A02:01 SubIndex 001 RO 0x6010:01, 11A02:02 SubIndex 002 RO 0x6010:02, 11A02:03 SubIndex 003 RO 0x6010:03, 21A02:04 SubIndex 004 RO 0x6010:05, 21A02:05 SubIndex 005 RO 0x6010:07, 11A02:06 SubIndex 006 RO 0x0000:00, 11A02:07 SubIndex 007 RO 0x0000:00, 51A02:08 SubIndex 008 RO 0x6010:0E, 11A02:09 SubIndex 009 RO 0x6010:0F, 11A02:0A SubIndex 010 RO 0x6010:10, 11A01:0B Subindex011 RO 0x6010:11, 16

EP31xx86 Version: 2.2.0

Commissioning and configuration

Index Name Flags Default Wert1C00[ 106]:0

Subindex Sync manager type RO 0x04 (4dez)1C00:01 SubIndex 001 RO 0x01 (1dez)1C00:02 SubIndex 002 RO 0x02 (2dez)1C00:03 SubIndex 003 RO 0x03 (3dez)1C00:04 SubIndex 004 RO 0x04 (4dez)

1C12[ 106]:0

Subindex RxPDO assign RW 0x00 (0dez)1C12:01 SubIndex 001 RW -1C12:02 SubIndex 002 RW -

1C13[ 106]:0

Subindex TxPDO assign RW 0x02 (2dez)1C13:01 SubIndex 001 RW 0x1A00 (6656dez)1C13:02 SubIndex 002 RW 0x1A02 (6658dez)1C13:03 SubIndex 003 RW 0x1A04 (6660dez)1C13:04 SubIndex 004 RW 0x1A06 (6662dez)

1C32:0 Subindex SM output parameter RO 0x20 (32dez)1C32:01 Sync mode RW 0x0000 (0dez)1C32:02 Cycle time RW 0x000F4240

(1000000dez)1C32:03 Shift time RO 0x00000000 (0dez)1C32:04 Sync modes supported RO 0xC009 (49161dez)1C32:05 Minimum cycle time RO 0x00055730

(350000dez)1C32:06 Calc and copy time RO 0x00000000 (0dez)1C32:07 Minimum delay time RO 0x00000000 (0dez)1C32:08 Command RW 0x0000 (0dez)1C32:09 Maximum Delay time RO 0x00000000 (0dez)1C32:0B SM event missed counter RO 0x0000 (0dez)1C32:0C Cycle exceeded counter RO 0x0000 (0dez)1C32:0D Shift too short counter RO 0x0000 (0dez)1C32:20 Sync error RO 0x00 (0dez)

1C33:0 Subindex SM input parameter RO 0x20 (32dez)1C33:01 Sync mode RW 0x0000 (0dez)1C33:02 Cycle time RW 0x000F4240

(1000000dez)1C33:03 Shift time RO 0x00001388

(5000dez)1C33:04 Sync modes supported RO 0xC009 (49161dez)1C33:05 Minimum cycle time RO 0x00055730

(350000dez)1C33:06 Calc and copy time RO 0x00000000 (0dez)1C33:07 Minimum delay time RO 0x00001388

(5000dez)1C33:08 Command RW 0x0000 (0dez)1C33:09 Maximum Delay time RO 0x00001388

(5000dez)1C33:0B SM event missed counter RO 0x0000 (0dez)1C33:0C Cycle exceeded counter RO 0x0000 (0dez)1C33:0D Shift too short counter RO 0x0000 (0dez)1C33:20 Sync error RO 0x0000 (0dez)

EP31xx 87Version: 2.2.0

Commissioning and configuration

Index Name Flags Default Wert6000[ 107]:0

Subindex AI Inputs Ch. 1 RO 0x11 (17dez)6000:01 Underrange RO 0x00 (0dez)6000:02 Overrange RO 0x00 (0dez)6000:03 Limit 1 RO 0x00 (0dez)6000:05 Limit 2 RO 0x00 (0dez)6000:07 Error RO 0x00 (0dez)6000:0E Sync Error RO 0x00 (0dez)6000:0F TxPDO State RO 0x00 (0dez)6000:10 TxPDO Toggle RO 0x00 (0dez)6000:11 Value RO 0x0000 (0dez)

6010[ 108]:0

Subindex AI Inputs Ch. 2 RO 0x11 (17dez)6010:01 Underrange RO 0x00 (0dez)6010:02 Overrange RO 0x00 (0dez)6010:03 Limit 1 RO 0x00 (0dez)6010:05 Limit 2 RO 0x00 (0dez)6010:07 Error RO 0x00 (0dez)6010:0E Sync error RO 0x00 (0dez)6010:0F TxPDO State RO 0x00 (0dez)6010:10 TxPDO Toggle RO 0x00 (0dez)6010:11 Value RO 0x0000 (0dez)

8000[ 98]:0

Subindex AI Settings Ch. 1 RW 0x18 (24dez)8000:01 Enable user scale RW 0x00 (0dez)8000:02 Presentation RW 0x00 (0dez)8000:06 Enable filter RW 0x01 (1dez)8000:07 Enable limit 1 RW 0x00 (0dez)8000:08 Enable limit 2 RW 0x00 (0dez)8000:0A Enable user calibration RW 0x00 (0dez)8000:0B Enable vendor calibration RW 0x01 (1dez)8000:0E Swap limit bits RW 0x00 (0dez)8000:11 User scale offset RW 0x0000 (0dez)8000:12 User scale gain RW 0x00010000

(65536dez)8000:13 Limit 1 RW 0x0000 (0dez)8000:14 Limit 2 RW 0x0000 (0dez)8000:15 Filter settings RW 0x0000 (0dez)8000:17 User calibration offset RW 0x0000 (0dez)8000:18 User calibration gain RW 0x4000 (16384dez)

800E[ 108]:0

Subindex AI Internal data Ch. 1 RW 0x01 (1dez)800E:01 ADC raw value RW 0x0000 (0dez)

800F[ 109]:0

Subindex AI Vendor data Ch. 1 RW 0x06 (6dez)800F:01 offset U RW 0x0000 (0dez)800F:02 gain U RW 0x4000 (16384dez)800F:03 offset I RW 0x0000 (0dez)800F:04 gain I RW 0x4000 (16384dez)800F:05 offset I4 RW 0x0000 (0dez)800F:06 gain I4 RW 0x4000 (16384dez)

EP31xx88 Version: 2.2.0

Commissioning and configuration

Index Name Flags Default Wert8010[ 99]:0

Subindex AI Settings Ch. 2 RW 0x18 (24dez)8010:01 Enable user scale RW 0x00 (0dez)8010:02 Presentation RW 0x00 (0dez)8010:06 Enable filter RW 0x00 (0dez)8010:07 Enable limit 1 RW 0x00 (0dez)8010:08 Enable limit 2 RW 0x00 (0dez)8010:0A Enable user calibration RW 0x00 (0dez)8010:0B Enable vendor calibration RW 0x01 (1dez)8010:0E Swap limit bits RW 0x00 (0dez)8010:11 User scale offset RW 0x0000 (0dez)8010:12 User scale gain RW 0x00010000

(65536dez)8010:13 Limit 1 RW 0x0000 (0dez)8010:14 Limit 2 RW 0x0000 (0dez)8010:15 Filter settings RW 0x0000 (0dez)8010:17 User calibration offset RW 0x0000 (0dez)8010:18 User calibration gain RW 0x4000 (16384dez)

801E[ 109]:0

Subindex AI Internal data Ch. 2 RW 0x01 (1dez)801E:01 ADC raw value RW 0x0000 (0dez)

801F[ 109]:0

Subindex AI Vendor data Ch. 2 RW 0x06 (6dez)801F:01 offset U RW 0x0000 (0dez)801F:02 gain U RW 0x4000 (16384dez)801F:03 offset I RW 0x0000 (0dez)801F:04 gain I RW 0x4000 (16384dez)801F:05 offset I4 RW 0x0000 (0dez)801F:06 gain I4 RW 0x4000 (16384dez)

F000[ 109]:0

Subindex Modular device profile RO 0x02 (2dez)F000:01 Module index distance RO 0x0010 (16dez)F000:02 Maximum number of modules RO 0x0002 (2dez)

F008 [ 110] Code word RW 0x0000 (0dez)

F010[ 110]:0

Subindex Module list RW 0x02 (2dez)F010:01 SubIndex 001 RW 0x0000012C

(300dez)F010:02 SubIndex 002 RW 0x0000012C

(300dez)F800[ 102]:0

Subindex AI Range Settings RW 0x02 (2dez)F800:01 Input type Ch1 RW 0x0000 (0dez)F800:02 Input type Ch2 RW 0x0000 (0dez)

KeyFlags:RO = Read OnlyRW = Read/Write

EP31xx 89Version: 2.2.0

Commissioning and configuration

9.9 EP31x4 - Object Overview

Note

EtherCAT XML Device DescriptionThe description correspond to the display of the CoE objects from the EtherCAT XML De-vice Description. It is strongly recommended to download the latest revision of the corre-sponding XML file from the Beckhoff website (http://beckhoff.de/english/download/el-confg.htm?id=1983920606140) and follow the installation instructions.

Index Name Flags Default Wert1000 [ 116] Device type RO 0x012C1389

(19665801dez)1008 [ 116] Device name RO EP3174-0002

1009 [ 116] Hardware version RO -

100A [ 117] Software version RO -

1011[ 111]:0

Subindex Restore default parameters RO 0x01 (1dez)1011:01 SubIndex 001 RW 0x00000000 (0dez)

1018[ 117]:0

Subindex Identity RO 0x04 (4dez)1018:01 Vendor ID RO 0x00000002 (2dez)1018:02 Product code RO 0x0C664052

(208027730dez)1018:03 Revision RO 0x00000000 (0dez)1018:04 Serial number RO 0x00000000 (0dez)

10F0[ 117]:0

Subindex Backup parameter handling RO 0x01 (1dez)10F0:01 Checksum RO 0x00000000 (0dez)

1800[ 118]:0

Subindex AI TxPDO-Par Standard Ch. 1 RO 0x06 (6dez)1800:06 Exclude TxPDOs RO 01 1A

1801[ 118]:0

Subindex AI TxPDO-Par-Compact Ch.1 RO 0x06 (6dez)1801:06 Exclude TxPDOs RO 00 1A

1802[ 118]:0

Subindex AI TxPDO-Par Standard Ch.2 RO 0x06 (6dez)1802:06 Exclude TxPDOs RO 03 1A

1803[ 118]:0

Subindex AI TxPDO-Par Compact Ch.2 RO 0x06 (6dez)1803:06 Exclude TxPDOs RO 02 1A

1804[ 119]:0

Subindex AI TxPDO-Par Standard Ch.3 RO 0x06 (6dez)1804:06 Exclude TxPDOs RO 05 1A

1805[ 119]:0

Subindex AI TxPDO-Par Compact Ch.3 RO 0x06 (6dez)1805:06 Exclude TxPDOs RO 04 1A

1806[ 119]:0

Subindex AI TxPDO-Par Standard Ch.4 RO 0x06 (6dez)1806:06 Exclude TxPDOs RO 07 1A

1807[ 119]:0

Subindex AI TxPDO-Par Compact Ch.4 RO 0x06 (6dez)1807:06 Exclude TxPDOs RO 06 1A

EP31xx90 Version: 2.2.0

Commissioning and configuration

Index Name Flags Default Wert1A00[ 120]:0

Subindex AI TxPDO-Map Standard Ch.1 RO 0x11 (11dez)1A00:01 Subindex 001 RO 0x6000:01, 11A00:02 Subindex 002 RO 0x6000:02, 11A00:03 Subindex 003 RO 0x6000:03, 21A00:04 Subindex 004 RO 0x6000:05, 21A00:05 Subindex 005 RO 0x6000:07, 11A00:06 Subindex 006 RO 0x0000:00, 11A00:07 Subindex 007 RO 0x0000:00, 51A00:08 Subindex 008 RO 0x6000:0E, 11A00:09 Subindex 009 RO 0x6000:0F, 11A00:0A Subindex 010 RO 0x6000:10, 11A00:0B Subindex 011 RO 0x6000:11, 16

1A01[ 120]:0

Subindex AI TxPDO-Map Compact Ch.1 RO 0x01 (1dez)1A01:01 SubIndex 001 RO 0x6000:11, 16

1A02[ 120]:0

Subindex AI TxPDO-Map Standard Ch.2 RO 0x0A (10dez)1A02:01 SubIndex 001 RO 0x6010:01, 11A02:02 SubIndex 002 RO 0x6010:02, 11A02:03 SubIndex 003 RO 0x6010:03, 21A02:04 SubIndex 004 RO 0x6010:05, 21A02:05 SubIndex 005 RO 0x6010:07, 11A02:06 SubIndex 006 RO 0x0000:00, 11A02:07 SubIndex 007 RO 0x0000:00, 61A02:08 SubIndex 008 RO 0x1802:07, 11A02:09 SubIndex 009 RO 0x1802:09, 11A02:0A SubIndex 010 RO 0x6010:10, 11A02:0B SubIndex 011 RO 0x6010:11, 16

1A03[ 121]:0

Subindex AI TxPDO-Map Compact Ch.2 RO 0x01 (1dez)1A03:01 SubIndex 001 RO 0x6010:11, 16

1A04[ 121]:0

Subindex AI TxPDO-Map Standard Ch.3 RO 0x0B (11dez)1A04:01 SubIndex 001 RO 0x6020:01, 11A04:02 SubIndex 002 RO 0x6020:02, 11A04:03 SubIndex 003 RO 0x6020:03, 21A04:04 SubIndex 004 RO 0x6020:05, 21A04:05 SubIndex 005 RO 0x6020:07, 11A04:06 SubIndex 006 RO 0x0000:00, 11A04:07 SubIndex 007 RO 0x0000:00, 51A04:08 SubIndex 008 RO 0x6020:0E, 11A04:09 SubIndex 009 RO 0x6020:0F, 11A04:0A SubIndex 010 RO 0x6020:10, 11A04:0B SubIndex 011 RO 0x6020:11, 16

1A05[ 122]:0

Subindex AI TxPDO-Map Compact Ch.3 RO 0x01 (1dez)1A05:01 SubIndex 001 RO 0x6020:11, 16

EP31xx 91Version: 2.2.0

Commissioning and configuration

Index Name Flags Default Wert1A06[ 122]:0

Subindex AI TxPDO-Map Standard Ch.4 RO 0x0B (11dez)1A06:01 SubIndex 001 RO 0x6030:01, 11A06:02 SubIndex 002 RO 0x6030:02, 11A06:03 SubIndex 003 RO 0x6030:03, 21A06:04 SubIndex 004 RO 0x6030:05, 21A06:05 SubIndex 005 RO 0x6030:07, 11A06:06 SubIndex 006 RO 0x0000:00, 11A06:07 SubIndex 007 RO 0x0000:00, 51A06:08 SubIndex 008 RO 0x6030:0E, 11A06:09 SubIndex 009 RO 0x6030:0F, 11A06:0A SubIndex 010 RO 0x6030:10, 11A06:0B SubIndex 011 RO 0x6030:11, 16

1A07[ 123]:0

Subindex AI TxPDO-Map Compact Ch.4 RO 0x01 (1dez)1A07:01 SubIndex 001 RO 0x6030:11, 16

1C00[ 123]:0

Subindex Sync manager type RO 0x04 (4dez)1C00:01 SubIndex 001 RO 0x01 (1dez)1C00:02 SubIndex 002 RO 0x02 (2dez)1C00:03 SubIndex 003 RO 0x03 (3dez)1C00:04 SubIndex 004 RO 0x04 (4dez)

1C12[ 124]:0

Subindex RxPDO assign RW 0x00 (0dez)

1C13[ 124]:0

Subindex TxPDO assign RW 0x04 (4dez)1C13:01 SubIndex 001 RW 0x1A00 (6656dez)1C13:02 SubIndex 002 RW 0x1A02 (6658dez)1C13:03 SubIndex 003 RW 0x1A04 (6660dez)1C13:04 SubIndex 004 RW 0x1A06 (6662dez)

1C33:0 Subindex SM output parameter RO 0x20 (32dez)1C33:01 Sync mode RW 0x0022 (34dez)1C33:02 Cycle time RW 0x000F4240

(1000000dez)1C33:03 Shift time RO 0x00001388

(5000dez)1C33:04 Sync modes supported RO 0xC00B (49163dez)1C33:05 Minimum cycle time RO 0x0003D090

(250000dez)1C33:06 Calc and copy time RO 0x00001388

(5000dez)1C33:07 Minimum delay time RO 0x00000000 (0dez)1C33:08 Command RW 0x0000 (0dez)1C33:09 Maximum Delay time RO 0x00001388

(5000dez)1C33:0B SM event missed counter RO 0x0000 (0dez)1C33:0C Cycle exceeded counter RO 0x0000 (0dez)1C33:0D Shift too short counter RO 0x0000 (0dez)1C33:20 Sync error RO 0x00 (0dez)

EP31xx92 Version: 2.2.0

Commissioning and configuration

Index Name Flags Default Wert6000[ 124]:0

Subindex AI Inputs RO 0x11 (17dez)6000:01 Underrange RO 0x00 (0dez)6000:02 Overrange RO 0x00 (0dez)6000:03 Limit 1 RO -6000:05 Limit 2 RO -6000:07 Error RO 0x00 (0dez)6000:0E Sync error RO 0x00 (0dez)6000:0F TxPDO State RO 0x00 (0dez)6000:10 TxPDO Toggle RO 0x00 (0dez)6000:11 Value RO 0x0000 (0dez)

6010[ 125]:0

Subindex AI Inputs RO 0x11 (17dez)6010:01 Underrange RO 0x00 (0dez)6010:02 Overrange RO 0x00 (0dez)6010:03 Limit 1 RO -6010:05 Limit 2 RO -6010:07 Error RO 0x00 (0dez)6010:0F TxPDO State RO 0x00 (0dez)6010:10 TxPDO Toggle RO 0x00 (0dez)6010:11 Value RO 0x0000 (0dez)

6020[ 126]:0

Subindex AI Inputs RO 0x11 (17dez)6020:01 Underrange RO 0x00 (0dez)6020:02 Overrange RO 0x00 (0dez)6020:03 Limit 1 RO -6020:05 Limit 2 RO -6020:07 Error RO 0x00 (0dez)6020:0E Sync error RO 0x00 (0dez)6020:0F TxPDO State RO 0x00 (0dez)6020:10 TxPDO Toggle RO 0x00 (0dez)6020:11 Value RO 0x0000 (0dez)

6030[ 126]:0

Subindex AI Inputs RO 0x11 (17dez)6030:01 Underrange RO 0x00 (0dez)6030:02 Overrange RO 0x00 (0dez)6030:03 Limit 1 RO -6030:05 Limit 2 RO -6030:07 Error RO 0x00 (0dez)6030:0E Sync error RO 0x00 (0dez)6030:0F TxPDO State RO 0x00 (0dez)6030:10 TxPDO Toggle RO 0x00 (0dez)6030:11 Value RO 0x0000 (0dez)

EP31xx 93Version: 2.2.0

Commissioning and configuration

Index Name Flags Default Wert8000[ 111]:0

Subindex AI Settings RW 0x18 (24dez)8000:01 Enable user scale RW 0x00 (0dez)8000:02 Presentation RW 0x00 (0dez)8000:05 Siemens Bits RW 0x00 (0dez)8000:06 Enable filter RW 0x01 (1dez)8000:07 Enable limit 1 RW 0x00 (0dez)8000:08 Enable limit 2 RW 0x00 (0dez)8000:0A Enable user calibration RW 0x00 (0dez)8000:0B Enable vendor calibration RW 0x01 (1dez)8000:0E Swap limit bits RW 0x00 (0dez)8000:11 User scale offset RW 0x0000 (0dez)8000:12 User scale gain RW 0x00010000

(65536dez)8000:13 Limit 1 RW 0x0000 (0dez)8000:14 Limit 2 RW 0x0000 (0dez)8000:15 Filter settings RW 0x0000 (0dez)8000:17 User calibration offset RW 0x0000 (0dez)8000:18 User calibration gain RW 0x4000 (16384dez)

800E[ 127]:0

Subindex AI Internal data RO 0x01 (1dez)800E:01 ADC raw value RO 0x0000 (0dez)

800F[ 127]:0

Subindex AI Vendor data RW 0x06 (6dez)800F:01 R0 offset RW 0x0000 (0dez)800F:02 R0 gain RW 0x4000 (16384dez)800F:03 R1 offset RW 0x0000 (0dez)800F:04 R1 gain RW 0x4000 (16384dez)800F:05 R2 offset RW 0x0000 (0dez)800F:06 R2 gain RW 0x4000 (16384dez)

8010[ 112]:0

Subindex AI Settings RW 0x18 (24dez)8010:01 Enable user scale RW 0x00 (0dez)8010:02 Presentation RW 0x00 (0dez)8010:05 Siemens bits RW 0x00 (0dez)8010:06 Enable filter RW 0x00 (0dez)8010:07 Enable limit 1 RW 0x00 (0dez)8010:08 Enable limit 2 RW 0x00 (0dez)8010:0A Enable user calibration RW 0x00 (0dez)8010:0B Enable vendor calibration RW 0x01 (1dez)8010:0E Swap limit bits RW 0x00 (0dez)8010:11 User scale offset RW 0x0000 (0dez)8010:12 User scale gain RW 0x00010000

(65536dez)8010:13 Limit 1 RW 0x0000 (0dez)8010:14 Limit 2 RW 0x0000 (0dez)8010:15 Filter settings RW 0x0000 (0dez)8010:17 User calibration offset RW 0x0000 (0dez)8010:18 User calibration gain RW 0x4000 (16384dez)

801E[ 128]:0

Subindex AI Internal data RO 0x01 (1dez)801E:01 ADC raw value RO 0x0000 (0dez)

EP31xx94 Version: 2.2.0

Commissioning and configuration

Index Name Flags Default Wert801F[ 128]:0

Subindex AI Vendor data RW 0x06 (6dez)801F:01 R0 offset RW 0x0000 (0dez)801F:02 R0 gain RW 0x4000 (16384dez)801F:03 R1 offset RW 0x0000 (0dez)801F:04 R1 gain RW 0x4000 (16384dez)801F:05 R2 offset RW 0x0000 (0dez)801F:06 R2 gain RW 0x4000 (16384dez)

8020[ 113]:0

Subindex AI Settings RW 0x18 (24dez)8020:01 Enable user scale RW 0x00 (0dez)8020:02 Presentation RW 0x00 (0dez)8020:05 Siemens bits RW 0x00 (0dez)8020:06 Enable filter RW 0x01 (1dez)8020:07 Enable limit 1 RW 0x00 (0dez)8020:08 Enable limit 2 RW 0x00 (0dez)8020:0A Enable user calibration RW 0x00 (0dez)8020:0B Enable vendor calibration RW 0x01 (1dez)8020:0E Swap limit bits RW 0x00 (0dez)8020:11 User scale offset RW 0x0000 (0dez)8020:12 User scale gain RW 0x00010000

(65536dez)8020:13 Limit 1 RW 0x0000 (0dez)8020:14 Limit 2 RW 0x0000 (0dez)8020:15 Filter settings RW 0x0000 (0dez)8020:17 User calibration offset RW 0x0000 (0dez)8020:18 User calibration gain RW 0x4000 (16384dez)

802E[ 128]:0

Subindex AI Internal data RO 0x01 (1dez)802E:01 ADC raw value RO 0x0000 (0dez)

802F[ 128]:0

Subindex AI Vendor data RW 0x06 (6dez)802F:01 R0 offset RW 0x0000 (0dez)802F:02 R0 gain RW 0x4000 (16384dez)802F:03 R1 offset RW 0x0000 (0dez)802F:04 R1 gain RW 0x4000 (16384dez)802F:05 R2 offset RW 0x0000 (0dez)802F:06 R2 gain RW 0x4000 (16384dez)

EP31xx 95Version: 2.2.0

Commissioning and configuration

Index Name Flags Default Wert8030[ 114]:0

Subindex AI Settings RW 0x18 (24dez)8030:01 Enable user scale RW 0x00 (0dez)8030:02 Presentation RW 0x00 (0dez)8030:05 Siemens bits RW 0x00 (0dez)8030:06 Enable filter RW 0x01 (1dez)8030:07 Enable limit 1 RW 0x00 (0dez)8030:08 Enable limit 2 RW 0x00 (0dez)8030:0A Enable user calibration RW 0x00 (0dez)8030:0B Enable vendor calibration RW 0x01 (1dez)8030:0E Swap limit bits RW 0x00 (0dez)8030:11 User scale offset RW 0x0000 (0dez)8030:12 User scale gain RW 0x00010000

(65536dez)8030:13 Limit 1 RW 0x0000 (0dez)8030:14 Limit 2 RW 0x0000 (0dez)8030:15 Filter settings RW 0x0000 (0dez)8030:17 User calibration offset RW 0x0000 (0dez)8030:18 User calibration gain RW 0x4000 (16384dez)

803E[ 129]:0

Subindex AI Internal data RO 0x01 (1dez)803E:01 ADC raw value RO 0x0000 (0dez)

803F[ 129]:0

Subindex AI Vendor data RW 0x06 (6dez)803F:01 R0 offset RW 0x0000 (0dez)803F:02 R0 gain RW 0x4000 (16384dez)803F:03 R1 offset RW 0x0000 (0dez)803F:04 R1 gain RW 0x4000 (16384dez)803F:05 R2 offset RW 0x0000 (0dez)803F:06 R2 gain RW 0x4000 (16384dez)

F000[ 129]:0

Subindex Modular device profile RO 0x02 (2dez)F000:01 Module index distance RO 0x0010 (16dez)F000:02 Maximum number of modules RO 0x0004 (4dez)

F008 [ 129] Code word RW 0x00000000 (0dez)

F010 [ 129]:0 Subindex

Module list RW 0x04 (4dez)

F010:01

SubIndex 001 RW 0x0000012C(300dez)

F010:02

SubIndex 002 RW 0x0000012C(300dez)

F010:03

SubIndex 003 RW 0x0000012C(300dez)

F010:04

SubIndex 004 RW 0x0000012C(300dez)

EP31xx96 Version: 2.2.0

Commissioning and configuration

Index Name Flags Default WertF800 [ 116]:0 Subin

dexAI Range Settings (neueModule)

RW 0x04 (4dez)

F800:01

Input type Ch1 RW 0x0000 (0dez)

F800:02

Input type Ch2 RW 0x0000 (0dez)

F800:03

Input type Ch3 RW 0x0000 (0dez)

F800:04

Input type Ch4 RW 0x0000 (0dez)

F800:05

Enable Filter Settings PerChannel

RW -

KeyFlags:RO = Read OnlyRW = Read/Write

EP31xx 97Version: 2.2.0

Commissioning and configuration

9.10 EP31x2 - Object description and parameterization

Note

ParameterizationTerminals'/Boxes parameterization will be conducted by the CoE online tab (double-click onthe referring object) or the Process data tab (PDO assignment).

Note

EtherCAT XML Device DescriptionThe description correspond to the display of the CoE objects from the EtherCAT XML De-vice Description. It is strongly recommended to download the latest revision of the corre-sponding XML file from the Beckhoff website (http://beckhoff.de/default.asp?download/el-confg.htm?id=1983920606140) and follow the installation instructions.

IntroductionThe CoE overview contains objects for different intended applications:

• Objects required for parameterization [ 98] during commissioning

• Objects intended for regular operation, e.g. through ADS access

• Objects for indicating internal settings [ 103] (may be fixed)

• Further profile-specific objects [ 107] indicating inputs, outputs and status information

The following section first describes the objects require for normal operation, followed by a completeoverview of other objects.

Objects for parameterization during commissioningObjects for parameterization during commissioning

Index 1011 Restore default parametersIndex 1011

Index Name Meaning Data type Flags Default1011:0 Restore default pa-

rametersRestore the defaultsettings in theEtherCAT slave

UINT8 RO 0x01 (1dec)

1011:01 SubIndex 001 If this object is set to"0x64616F6C" ("Set Value Dialog") allterminal-specific ob-jects are reset totheir delivery state.

UINT32 RW 0x00000000 (0dec)

Index 8000 AI Settings (Parameterizing of Channel 1)Index 8000

Index Name Meaning Data type Flags Default8000:0 AI Settings Maximum subindex UINT8 RO 0x18 (24dec)8000:01 Enable user

scale1 User scale is en-

abledBOOLEAN RW 0x00 (0dec)

8000:02 Presentation 0 Signed presenta-tion

BIT3 RW 0x00 (0dec)

1 Unsigned pre-sentation

2 Absolute valuewith MSB as sign

EP31xx98 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default8000:06 Enable filter 1 Filter enabled,

the cycle-syn-chronous dataexchange is notapplied

BOOLEAN RW 0x00 (0dec)

8000:07 Enable limit 1 1 Enable Limit 1 BOOLEAN RW 0x00 (0dec)8000:08 Enable limit 2 1 Enable Limit 2 BOOLEAN RW 0x00 (0dec)8000:0A Enable user cali-

bration1 User calibration

is enabledBOOLEAN RW 0x00 (0dec)

8000:0B Enable vendorcalibration

1 Vendor calibra-tion is enabled

BOOLEAN RW 0x01 (1dec)

8000:0E Swap limit bits 1 Swaps the twolimit-bits to becompatible toolder hardwareversions.

BOOLEAN RW 0x00 (0dec)

8000:11 User scale offset User scale offset INT16 RW 0x0000 (0dec)8000:12 User scale gain User scale gain

The gain is represented in fixed-point format, with the factor 2-16.A value of 1 for the gain factortherefore corresponds to 65535dec(0x00010000hex) and is limited to0x7FFFF.

INT32 RW 0x00010000(65536dec)

8000:13 Limit 1 First limit value for setting the sta-tus bits

INT16 RW 0x0000 (0dec)

8000:14 Limit 2 Second limit value for setting thestatus bits

INT16 RW 0x0000 (0dec)

8000:15 Filter settings This object defines the digital filtersettings of all the modules chan-nels, if it is activated with index80n0:06 [ 98].The possible settings are num-bered consecutively

UINT16 RW 0x0000 (0dec)

0 50 Hz FIR1 60 Hz FIR2 IIR 13 IIR 24 IIR 35IIR 1 IIR 46IIR 1 IIR 57 IIR 68 IIR 79 IIR 8

8000:17 User calibrationoffset

User calibration offset INT16 RW 0x0000 (0dec)

8000:18 User calibrationgain

User calibration gain INT16 RW 0x4000(16384dec)

Index 8010 AI Settings (Parameterizing of Channel 2)Index 8010

Index Name Meaning Data type Flags Default8010:0 AI Settings Maximum subindex UINT8 RO 0x18 (24dec)8010:01 Enable user

scale1 User scale is en-

abledBOOLEAN RW 0x00 (0dec)

8010:02 Presentation 0 Signed presenta-tion

BIT3 RW 0x00 (0dec)

1 Unsigned pre-sentation

2 Absolute valuewith MSB as sign

EP31xx 99Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default8010:06 Enable filter 1 Filter enabled,

the cycle-syn-chronous dataexchange is notapplied

BOOLEAN RW 0x01 (1dec)

8010:07 Enable limit 1 1 Enable Limit 1 BOOLEAN RW 0x00 (0dec)8010:08 Enable limit 2 1 Enable Limit 2 BOOLEAN RW 0x00 (0dec)8010:0A Enable user cali-

bration1 User calibration

is enabledBOOLEAN RW 0x00 (0dec)

8010:0B Enable vendorcalibration

1 Vendor calibra-tion is enabled

BOOLEAN RW 0x01 (1dec)

8010:0E Swap limit bits 1 Swaps the twolimit-bits to becompatible toolder hardwareversions.

BOOLEAN RW 0x00 (0dec)

8010:11 User scale offset User scale offset INT16 RW 0x0000 (0dec)8010:12 User scale gain User scale gain

The gain is represented in fixed-point format, with the factor 2-16.A value of 1 for the gain factortherefore corresponds to 65535dec(0x00010000hex) and is limited to0x7FFFF.

INT32 RW 0x00010000(65536dec)

8010:13 Limit 1 First limit value for setting the sta-tus bits

INT16 RW 0x0000 (0dec)

8010:14 Limit 2 Second limit value for setting thestatus bits

INT16 RW 0x0000 (0dec)

8010:15 Filter settings This object shows the digital filtersettings. The filter settings can onlybe read here. They are defined forall channels of the module viachannel 1 [ 98].

UINT16 RW 0x0000 (0dec)

0 50 Hz FIR1 60 Hz FIR2 IIR 13 IIR 24 IIR 35 IIR 46 IIR 57 IIR 68 IIR 79 IIR 8

8010:17 User calibrationoffset

User calibration offset INT16 RW 0x0000 (0dec)

8010:18 User calibrationgain

User calibration gain INT16 RW 0x4000(16384dec)

Index 8020 AI Settings (Parameterizing of Channel 3)Index 8020

(Not available for EP3182-1002 and EP3162-0002)

Index Name Meaning Data type Flags Default8020:0 AI Settings Maximum subindex UINT8 RO 0x18 (24dec)8020:01 Enable user

scale1 User scale is en-

abledBOOLEAN RW 0x00 (0dec)

8020:02 Presentation 0 Signed presenta-tion

BIT3 RW 0x00 (0dec)

1 Unsigned pre-sentation

2 Absolute valuewith MSB as sign

EP31xx100 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default8020:05 Siemens bits 1 Status displays

are superim-posed on thelowest three bitsin the statusword.

BOOLEAN RW 0x00 (0dec)

8020:06 Enable filter 1 Filter enabled,the cycle-syn-chronous dataexchange is notapplied

BOOLEAN RW 0x01 (1dec)

8020:07 Enable limit 1 1 Enable Limit 1 BOOLEAN RW 0x00 (0dec)8020:08 Enable limit 2 1 Enable Limit 2 BOOLEAN RW 0x00 (0dec)8020:0A Enable user cali-

bration1 User calibration

is enabledBOOLEAN RW 0x00 (0dec)

8020:0B Enable vendorcalibration

1 Vendor calibra-tion is enabled

BOOLEAN RW 0x01 (1dec)

8020:0E Swap limit bits 1 Swaps the twolimit-bits to becompatible toolder hardwareversions.

BOOLEAN RW 0x00 (0dec)

8020:11 User scale offset User scale offset INT16 RW 0x0000 (0dec)8020:12 User scale gain User scale gain

The gain is represented in fixed-point format, with the factor 2-16.A value of 1 for the gain factortherefore corresponds to 65535dec(0x00010000hex) and is limited to0x7FFFF.

INT32 RW 0x00010000(65536dec)

8020:13 Limit 1 First limit value for setting the sta-tus bits

INT16 RW 0x0000 (0dec)

8020:14 Limit 2 Second limit value for setting thestatus bits

INT16 RW 0x0000 (0dec)

8020:15 Filter settings This object shows the digital filtersettings. The filter settings can onlybe read here. They are defined forall channels of the module viachannel 1 [ 98].

UINT16 RW 0x0000 (0dec)

0 50 Hz FIR1 60 Hz FIR2 IIR 13 IIR 24 IIR 35 IIR 46 IIR 57 IIR 68 IIR 79 IIR 8

8020:17 User calibrationoffset

User calibration offset INT16 RW 0x0000 (0dec)

8020:18 User calibrationgain

User calibration gain INT16 RW 0x4000(16384dec)

Index 8030 AI Settings (Parameterizing of Channel 4)Index 8030

(Not available for EP3182-1002 and EP3162-0002)

Index Name Meaning Data type Flags Default8030:0 AI Settings Maximum subindex UINT8 RO 0x18 (24dec)8030:01 Enable user

scale1 User scale is en-

abledBOOLEAN RW 0x00 (0dec)

EP31xx 101Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default8030:02 Presentation 0 Signed presenta-

tionBIT3 RW 0x00 (0dec)

1 Unsigned pre-sentation

2 Absolute valuewith MSB as sign

8030:05 Siemens bits 1 Status displaysare superim-posed on thelowest three bitsin the statusword.

BOOLEAN RW 0x00 (0dec)

8030:06 Enable filter 1 Filter enabled,the cycle-syn-chronous dataexchange is notapplied

BOOLEAN RW 0x01 (1dec)

8030:07 Enable limit 1 1 Enable Limit 1 BOOLEAN RW 0x00 (0dec)8030:08 Enable limit 2 1 Enable Limit 2 BOOLEAN RW 0x00 (0dec)8030:0A Enable user cali-

bration1 User calibration

is enabledBOOLEAN RW 0x00 (0dec)

8030:0B Enable vendorcalibration

1 Vendor calibra-tion is enabled

BOOLEAN RW 0x01 (1dec)

8030:0E Swap limit bits 1 Swaps the twolimit-bits to becompatible toolder hardwareversions.

BOOLEAN RW 0x00 (0dec)

8030:11 User scale offset User scale offset INT16 RW 0x0000 (0dec)8030:12 User scale gain User scale gain

The gain is represented in fixed-point format, with the factor 2-16.A value of 1 for the gain factortherefore corresponds to 65535dec(0x00010000hex) and is limited to0x7FFFF.

INT32 RW 0x00010000(65536dec)

8030:13 Limit 1 First limit value for setting the sta-tus bits

INT16 RW 0x0000 (0dec)

8030:14 Limit 2 Second limit value for setting thestatus bits

INT16 RW 0x0000 (0dec)

8030:15 Filter settings This object shows the digital filtersettings. The filter settings can onlybe read here. They are defined forall channels of the module viachannel 1 [ 98].

UINT16 RW 0x0000 (0dec)

0 50 Hz FIR1 60 Hz FIR2 IIR 13 IIR 24 IIR 35IIR 1 IIR 46IIR 1 IIR 57 IIR 68 IIR 79 IIR 8

8030:17 User calibrationoffset

User calibration offset INT16 RW 0x0000 (0dec)

8030:18 User calibrationgain

User calibration gain INT16 RW 0x4000(16384dec)

Index F800 AI Range Settings (EP3174/EP3184 from Firmware-Version 04 and allEP3182)Index F800

EP31xx102 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags DefaultF800:0 AI Range Set-

tingsMaximum subindex UINT8 RO 0x02 (2dec)

F800:01 Input type Ch1 Input signal range for channel 1 UINT16 RW 0x0000 (0dec)0 -10…+10 V1 0…20 mA2 4…20 mA4 -20…20 mA6 0…10 V

F800:02 Input type Ch2 Input signal range for channel 2(values see channel 1)

UINT16 RW 0x0000 (0dec)

*) Not available on EP3182-1002

Further objectsFurther objects

Standard objects (0x1000-0x1FFF)Standard objects (0x1000-0x1FFF)

The standard objects of all EtherCAT slaves have the same meaning.

Index 1000 Device typeIndex 1000

Index Name Meaning Data type Flags Default1000:0 Device type Device Type of the

EtherCAT slave:The Lo-Word con-tains the supportedCoE Profile (5001).The Hi-Word con-tains the ModuleProfile correspond-ing to the ModularDevice Profile.

UINT32 RO 0x012C1389(19665801dec)

Index 1008 Device nameIndex 1008

Index Name Meaning Data type Flags Default1008:0 Device name Device name of the

EtherCAT slaveSTRING RO EP3162-0002

Index 1009 Hardware versionIndex 1009

Index Name Meaning Data type Flags Default1009:0 Hardware version Hardware version of

the EtherCATslaves

STRING RO 01

Index 100A Software versionIndex 100A

Index Name Meaning Data type Flags Default100A:0 Software version Firmware version of

the EtherCATslaves

STRING RO 01

EP31xx 103Version: 2.2.0

Commissioning and configuration

Index 1018 IdentityIndex 1018

Index Name Meaning Data type Flags Default1018:0 Identity contains information

to identify the Ether-CAT slave

UINT8 RO 0x04 (4dec)

1018:01 Vendor ID Vendor ID of theEtherCAT slave

UINT32 RO 0x00000002 (2dec)

1018:02 Product code Product code of theEtherCAT slave

UINT32 RO 0x0C664052(208027730dec)

1018:03 Revision Revision number ofthe EtherCAT-Slave, the Lo-Word(Bit 0-15) indicatesthe special functionsterminal number;the Hi-Word (Bit16-31) refers to thedevice description.

UINT32 RO 0x00000000 (0dez)

1018:04 Serial number Serial number of theEtherCAT-Slave,the Lo-Byte (Bit 0-7)of the Lo-Word con-tains the year ofmanufacturing, theHi-Byte (Bit 8-15) ofthe Lo-Word con-tains the week ofmanufacturing, theHi-Word (Bit 16-31)is 0 .

UINT32 RO 0x00000000 (0dec)

Index 10F0 Backup parameter handlingIndex 10F0

Index Name Meaning Data type Flags Default10F0:0 Backup parameter

handlingcontains informationfor the standardizedUpload and Down-load of the BackupEntries

UINT8 RO 0x01 (1dec)

10F0:01 Checksum Checksum over allbackup entries

UINT32 RO 0x00000000 (0dec)

Index 1600 DO RxPDO-Map OutputsIndex 1600

(Only available for EP3182-1002)

Index Name Meaning Data type Flags Default1600:0 DO RxPDO-Map

OutputsPDO Mapping Rx-PDO 1

UINT8 RO 0x05 (5dec)

1600:01 SubIndex 001 1. PDO Mappingentry (object 0x7000(AI Outputs Ch.1),entry 0x01 (DigitalOutput))

UINT32 RO 0x7020:01, 1

1600:02 SubIndex 002 2. PDO Mappingentry (15 bits align)

UINT32 RO 0x7020:02, 1

1600:03 SubIndex 003 3. PDO Mappingentry (10 bits align)

UINT32 RO 0x0000:00, 10

1600:04 SubIndex 004 4. PDO Mappingentry (object 0x7020(DO Outputs), entry0x0D (Diag))

UINT32 RO 0x7020:0D, 1

1600:05 SubIndex 005 5. PDO Mappingentry (3 bits align)

UINT32 RO 0x0000:00, 3

EP31xx104 Version: 2.2.0

Commissioning and configuration

Index 1A00 AI TxPDO-Map Standard Ch.1Index 1A00

Index Name Meaning Data type Flags Default1A00:0 AI TxPDO-Map

Standard Ch.1PDO Mapping Tx-PDO 1

UINT8 RO 0x0B (11dez)

1A00:01 SubIndex 001 1. PDO Mappingentry (object 0x6000(AI Inputs), entry0x01 (Underrange))

UINT32 RO 0x6000:01, 1

1A00:02 SubIndex 002 2. PDO Mappingentry (object 0x6000(AI Inputs), entry0x02 (Overrange))

UINT32 RO 0x6000:02, 1

1A00:03 SubIndex 003 3. PDO Mappingentry (object 0x6000(AI Inputs), entry0x03 (Limit 1))

UINT32 RO 0x6000:03, 2

1A00:04 SubIndex 004 4. PDO Mappingentry (object 0x6000(AI Inputs), entry0x05 (Limit 2))

UINT32 RO 0x6000:05, 2

1A00:05 SubIndex 005 5. PDO Mappingentry (object 0x6000(AI Inputs), entry0x07 (Error))

UINT32 RO 0x6000:07, 1

1A00:06 SubIndex 006 6. PDO Mappingentry (1 bits align)

UINT32 RO 0x0000:00, 1

1A00:07 SubIndex 007 7. PDO Mappingentry (5 bits align)

UINT32 RO 0x0000:00, 5

1A00:08 SubIndex 008 8. PDO Mappingentry (object0x1C32, entry 0x20)

UINT32 RO 0x6000:0E, 1

1A00:09 SubIndex 009 9. PDO Mappingentry (object 0x1800(AI TxPDO-ParStandard Ch.1), en-try 0x07 (TxPDOState))

UINT32 RO 0x6000:0F, 1

1A00:0A SubIndex 010 10. PDO Mappingentry (object 0x1800(AI TxPDO-ParStandard Ch.1), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6000:10, 1

1A00:0B SubIndex 011 11. PDO Mappingentry (object 0x1800(AI TxPDO-ParStandard Ch.1), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6000:11, 16

Index 1A01 AI TxPDO-Map Standard Ch.2Index 1A01

Index Name Meaning Data type Flags Default1A01:0 AI TxPDO-Map

Standard Ch.2PDO Mapping Tx-PDO 3

UINT8 RO 0x0B (11dez)

1A01:01 SubIndex 001 1. PDO Mappingentry (object 0x6010(AI Inputs), entry0x01 (Underrange))

UINT32 RO 0x6010:01, 1

1A01:02 SubIndex 002 2. PDO Mappingentry (object 0x6010(AI Inputs), entry0x02 (Overrange))

UINT32 RO 0x6010:02, 1

1A01:03 SubIndex 003 3. PDO Mappingentry (object 0x6010(AI Inputs), entry0x03 (Limit 1))

UINT32 RO 0x6010:03, 2

EP31xx 105Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default1A01:04 SubIndex 004 4. PDO Mapping

entry (object 0x6010(AI Inputs), entry0x05 (Limit 2))

UINT32 RO 0x6010:05, 2

1A01:05 SubIndex 005 5. PDO Mappingentry (object 0x6010(AI Inputs), entry0x07 (Error))

UINT32 RO 0x6010:07, 1

1A01:06 SubIndex 006 6. PDO Mappingentry (1 bits align)

UINT32 RO 0x0000:00, 1

1A01:07 SubIndex 007 7. PDO Mappingentry (5 bits align)

UINT32 RO 0x0000:00, 6

1A01:08 SubIndex 008 8. PDO Mappingentry (object0x1C32, entry 0x20)

UINT32 RO 0x1802:07, 1

1A01:09 SubIndex 009 9. PDO Mappingentry (object 0x1802(AI TxPDO-ParStandard Ch.2), en-try 0x07 (TxPDOState))

UINT32 RO 0x1802:09, 1

1A01:0A SubIndex 010 10. PDO Mappingentry (object 0x1802(AI TxPDO-ParStandard Ch.2), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6010:10, 1

1A01:0B SubIndex 011 11. PDO Mappingentry (object 0x1802(AI TxPDO-ParStandard Ch.2), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6010:11, 16

Index 1C00 Sync manager typeIndex 1C00

Index Name Meaning Data type Flags Default1C00:0 Sync manager type Usage of the Sync

Manager channelsUINT8 RO 0x04 (4dec)

1C00:01 SubIndex 001 Sync-Manager TypeChannel 1: MailboxWrite

UINT8 RO 0x01 (1dec)

1C00:02 SubIndex 002 Sync-Manager TypeChannel 2: MailboxRead

UINT8 RO 0x02 (2dec)

1C00:03 SubIndex 003 Sync-Manager TypeChannel 3: ProcessData Write (Out-puts)

UINT8 RO 0x03 (3dec)

1C00:04 SubIndex 004 Sync-Manager TypeChannel 4: ProcessData Read (Inputs)

UINT8 RO 0x04 (4dec)

Index 1C12 RxPDO assignIndex 1C12

Index Name Meaning Data type Flags Default1C12:0 RxPDO assign PDO Assign Out-

putsUINT8 RW 0x00 (0dec)

1C12:01 SubIndex 001 UINT8 RW 0x00 (0dec)1C12:02 SubIndex 002 UINT8 RW 0x00 (0dec)

Index 1C13 TxPDO assignIndex 1C13

EP31xx106 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default1C13:0 TxPDO assign PDO Assign Inputs UINT8 RW 0x02 (2dec)1C13:01 Subindex 001 1. assigned TxPDO

(contains the indexof the correspond-ing TxPDO Mappingobject)

UINT16 RW 0x1A00 (6656dec)

1C13:02 Subindex 002 2. assigned TxPDO(contains the indexof the correspond-ing TxPDO Mappingobject)

UINT16 RW 0x1A01 (6657dec)

1C13:03 Subindex 003 3. assigned TxPDO(contains the indexof the correspond-ing TxPDO Mappingobject)

UINT16 RW -

1C13:04 Subindex 004 4. assigned TxPDO(contains the indexof the correspond-ing TxPDO Mappingobject)

UINT16 RW -

Profile specific objects (0x6000-0xFFFF)Profile specific objects (0x6000-0xFFFF)

The profile specific objects have the same meaning for all EtherCAT Slaves which support the profile 5001.

Index 6000 AI Inputs Ch. 1Index 6000

Index Name Meaning Data type Flags Default6000:0 AI Inputs Ch. 1 Maximum sub index UINT8 RO 0x11 (17dec)6000:01 Underrange Is set if the operating range of the

sensor is under-runned or if theprocess data contains the lowestpossible value.

BOOLEAN RO 0x00 (0dec)

6000:02 Overrange Is set if the operating range of thesensor is over-runned or if theprocess data contains the highestpossible value.

BOOLEAN RO 0x00 (0dec)

6000:03 Limit 1 Only if limit check is activated BIT2 RO -1 Set limit under-

runned2

Set limit over-runned

3Set limit reached

6000:05 Limit 2 Only if limit check is activated BIT2 RO -1 Set limit under-

runned2

Set limit over-runned

3Set limit reached

6000:07 Error The error bit is set if process data isnot valid (open circuit, overrange,underrange).

BOOLEAN RO 0x00 (0dec)

6000:0E Sync error BOOLEAN RO 0x00 (0dec)6000:0F TxPDO State Validity of data of assigned TxPDO BOOLEAN RO 0x00 (0dec)

0 valid1 invalid

EP31xx 107Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default6000:10 TxPDO Toggle TxPDO Toggle is toggled by the

slave, if the data of the correspond-ing PDO was updated.

BOOLEAN RO 0x00 (0dec)

6000:11 Value Analog input data INT16 RO 0x0000 (0dec)

Index 6010 AI Inputs Ch. 2Index 6010

Index Name Meaning Data type Flags Default6010:0 AI Inputs Ch. 2 Maximum sub index UINT8 RO 0x11 (17dec)6010:01 Underrange Is set if the operating range of the

sensor is under-runned or if theprocess data contains the lowestpossible value.

BOOLEAN RO 0x00 (0dec)

6010:02 Overrange Is set if the operating range of thesensor is over-runned or if theprocess data contains the highestpossible value.

BOOLEAN RO 0x00 (0dec)

6010:03 Limit 1 Only if limit check is activated BIT2 RO -1 Set limit under-

runned2

Set limit over-runned

3Set limit reached

6010:05 Limit 2 Only if limit check is activated BIT2 RO -1 Set limit under-

runned2

Set limit over-runned

3Set limit reached

6010:07 Error The error bit is set if process data isnot valid (open circuit, overrange,underrange).

BOOLEAN RO 0x00 (0dec)

6010:0E Sync error BOOLEAN RO 0x00 (0dec)6010:0F TxPDO State Validity of data of assigned TxPDO BOOLEAN RO 0x00 (0dec)

0 valid1 invalid

6010:10 TxPDO Toggle TxPDO Toggle is toggled by theslave, if the data of the correspond-ing PDO was updated.

BOOLEAN RO 0x00 (0dec)

6010:11 Value Analog input data INT16 RO 0x0000 (0dec)

Index 7020 DO OutputsIndex 7020

(Only available for EP3182-1002)

Index Name Meaning Data type Flags Default7020:0 DO Outputs Maximum sub index UINT8 RO 0x02 (2dec)7020:01 Digital output 1 BOOLEAN RO 0x00 (0dec)7020:02 Digital output 2 BOOLEAN RO 0x00 (0dec)7020:0D Diag BOOLEAN RO 0x00 (0dec)

Index 800E AI Internal data Ch. 1Index 800E

EP31xx108 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default800E:0 AI Internal data Ch.

1Maximum subindex UINT8 RO 0x01 (1dec)

800E:01 ADC raw value Raw value of theanalog/digital con-verter

INT16 RO 0x0000 (0dec)

Index 800F AI Vendor data Ch. 1Index 800F

Index Name Meaning Data type Flags Default800F:0 AI Vendor data Ch.

1Maximum subindex UINT8 RO 0x06 (6dec)

800F:01 offsetU offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

800F:02 gainU gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

800F:03 offsetI offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

800F:04 gainI gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

800F:05 offsetI4 offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

800F:06 gainI4 gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

Index 801E AI Internal data Ch. 2Index 801E

Index Name Meaning Data type Flags Default801E:0 AI Internal data Ch.

2Maximum subindex UINT8 RO 0x01 (1dec)

801E:01 ADC raw value Raw value of theanalog/digital con-verter

INT16 RO 0x0000 (0dec)

Index 801F AI Vendor data Ch. 2Index 801F

Index Name Meaning Data type Flags Default801F:0 AI Vendor data Ch.

2Maximum subindex UINT8 RO 0x06 (6dec)

801F:01 offsetU offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

801F:02 gainU gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

801F:03 offsetI offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

801F:04 gainI gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

801F:05 offsetI4 offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

801F:06 gainI4 gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

Index F000 Modular device profileIndex F000

Index Name Meaning Data type Flags DefaultF000:0 Modular device pro-

filegeneral informationabout the ModularDevice Profile

UINT8 RO 0x02 (2dec)

EP31xx 109Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags DefaultF000:01 Module index dis-

tanceIndex distance be-tween the objects oftwo channels

UINT16 RO 0x0010 (16dec)

F000:02 Maximum numberof modules

number of channels UINT16 RO 0x0002 (2dec)

Index F008 Code wordIndex F008

Index Name Meaning Data type Flags DefaultF008:0 Code word reserved UINT32 RW 0x00000000 (0dec)

Index F010 Module listIndex F010

Index Name Meaning Data type Flags DefaultF010:0 Module list Maximum sub index UINT8 RW 0x05 (5dec)F010:01 SubIndex 001 UINT32 RW 0x0000012C

(300dec)F010:02 SubIndex 002 UINT32 RW 0x0000012C

(300dec)

Also see about this2 Configuration via TwinCAT System Manager [ 59]2 Configuration via TwinCAT System Manager [ 56]

EP31xx110 Version: 2.2.0

Commissioning and configuration

9.11 EP31x4 - Object description and parameterization

Note

ParameterizationTerminals'/Boxes parameterization will be conducted by the CoE online tab (double-click onthe referring object) or the Process data tab (PDO assignment).

Note

EtherCAT XML Device DescriptionThe description correspond to the display of the CoE objects from the EtherCAT XML De-vice Description. It is strongly recommended to download the latest revision of the corre-sponding XML file from the Beckhoff website (http://beckhoff.de/default.asp?download/el-confg.htm?id=1983920606140) and follow the installation instructions.

IntroductionThe CoE overview contains objects for different intended applications:

• Objects required for parameterization [ 111] during commissioning

• Objects intended for regular operation, e.g. through ADS access

• Objects for indicating internal settings [ 116] (may be fixed)

• Further profile-specific objects [ 124] indicating inputs, outputs and status information

The following section first describes the objects require for normal operation, followed by a completeoverview of other objects.

Objects for parameterization during commissioningObjects for parameterization during commissioning

Index 1011 Restore default parametersIndex 1011

Index Name Meaning Data type Flags Default1011:0 Restore default pa-

rametersRestore the defaultsettings in theEtherCAT slave

UINT8 RO 0x01 (1dec)

1011:01 SubIndex 001 If this object is set to"0x64616F6C" ("Set Value Dialog") allterminal-specific ob-jects are reset totheir delivery state.

UINT32 RW 0x00000000 (0dec)

Index 8000 AI Settings (Parameterizing of Channel 1)Index 8000

Index Name Meaning Data type Flags Default8000:0 AI Settings Maximum subindex UINT8 RO 0x18 (24dec)8000:01 Enable user

scale1 User scale is en-

abledBOOLEAN RW 0x00 (0dec)

8000:02 Presentation 0 Signed presenta-tion

BIT3 RW 0x00 (0dec)

1 Unsigned pre-sentation

2 Absolute valuewith MSB as sign

EP31xx 111Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default8000:05 Siemens bits 1 Status displays

are superim-posed on thelowest three bitsin the statusword.

BOOLEAN RW 0x00 (0dec)

8000:06 Enable filter 1 Filter enabled,the cycle-syn-chronous dataexchange is notapplied

BOOLEAN RW 0x01 (1dec)

8000:07 Enable limit 1 1 Enable Limit 1 BOOLEAN RW 0x00 (0dec)8000:08 Enable limit 2 1 Enable Limit 2 BOOLEAN RW 0x00 (0dec)8000:0A Enable user cali-

bration1 User calibration

is enabledBOOLEAN RW 0x00 (0dec)

8000:0B Enable vendorcalibration

1 Vendor calibra-tion is enabled

BOOLEAN RW 0x01 (1dec)

8000:0E Swap limit bits 1 Swaps the twolimit-bits to becompatible toolder hardwareversions.

BOOLEAN RW 0x00 (0dec)

8000:11 User scale offset User scale offset INT16 RW 0x0000 (0dec)8000:12 User scale gain User scale gain

The gain is represented in fixed-point format, with the factor 2-16.A value of 1 for the gain factortherefore corresponds to 65535dec(0x00010000hex) and is limited to0x7FFFF.

INT32 RW 0x00010000(65536dec)

8000:13 Limit 1 First limit value for setting the sta-tus bits

INT16 RW 0x0000 (0dec)

8000:14 Limit 2 Second limit value for setting thestatus bits

INT16 RW 0x0000 (0dec)

8000:15 Filter settings This object defines the digital filtersettings of all the modules chan-nels, if it is activated with index80n0:06 [ 111].The possible settings are num-bered consecutively

UINT16 RW 0x0000 (0dec)

0 50 Hz FIR1 60 Hz FIR2 IIR 13 IIR 24 IIR 35IIR 1 IIR 46IIR 1 IIR 57 IIR 68 IIR 79 IIR 8

8000:17 User calibrationoffset

User calibration offset INT16 RW 0x0000 (0dec)

8000:18 User calibrationgain

User calibration gain INT16 RW 0x4000(16384dec)

Index 8010 AI Settings (Parameterizing of Channel 2)Index 8010

Index Name Meaning Data type Flags Default8010:0 AI Settings Maximum subindex UINT8 RO 0x18 (24dec)8010:01 Enable user

scale1 User scale is en-

abledBOOLEAN RW 0x00 (0dec)

EP31xx112 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default8010:02 Presentation 0 Signed presenta-

tionBIT3 RW 0x00 (0dec)

1 Unsigned pre-sentation

2 Absolute valuewith MSB as sign

8010:05 Siemens bits 1 Status displaysare superim-posed on thelowest three bitsin the statusword.

BOOLEAN RW 0x00 (0dec)

8010:06 Enable filter 1 Filter enabled,the cycle-syn-chronous dataexchange is notapplied

BOOLEAN RW 0x01 (1dec)

8010:07 Enable limit 1 1 Enable Limit 1 BOOLEAN RW 0x00 (0dec)8010:08 Enable limit 2 1 Enable Limit 2 BOOLEAN RW 0x00 (0dec)8010:0A Enable user cali-

bration1 User calibration

is enabledBOOLEAN RW 0x00 (0dec)

8010:0B Enable vendorcalibration

1 Vendor calibra-tion is enabled

BOOLEAN RW 0x01 (1dec)

8010:0E Swap limit bits 1 Swaps the twolimit-bits to becompatible toolder hardwareversions.

BOOLEAN RW 0x00 (0dec)

8010:11 User scale offset User scale offset INT16 RW 0x0000 (0dec)8010:12 User scale gain User scale gain

The gain is represented in fixed-point format, with the factor 2-16.A value of 1 for the gain factortherefore corresponds to 65535dec(0x00010000hex) and is limited to0x7FFFF.

INT32 RW 0x00010000(65536dec)

8010:13 Limit 1 First limit value for setting the sta-tus bits

INT16 RW 0x0000 (0dec)

8010:14 Limit 2 Second limit value for setting thestatus bits

INT16 RW 0x0000 (0dec)

8010:15 Filter settings This object shows the digital filtersettings. The filter settings can onlybe read here. They are defined forall channels of the module viachannel 1 [ 111].

UINT16 RW 0x0000 (0dec)

0 50 Hz FIR1 60 Hz FIR2 IIR 13 IIR 24 IIR 35 IIR 46 IIR 57 IIR 68 IIR 79 IIR 8

8010:17 User calibrationoffset

User calibration offset INT16 RW 0x0000 (0dec)

8010:18 User calibrationgain

User calibration gain INT16 RW 0x4000(16384dec)

Index 8020 AI Settings (Parameterizing of Channel 3)Index 8020

(Not available for EP3182-1002)

EP31xx 113Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default8020:0 AI Settings Maximum subindex UINT8 RO 0x18 (24dec)8020:01 Enable user

scale1 User scale is en-

abledBOOLEAN RW 0x00 (0dec)

8020:02 Presentation 0 Signed presenta-tion

BIT3 RW 0x00 (0dec)

1 Unsigned pre-sentation

2 Absolute valuewith MSB as sign

8020:05 Siemens bits 1 Status displaysare superim-posed on thelowest three bitsin the statusword.

BOOLEAN RW 0x00 (0dec)

8020:06 Enable filter 1 Filter enabled,the cycle-syn-chronous dataexchange is notapplied

BOOLEAN RW 0x01 (1dec)

8020:07 Enable limit 1 1 Enable Limit 1 BOOLEAN RW 0x00 (0dec)8020:08 Enable limit 2 1 Enable Limit 2 BOOLEAN RW 0x00 (0dec)8020:0A Enable user cali-

bration1 User calibration

is enabledBOOLEAN RW 0x00 (0dec)

8020:0B Enable vendorcalibration

1 Vendor calibra-tion is enabled

BOOLEAN RW 0x01 (1dec)

8020:0E Swap limit bits 1 Swaps the twolimit-bits to becompatible toolder hardwareversions.

BOOLEAN RW 0x00 (0dec)

8020:11 User scale offset User scale offset INT16 RW 0x0000 (0dec)8020:12 User scale gain User scale gain

The gain is represented in fixed-point format, with the factor 2-16.A value of 1 for the gain factortherefore corresponds to 65535dec(0x00010000hex) and is limited to0x7FFFF.

INT32 RW 0x00010000(65536dec)

8020:13 Limit 1 First limit value for setting the sta-tus bits

INT16 RW 0x0000 (0dec)

8020:14 Limit 2 Second limit value for setting thestatus bits

INT16 RW 0x0000 (0dec)

8020:15 Filter settings This object shows the digital filtersettings. The filter settings can onlybe read here. They are defined forall channels of the module viachannel 1 [ 111].

UINT16 RW 0x0000 (0dec)

0 50 Hz FIR1 60 Hz FIR2 IIR 13 IIR 24 IIR 35 IIR 46 IIR 57 IIR 68 IIR 79 IIR 8

8020:17 User calibrationoffset

User calibration offset INT16 RW 0x0000 (0dec)

8020:18 User calibrationgain

User calibration gain INT16 RW 0x4000(16384dec)

Index 8030 AI Settings (Parameterizing of Channel 4)Index 8030

EP31xx114 Version: 2.2.0

Commissioning and configuration

(Not available for EP3182-1002)

Index Name Meaning Data type Flags Default8030:0 AI Settings Maximum subindex UINT8 RO 0x18 (24dec)8030:01 Enable user

scale1 User scale is en-

abledBOOLEAN RW 0x00 (0dec)

8030:02 Presentation 0 Signed presenta-tion

BIT3 RW 0x00 (0dec)

1 Unsigned pre-sentation

2 Absolute valuewith MSB as sign

8030:05 Siemens bits 1 Status displaysare superim-posed on thelowest three bitsin the statusword.

BOOLEAN RW 0x00 (0dec)

8030:06 Enable filter 1 Filter enabled,the cycle-syn-chronous dataexchange is notapplied

BOOLEAN RW 0x01 (1dec)

8030:07 Enable limit 1 1 Enable Limit 1 BOOLEAN RW 0x00 (0dec)8030:08 Enable limit 2 1 Enable Limit 2 BOOLEAN RW 0x00 (0dec)8030:0A Enable user cali-

bration1 User calibration

is enabledBOOLEAN RW 0x00 (0dec)

8030:0B Enable vendorcalibration

1 Vendor calibra-tion is enabled

BOOLEAN RW 0x01 (1dec)

8030:0E Swap limit bits 1 Swaps the twolimit-bits to becompatible toolder hardwareversions.

BOOLEAN RW 0x00 (0dec)

8030:11 User scale offset User scale offset INT16 RW 0x0000 (0dec)8030:12 User scale gain User scale gain

The gain is represented in fixed-point format, with the factor 2-16.A value of 1 for the gain factortherefore corresponds to 65535dec(0x00010000hex) and is limited to0x7FFFF.

INT32 RW 0x00010000(65536dec)

8030:13 Limit 1 First limit value for setting the sta-tus bits

INT16 RW 0x0000 (0dec)

8030:14 Limit 2 Second limit value for setting thestatus bits

INT16 RW 0x0000 (0dec)

8030:15 Filter settings This object shows the digital filtersettings. The filter settings can onlybe read here. They are defined forall channels of the module viachannel 1 [ 111].

UINT16 RW 0x0000 (0dec)

0 50 Hz FIR1 60 Hz FIR2 IIR 13 IIR 24 IIR 35IIR 1 IIR 46IIR 1 IIR 57 IIR 68 IIR 79 IIR 8

8030:17 User calibrationoffset

User calibration offset INT16 RW 0x0000 (0dec)

8030:18 User calibrationgain

User calibration gain INT16 RW 0x4000(16384dec)

EP31xx 115Version: 2.2.0

Commissioning and configuration

Index F800 AI Range Settings (EP3174/EP3184 from Firmware-Version 04 and allEP3182)Index F800

Index Name Meaning Data type Flags DefaultF800:0 AI Range Set-

tingsMaximum subindex UINT8 RO 0x04 (4dec)

F800:01 Input type Ch1 Input signal range for channel 1 UINT16 RW 0x0000 (0dec)0 -10…+10 V1 0…20 mA2 4…20 mA6 0…10 V

F800:02 Input type Ch2 Input signal range for channel 2(values see channel 1)

UINT16 RW 0x0000 (0dec)

F800:03* Input type Ch3 Input signal range for channel 3(values see channel 1)

UINT16 RW 0x0000 (0dec)

F800:04* Input type Ch4 Input signal range for channel 4(values see channel 1)

UINT16 RW 0x0000 (0dec)

F800:05 Enable Filter Set-tings Per Chan-nel

BOOLEAN RW -

*) Not available on EP3182-1002

Further objectsFurther objects

Standard objects (0x1000-0x1FFF)Standard objects (0x1000-0x1FFF)

The standard objects of all EtherCAT slaves have the same meaning.

Index 1000 Device typeIndex 1000

Index Name Meaning Data type Flags Default1000:0 Device type Device Type of the

EtherCAT slave:The Lo-Word con-tains the supportedCoE Profile (5001).The Hi-Word con-tains the ModuleProfile correspond-ing to the ModularDevice Profile.

UINT32 RO 0x012C1389(19665801dec)

Index 1008 Device nameIndex 1008

Index Name Meaning Data type Flags Default1008:0 Device name Device name of the

EtherCAT slaveSTRING RO EP3174-0002

Index 1009 Hardware versionIndex 1009

EP31xx116 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default1009:0 Hardware version Hardware version of

the EtherCATslaves

STRING RO 01

Index 100A Software versionIndex 100A

Index Name Meaning Data type Flags Default100A:0 Software version Firmware version of

the EtherCATslaves

STRING RO 01

Index 1018 IdentityIndex 1018

Index Name Meaning Data type Flags Default1018:0 Identity contains information

to identify the Ether-CAT slave

UINT8 RO 0x04 (4dec)

1018:01 Vendor ID Vendor ID of theEtherCAT slave

UINT32 RO 0x00000002 (2dec)

1018:02 Product code Product code of theEtherCAT slave

UINT32 RO 0x0C664052(208027730dec)

1018:03 Revision Revision number ofthe EtherCAT-Slave, the Lo-Word(Bit 0-15) indicatesthe special functionsterminal number;the Hi-Word (Bit16-31) refers to thedevice description.

UINT32 RO 0x00000000 (0dez)

1018:04 Serial number Serial number of theEtherCAT-Slave,the Lo-Byte (Bit 0-7)of the Lo-Word con-tains the year ofmanufacturing, theHi-Byte (Bit 8-15) ofthe Lo-Word con-tains the week ofmanufacturing, theHi-Word (Bit 16-31)is 0 .

UINT32 RO 0x00000000 (0dec)

Index 10F0 Backup parameter handlingIndex 10F0

Index Name Meaning Data type Flags Default10F0:0 Backup parameter

handlingcontains informationfor the standardizedUpload and Down-load of the BackupEntries

UINT8 RO 0x01 (1dec)

10F0:01 Checksum Checksum over allbackup entries

UINT32 RO 0x00000000 (0dec)

Index 1600 DO RxPDO-Map OutputsIndex 1600

(Only available for EP3182-1002)

Index Name Meaning Data type Flags Default1600:0 DO RxPDO-Map

OutputsPDO Mapping Rx-PDO 1

UINT8 RO 0x05 (5dec)

EP31xx 117Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default1600:01 SubIndex 001 1. PDO Mapping

entry (object 0x7000(AI Outputs Ch.1),entry 0x01 (DigitalOutput))

UINT32 RO 0x7020:01, 1

1600:02 SubIndex 002 2. PDO Mappingentry (15 bits align)

UINT32 RO 0x7020:02, 1

1600:03 SubIndex 003 3. PDO Mappingentry (10 bits align)

UINT32 RO 0x0000:00, 10

1600:04 SubIndex 004 4. PDO Mappingentry (object 0x7020(DO Outputs), entry0x0D (Diag))

UINT32 RO 0x7020:0D, 1

1600:05 SubIndex 005 5. PDO Mappingentry (3 bits align)

UINT32 RO 0x0000:00, 3

Index 1800 AI TxPDO-Par Standard Ch.1Index 1800

Index Name Meaning Data type Flags Default1800:0 AI TxPDO-Par Stan-

dard Ch.1PDO Parameter Tx-PDO 1

UINT8 RO 0x06 (6dec)

1800:06 Exclude TxPDOs This entry containsthe TxPDOs (Indexof the TxPDO Map-ping objects) whichshall not be trans-mitted with TxPDO1

OCTET-STRING[2] RO 01 1A

Index 1801 AI TxPDO-Par Compact Ch.1Index 1801

Index Name Meaning Data type Flags Default1801:0 AI TxPDO-Par

Compact Ch.1PDO Parameter Tx-PDO 2

UINT8 RO 0x06 (6dec)

1801:06 Exclude TxPDOs This entry containsthe TxPDOs (Indexof the TxPDO Map-ping objects) whichshall not be trans-mitted with TxPDO2

OCTET-STRING[2] RO 00 1A

Index 1802 AI TxPDO-Par Standard Ch.2Index 1802

Index Name Meaning Data type Flags Default1802:0 AI TxPDO-Par Stan-

dard Ch.2PDO Parameter Tx-PDO 3

UINT8 RO 0x06 (6dec)

1802:06 Exclude TxPDOs This entry containsthe TxPDOs (Indexof the TxPDO Map-ping objects) whichshall not be trans-mitted with TxPDO3

OCTET-STRING[2] RO 03 1A

Index 1803 AI TxPDO-Par Compact Ch.2Index 1803

Index Name Meaning Data type Flags Default1803:0 AI TxPDO-Par

Compact Ch.2PDO Parameter Tx-PDO 4

UINT8 RO 0x06 (6dec)

EP31xx118 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default1803:06 Exclude TxPDOs This entry contains

the TxPDOs (Indexof the TxPDO Map-ping objects) whichshall not be trans-mitted with TxPDO4

OCTET-STRING[2] RO 02 1A

Index 1804 AI TxPDO-Par Standard Ch.3Index 1804

Index Name Meaning Data type Flags Default1804:0 AI TxPDO-Par Stan-

dard Ch.3PDO Parameter Tx-PDO 5

UINT8 RO 0x06 (6dec)

1804:06 Exclude TxPDOs This entry containsthe TxPDOs (Indexof the TxPDO Map-ping objects) whichshall not be trans-mitted with TxPDO5

OCTET-STRING[2] RO 05 1A

Index 1805 AI TxPDO-Par Compact Ch.3Index 1805

Index Name Meaning Data type Flags Default1805:0 AI TxPDO-Par

Compact Ch.3PDO Parameter Tx-PDO 6

UINT8 RO 0x06 (6dec)

1805:06 Exclude TxPDOs This entry containsthe TxPDOs (Indexof the TxPDO Map-ping objects) whichshall not be trans-mitted with TxPDO6

OCTET-STRING[2] RO 04 1A

Index 1806 AI TxPDO-Par Standard Ch.4Index 1806

Index Name Meaning Data type Flags Default1806:0 AI TxPDO-Par Stan-

dard Ch.4PDO Parameter Tx-PDO 7

UINT8 RO 0x06 (6dec)

1806:06 Exclude TxPDOs This entry containsthe TxPDOs (Indexof the TxPDO Map-ping objects) whichshall not be trans-mitted with TxPDO7

OCTET-STRING[2] RO 07 1A

Index 1807 AI TxPDO-Par Compact Ch.4Index 1807

Index Name Meaning Data type Flags Default1807:0 AI TxPDO-Par

Compact Ch.4PDO Parameter Tx-PDO 8

UINT8 RO 0x06 (6dec)

1807:06 Exclude TxPDOs This entry containsthe TxPDOs (Indexof the TxPDO Map-ping objects) whichshall not be trans-mitted with TxPDO8

OCTET-STRING[2] RO 06 1A

EP31xx 119Version: 2.2.0

Commissioning and configuration

Index 1A00 AI TxPDO-Map Standard Ch.1Index 1A00

Index Name Meaning Data type Flags Default1A00:0 AI TxPDO-Map

Standard Ch.1PDO Mapping Tx-PDO 1

UINT8 RO 0x0B (11dez)

1A00:01 SubIndex 001 1. PDO Mappingentry (object 0x6000(AI Inputs), entry0x01 (Underrange))

UINT32 RO 0x6000:01, 1

1A00:02 SubIndex 002 2. PDO Mappingentry (object 0x6000(AI Inputs), entry0x02 (Overrange))

UINT32 RO 0x6000:02, 1

1A00:03 SubIndex 003 3. PDO Mappingentry (object 0x6000(AI Inputs), entry0x03 (Limit 1))

UINT32 RO 0x6000:03, 2

1A00:04 SubIndex 004 4. PDO Mappingentry (object 0x6000(AI Inputs), entry0x05 (Limit 2))

UINT32 RO 0x6000:05, 2

1A00:05 SubIndex 005 5. PDO Mappingentry (object 0x6000(AI Inputs), entry0x07 (Error))

UINT32 RO 0x6000:07, 1

1A00:06 SubIndex 006 6. PDO Mappingentry (1 bits align)

UINT32 RO 0x0000:00, 1

1A00:07 SubIndex 007 7. PDO Mappingentry (5 bits align)

UINT32 RO 0x0000:00, 5

1A00:08 SubIndex 008 8. PDO Mappingentry (object0x1C32, entry 0x20)

UINT32 RO 0x6000:0E, 1

1A00:09 SubIndex 009 9. PDO Mappingentry (object 0x1800(AI TxPDO-ParStandard Ch.1), en-try 0x07 (TxPDOState))

UINT32 RO 0x6000:0F, 1

1A00:0A SubIndex 010 10. PDO Mappingentry (object 0x1800(AI TxPDO-ParStandard Ch.1), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6000:10, 1

1A00:0B SubIndex 011 11. PDO Mappingentry (object 0x1800(AI TxPDO-ParStandard Ch.1), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6000:11, 16

Index 1A01 AI TxPDO-Map Compact Ch.1Index 1A01

Index Name Meaning Data type Flags Default1A01:0 AI TxPDO-Map

Compact Ch.1PDO Mapping Tx-PDO 2

UINT8 RO 0x01 (1dec)

1A01:01 SubIndex 001 1. PDO Mappingentry (object 0x6000(AI Inputs), entry0x11 (Value))

UINT32 RO 0x6000:11, 16

Index 1A02 AI TxPDO-Map Standard Ch.2Index 1A02

EP31xx120 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default1A02:0 AI TxPDO-Map

Standard Ch.2PDO Mapping Tx-PDO 3

UINT8 RO 0x0B (11dez)

1A02:01 SubIndex 001 1. PDO Mappingentry (object 0x6010(AI Inputs), entry0x01 (Underrange))

UINT32 RO 0x6010:01, 1

1A02:02 SubIndex 002 2. PDO Mappingentry (object 0x6010(AI Inputs), entry0x02 (Overrange))

UINT32 RO 0x6010:02, 1

1A02:03 SubIndex 003 3. PDO Mappingentry (object 0x6010(AI Inputs), entry0x03 (Limit 1))

UINT32 RO 0x6010:03, 2

1A02:04 SubIndex 004 4. PDO Mappingentry (object 0x6010(AI Inputs), entry0x05 (Limit 2))

UINT32 RO 0x6010:05, 2

1A02:05 SubIndex 005 5. PDO Mappingentry (object 0x6010(AI Inputs), entry0x07 (Error))

UINT32 RO 0x6010:07, 1

1A02:06 SubIndex 006 6. PDO Mappingentry (1 bits align)

UINT32 RO 0x0000:00, 1

1A02:07 SubIndex 007 7. PDO Mappingentry (5 bits align)

UINT32 RO 0x0000:00, 6

1A02:08 SubIndex 008 8. PDO Mappingentry (object0x1C32, entry 0x20)

UINT32 RO 0x1802:07, 1

1A02:09 SubIndex 009 9. PDO Mappingentry (object 0x1802(AI TxPDO-ParStandard Ch.2), en-try 0x07 (TxPDOState))

UINT32 RO 0x1802:09, 1

1A02:0A SubIndex 010 10. PDO Mappingentry (object 0x1802(AI TxPDO-ParStandard Ch.2), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6010:10, 1

1A02:0B SubIndex 011 11. PDO Mappingentry (object 0x1802(AI TxPDO-ParStandard Ch.2), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6010:11, 16

Index 1A03 AI TxPDO-Map Compact Ch.2Index 1A03

Index Name Meaning Data type Flags Default1A03:0 AI TxPDO-Map

Compact Ch.2PDO Mapping Tx-PDO 4

UINT8 RO 0x01 (1dec)

1A03:01 SubIndex 001 1. PDO Mappingentry (object 0x6010(AI Inputs), entry0x11 (Value))

UINT32 RO 0x6010:11, 16

Index 1A04 AI TxPDO-Map Standard Ch.3Index 1A04

Index Name Meaning Data type Flags Default1A04:0 AI TxPDO-Map

Standard Ch.3PDO Mapping Tx-PDO 5

UINT8 RO 0x0B (11dez)

EP31xx 121Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default1A04:01 SubIndex 001 1. PDO Mapping

entry (object 0x6020(AI Inputs), entry0x01 (Underrange))

UINT32 RO 0x6020:01, 1

1A04:02 SubIndex 002 2. PDO Mappingentry (object 0x6020(AI Inputs), entry0x02 (Overrange))

UINT32 RO 0x6020:02, 1

1A04:03 SubIndex 003 3. PDO Mappingentry (object 0x6020(AI Inputs), entry0x03 (Limit 1))

UINT32 RO 0x6020:03, 2

1A04:04 SubIndex 004 4. PDO Mappingentry (object 0x6020(AI Inputs), entry0x05 (Limit 2))

UINT32 RO 0x6020:05, 2

1A04:05 SubIndex 005 5. PDO Mappingentry (object 0x6020(AI Inputs), entry0x07 (Error))

UINT32 RO 0x6020:07, 1

1A04:06 SubIndex 006 6. PDO Mappingentry (1 bits align)

UINT32 RO 0x0000:00, 1

1A04:07 SubIndex 007 7. PDO Mappingentry (5 bits align)

UINT32 RO 0x0000:00, 5

1A04:08 SubIndex 008 8. PDO Mappingentry (object0x1C32, entry 0x20)

UINT32 RO 0x6020:0E, 1

1A04:09 SubIndex 009 9. PDO Mappingentry (object 0x1804(AI TxPDO-ParStandard Ch.3), en-try 0x07 (TxPDOState))

UINT32 RO 0x6020:0F, 1

1A04:0A SubIndex 010 10. PDO Mappingentry (object 0x1804(AI TxPDO-ParStandard Ch.3), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6020:10, 1

1A04:0B SubIndex 011 11. PDO Mappingentry (object 0x1804(AI TxPDO-ParStandard Ch.3), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6020:11, 16

Index 1A05 AI TxPDO-Map Compact Ch.3Index 1A05

Index Name Meaning Data type Flags Default1A05:0 AI TxPDO-Map

Compact Ch.3PDO Mapping Tx-PDO 6

UINT8 RO 0x01 (1dec)

1A05:01 SubIndex 001 1. PDO Mappingentry (object 0x6020(AI Inputs), entry0x11 (Value))

UINT32 RO 0x6020:11, 16

Index 1A06AI TxPDO-Map Standard Ch.4Index 1A06

Index Name Meaning Data type Flags Default1A06:0 AI TxPDO-Map

Standard Ch.4PDO Mapping Tx-PDO 7

UINT8 RO 0x0B (11dez)

1A06:01 SubIndex 001 1. PDO Mappingentry (object 0x6030(AI Inputs), entry0x01 (Underrange))

UINT32 RO 0x6030:01, 1

EP31xx122 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default1A06:02 SubIndex 002 2. PDO Mapping

entry (object 0x6030(AI Inputs), entry0x02 (Overrange))

UINT32 RO 0x6030:02, 1

1A06:03 SubIndex 003 3. PDO Mappingentry (object 0x6030(AI Inputs), entry0x03 (Limit 1))

UINT32 RO 0x6030:03, 2

1A06:04 SubIndex 004 4. PDO Mappingentry (object 0x6030(AI Inputs), entry0x05 (Limit 2))

UINT32 RO 0x6030:05, 2

1A06:05 SubIndex 005 5. PDO Mappingentry (object 0x6030(AI Inputs), entry0x07 (Error))

UINT32 RO 0x6030:07, 1

1A06:06 SubIndex 006 6. PDO Mappingentry (1 bits align)

UINT32 RO 0x0000:00, 1

1A06:07 SubIndex 007 7. PDO Mappingentry (5 bits align)

UINT32 RO 0x0000:00, 5

1A06:08 SubIndex 008 8. PDO Mappingentry (object0x1C32, entry 0x20)

UINT32 RO 0x6030:0E, 1

1A06:09 SubIndex 009 9. PDO Mappingentry (object 0x1806(AI TxPDO-ParStandard Ch.4), en-try 0x07 (TxPDOState))

UINT32 RO 0x6030:0F, 1

1A06:0A SubIndex 010 10. PDO Mappingentry (object 0x1806(AI TxPDO-ParStandard Ch.4), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6030:10, 1

1A06:0B SubIndex 011 11. PDO Mappingentry (object 0x1806(AI TxPDO-ParStandard Ch.4), en-try 0x09 (TxPDOToggle))

UINT32 RO 0x6030:11, 16

Index 1A07 AI TxPDO-Map Compact Ch.4Index 1A07

Index Name Meaning Data type Flags Default1A07:0 AI TxPDO-Map

Compact Ch.4PDO Mapping Tx-PDO 8

UINT8 RO 0x01 (1dec)

1A07:01 SubIndex 001 1. PDO Mappingentry (object 0x6030(AI Inputs), entry0x11 (Value))

UINT32 RO 0x6030:11, 16

Index 1C00 Sync manager typeIndex 1C00

Index Name Meaning Data type Flags Default1C00:0 Sync manager type Usage of the Sync

Manager channelsUINT8 RO 0x04 (4dec)

1C00:01 SubIndex 001 Sync-Manager TypeChannel 1: MailboxWrite

UINT8 RO 0x01 (1dec)

1C00:02 SubIndex 002 Sync-Manager TypeChannel 2: MailboxRead

UINT8 RO 0x02 (2dec)

EP31xx 123Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default1C00:03 SubIndex 003 Sync-Manager Type

Channel 3: ProcessData Write (Out-puts)

UINT8 RO 0x03 (3dec)

1C00:04 SubIndex 004 Sync-Manager TypeChannel 4: ProcessData Read (Inputs)

UINT8 RO 0x04 (4dec)

Index 1C12 RxPDO assignIndex 1C12

Index Name Meaning Data type Flags Default1C12:0 RxPDO assign PDO Assign Out-

putsUINT8 RW 0x00 (0dec)

Index 1C13 TxPDO assignIndex 1C13

Index Name Meaning Data type Flags Default1C13:0 TxPDO assign PDO Assign Inputs UINT8 RW 0x04 (4dec)1C13:01 Subindex 001 1. assigned TxPDO

(contains the indexof the correspond-ing TxPDO Mappingobject)

UINT16 RW 0x1A00 (6656dec)

1C13:02 Subindex 002 2. assigned TxPDO(contains the indexof the correspond-ing TxPDO Mappingobject)

UINT16 RW 0x1A02 (6658dec)

1C13:03 Subindex 003 3. assigned TxPDO(contains the indexof the correspond-ing TxPDO Mappingobject)

UINT16 RW 0x1A04 (6660dec)

1C13:04 Subindex 004 4. assigned TxPDO(contains the indexof the correspond-ing TxPDO Mappingobject)

UINT16 RW 0x1A06 (6662dec)

Profile specific objects (0x6000-0xFFFF)Profile specific objects (0x6000-0xFFFF)

The profile specific objects have the same meaning for all EtherCAT Slaves which support the profile 5001.

Index 6000 AI InputsIndex 6000

Index Name Meaning Data type Flags Default6000:0 AI Inputs Maximum sub index UINT8 RO 0x11 (17dec)6000:01 Underrange Is set if the operating range of the

sensor is under-runned or if theprocess data contains the lowestpossible value.

BOOLEAN RO 0x00 (0dec)

6000:02 Overrange Is set if the operating range of thesensor is over-runned or if theprocess data contains the highestpossible value.

BOOLEAN RO 0x00 (0dec)

EP31xx124 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default6000:03 Limit 1 Only if limit check is activated BIT2 RO -

1 Set limit under-runned

2Set limit over-runned

3Set limit reached

6000:05 Limit 2 Only if limit check is activated BIT2 RO -1 Set limit under-

runned2

Set limit over-runned

3Set limit reached

6000:07 Error The error bit is set if process data isnot valid (open circuit, overrange,underrange).

BOOLEAN RO 0x00 (0dec)

6000:0E Sync error BOOLEAN RO 0x00 (0dec)6000:0F TxPDO State Validity of data of assigned TxPDO BOOLEAN RO 0x00 (0dec)

0 valid1 invalid

6000:10 TxPDO Toggle TxPDO Toggle is toggled by theslave, if the data of the correspond-ing PDO was updated.

BOOLEAN RO 0x00 (0dec)

6000:11 Value Analog input data INT16 RO 0x0000 (0dec)

Index 6010 AI InputsIndex 6010

Index Name Meaning Data type Flags Default6010:0 AI Inputs Maximum sub index UINT8 RO 0x11 (17dec)6010:01 Underrange Is set if the operating range of the

sensor is under-runned or if theprocess data contains the lowestpossible value.

BOOLEAN RO 0x00 (0dec)

6010:02 Overrange Is set if the operating range of thesensor is over-runned or if theprocess data contains the highestpossible value.

BOOLEAN RO 0x00 (0dec)

6010:03 Limit 1 Only if limit check is activated BIT2 RO -1 Set limit under-

runned2

Set limit over-runned

3Set limit reached

6010:05 Limit 2 Only if limit check is activated BIT2 RO -1 Set limit under-

runned2

Set limit over-runned

3Set limit reached

6010:07 Error The error bit is set if process data isnot valid (open circuit, overrange,underrange).

BOOLEAN RO 0x00 (0dec)

6010:0E Sync error BOOLEAN RO 0x00 (0dec)6010:0F TxPDO State Validity of data of assigned TxPDO BOOLEAN RO 0x00 (0dec)

0 valid1 invalid

EP31xx 125Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default6010:10 TxPDO Toggle TxPDO Toggle is toggled by the

slave, if the data of the correspond-ing PDO was updated.

BOOLEAN RO 0x00 (0dec)

6010:11 Value Analog input data INT16 RO 0x0000 (0dec)

Index 6020 AI InputsIndex 6020

Index Name Meaning Data type Flags Default6020:0 AI Inputs Maximum sub index UINT8 RO 0x11 (17dec)6020:01 Underrange Is set if the operating range of the

sensor is under-runned or if theprocess data contains the lowestpossible value.

BOOLEAN RO 0x00 (0dec)

6020:02 Overrange Is set if the operating range of thesensor is over-runned or if theprocess data contains the highestpossible value.

BOOLEAN RO 0x00 (0dec)

6020:03 Limit 1 Only if limit check is activated BIT2 RO -1 Set limit under-

runned2

Set limit over-runned

3Set limit reached

6020:05 Limit 2 Only if limit check is activated BIT2 RO -1 Set limit under-

runned2

Set limit over-runned

3Set limit reached

6020:07 Error The error bit is set if process data isnot valid (open circuit, overrange,underrange).

BOOLEAN RO 0x00 (0dec)

6020:0E Sync error BOOLEAN RO 0x00 (0dec)6020:0F TxPDO State Validity of data of assigned TxPDO BOOLEAN RO 0x00 (0dec)

0 valid1 invalid

6020:10 TxPDO Toggle TxPDO Toggle is toggled by theslave, if the data of the correspond-ing PDO was updated.

BOOLEAN RO 0x00 (0dec)

6020:11 Value Analog input data INT16 RO 0x0000 (0dec)

Index 6030 AI InputsIndex 6030

Index Name Meaning Data type Flags Default6030:0 AI Inputs Maximum sub index UINT8 RO 0x11 (17dec)6030:01 Underrange Is set if the operating range of the

sensor is under-runned or if theprocess data contains the lowestpossible value.

BOOLEAN RO 0x00 (0dec)

6030:02 Overrange Is set if the operating range of thesensor is over-runned or if theprocess data contains the highestpossible value.

BOOLEAN RO 0x00 (0dec)

EP31xx126 Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default6030:03 Limit 1 Only if limit check is activated BIT2 RO -

1 Set limit under-runned

2Set limit over-runned

3Set limit reached

6030:05 Limit 2 Only if limit check is activated BIT2 RO -1 Set limit under-

runned2

Set limit over-runned

3Set limit reached

6030:07 Error The error bit is set if process data isnot valid (open circuit, overrange,underrange).

BOOLEAN RO 0x00 (0dec)

6030:0E Sync error BOOLEAN RO 0x00 (0dec)6030:0F TxPDO State Validity of data of assigned TxPDO BOOLEAN RO 0x00 (0dec)

0 valid1 invalid

6030:10 TxPDO Toggle TxPDO Toggle is toggled by theslave, if the data of the correspond-ing PDO was updated.

BOOLEAN RO 0x00 (0dec)

6030:11 Value Analog input data INT16 RO 0x0000 (0dec)

Index 7020 DO OutputsIndex 7020

(Only available for EP3182-1002)

Index Name Meaning Data type Flags Default7020:0 DO Outputs Maximum sub index UINT8 RO 0x02 (2dec)7020:01 Digital output 1 BOOLEAN RO 0x00 (0dec)7020:02 Digital output 2 BOOLEAN RO 0x00 (0dec)7020:0D Diag BOOLEAN RO 0x00 (0dec)

Index 800E AI Internal dataIndex 800E

Index Name Meaning Data type Flags Default800E:0 AI Internal data Maximum subindex UINT8 RO 0x01 (1dec)800E:01 ADC raw value Raw value of the

analog/digital con-verter

INT16 RO 0x0000 (0dec)

Index 800F AI Vendor dataIndex 800F

Index Name Meaning Data type Flags Default800F:0 AI Vendor data Maximum subindex UINT8 RO 0x06 (6dec)800F:01 R0 offset offset (vendor cali-

bration)INT16 RW 0x0000 (0dec)

800F:02 R0 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

800F:03 R1 offset offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

800F:04 R1 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

EP31xx 127Version: 2.2.0

Commissioning and configuration

Index Name Meaning Data type Flags Default800F:05 R2 offset offset (vendor cali-

bration)INT16 RW 0x0000 (0dec)

800F:06 R2 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

Index 801E AI Internal dataIndex 801E

Index Name Meaning Data type Flags Default801E:0 AI Internal data Maximum subindex UINT8 RO 0x01 (1dec)801E:01 ADC raw value Raw value of the

analog/digital con-verter

INT16 RO 0x0000 (0dec)

Index 801F AI Vendor dataIndex 801F

Index Name Meaning Data type Flags Default801F:0 AI Vendor data Maximum subindex UINT8 RO 0x06 (6dec)801F:01 R0 offset offset (vendor cali-

bration)INT16 RW 0x0000 (0dec)

801F:02 R0 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

801F:03 R1 offset offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

801F:04 R1 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

801F:05 R2 offset offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

801F:06 R2 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

Index 802E AI Internal dataIndex 802E

Index Name Meaning Data type Flags Default802E:0 AI Internal data Maximum subindex UINT8 RO 0x01 (1dec)802E:01 ADC raw value Raw value of the

analog/digital con-verter

INT16 RO 0x0000 (0dec)

Index 802F AI Vendor dataIndex 802F

Index Name Meaning Data type Flags Default802F:0 AI Vendor data Maximum subindex UINT8 RO 0x06 (6dec)802F:01 R0 offset offset (vendor cali-

bration)INT16 RW 0x0000 (0dec)

802F:02 R0 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

802F:03 R1 offset offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

802F:04 R1 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

802F:05 R2 offset offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

802F:06 R2 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

EP31xx128 Version: 2.2.0

Commissioning and configuration

Index 803E AI Internal dataIndex 803E

Index Name Meaning Data type Flags Default803E:0 AI Internal data Maximum subindex UINT8 RO 0x01 (1dec)803E:01 ADC raw value Raw value of the

analog/digital con-verter

INT16 RO 0x0000 (0dec)

Index 803F AI Vendor dataIndex 803F

Index Name Meaning Data type Flags Default803F:0 AI Vendor data Maximum subindex UINT8 RO 0x06 (6dec)803F:01 R0 offset offset (vendor cali-

bration)INT16 RW 0x0000 (0dec)

803F:02 R0 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

803F:03 R1 offset offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

803F:04 R1 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

803F:05 R2 offset offset (vendor cali-bration)

INT16 RW 0x0000 (0dec)

803F:06 R2 gain gain (vendor cali-bration)

INT16 RW 0x4000 (16384dec)

Index F000 Modular device profileIndex F000

Index Name Meaning Data type Flags DefaultF000:0 Modular device pro-

filegeneral informationabout the ModularDevice Profile

UINT8 RO 0x02 (2dec)

F000:01 Module index dis-tance

Index distance be-tween the objects oftwo channels

UINT16 RO 0x0010 (16dec)

F000:02 Maximum numberof modules

number of channels UINT16 RO 0x0004 (4dec)

Index F008 Code wordIndex F008

Index Name Meaning Data type Flags DefaultF008:0 Code word reserved UINT32 RW 0x00000000 (0dec)

Index F010 Module listIndex F010

Index Name Meaning Data type Flags DefaultF010:0 Module list Maximum sub index UINT8 RW 0x05 (5dec)F010:01 SubIndex 001 UINT32 RW 0x0000012C

(300dec)F010:02 SubIndex 002 UINT32 RW 0x0000012C

(300dec)F010:03 SubIndex 003 UINT32 RW 0x0000012C

(300dec)F010:04 SubIndex 004 UINT32 RW 0x0000012C

(300dec)

Also see about this

EP31xx 129Version: 2.2.0

Commissioning and configuration

2 Configuration via TwinCAT System Manager [ 59]2 Configuration via TwinCAT System Manager [ 56]

EP31xx130 Version: 2.2.0

Commissioning and configuration

9.12 EP3162-0002 - Galvanic isolation of the channelsThe block diagram shown below illustrates the principle of galvanic isolation of the two channels. The 24 Vwith which the channels are supplied come from an galvanic isolated DC/DC and are thus UA rather than US.

Fig. 62: Block diagram: galvanic isolation

Note

Galvanic isolation from GNDThe GNDs of channel 1 (GNDA) and channel 2 (GNDB) are galvanically isolated from eachother.

EP31xx 131Version: 2.2.0

Commissioning and configuration

9.13 Restoring the delivery stateRestoring the delivery state To restore the delivery state for backup objects in ELxxxx terminals, the CoEobject Restore default parameters, SubIndex 001 can be selected in the TwinCAT System Manager (Configmode).

Fig. 63: Selecting the Restore default parameters PDO

Double-click on SubIndex 001 to enter the Set Value dialog. Enter the value 1684107116 in field Dec or thevalue 0x64616F6C in field Hex and confirm with OK.

All backup objects are reset to the delivery state.

Fig. 64: Entering a restore value in the Set Value dialog

Note

Alternative restore valueIn some older terminals the backup objects can be switched with an alternative restorevalue:Decimal value: 1819238756Hexadecimal value: 0x6C6F6164An incorrect entry for the restore value has no effect.

EP31xx132 Version: 2.2.0

Process image

10 Process image

10.1 EP3162-0002 – Process imageAI Standard Channel 1 and 2

Under AI Standard Channel 1 you can findthe data of the module’s 1st analogchannel.

The data of the 2nd analog channel (AIStandard Channel 2) are organized in thesame way as the data of the 1st channel.

EP31xx 133Version: 2.2.0

Process image

10.2 EP3174-0002 - Process imageTable 7: AI Standard Channel 1

Under AI Standard Channel 1 you can find thedata of the module's 1st analog channel.

AI Standard Channel 2 to 4The data of the 2nd to 3rd analog channels are organized in the same way as the data of the 1st channel.

EP31xx134 Version: 2.2.0

Process image

10.3 EP3182-1002 - Process image

Analog InputsTable 8: AI Standard Channel 1

Under AI Standard Channel 1 you can find thedata of the module's 1st analog channel.

AI Standard Channel 2The data of the 2nd analog channel is organized in the same way as the data of the 1st channel.

Digital OutputsTable 9: DO Outputs

Under DO Outputs you can find the date of themodule's digital outputs.

EP31xx 135Version: 2.2.0

Process image

10.4 EP3184-0002 - Process imageTable 10: AI Standard Channel 1

Under AI Standard Channel 1 you can find thedata of the module's 1st analog channel.

AI Standard Channel 2 to 4The data of the 2nd to 3rd analog channels are organized in the same way as the data of the 1st channel.

EP31xx136 Version: 2.2.0

Process image

10.5 EP3184-1002 - Process imageTable 11: AI Standard Channel 1

Under AI Standard Channel 1 you can find thedata of the module's 1st analog channel.

AI Standard Channel 2 to 4The data of the 2nd to 3rd analog channels are organized in the same way as the data of the 1st channel.

EP31xx 137Version: 2.2.0

Appendix

11 Appendix

11.1 General operating conditions

Protection degrees (IP-Code)The standard IEC 60529 (DIN EN 60529) defines the degrees of protection in different classes.

1. Number: dust protec-tion and touch guard

Definition

0 Non-protected1 Protected against access to hazardous parts with the back of a hand. Protected

against solid foreign objects of Ø 50 mm2 Protected against access to hazardous parts with a finger. Protected against

solid foreign objects of Ø 12,5 mm.3 Protected against access to hazardous parts with a tool. Protected against solid

foreign objects Ø 2,5 mm.4 Protected against access to hazardous parts with a wire. Protected against solid

foreign objects Ø 1 mm.5 Protected against access to hazardous parts with a wire. Dust-protected.

Intrusion of dust is not totally prevented, but dust shall not penetrate in aquantity to interfere with satisfactory operation of the device or to impair safety.

6 Protected against access to hazardous parts with a wire. Dust-tight. No intrusionof dust.

2. Number: water* pro-tection

Definition

0 Non-protected1 Protected against water drops2 Protected against water drops when enclosure tilted up to 15°.3 Protected against spraying water. Water sprayed at an angle up to 60° on either

side of the vertical shall have no harmful effects.4 Protected against splashing water. Water splashed against the disclosure from

any direction shall have no harmful effects5 Protected against water jets6 Protected against powerful water jets7 Protected against the effects of temporary immersion in water. Intrusion of water

in quantities causing harmful effects shall not be possible when the enclosure istemporarily immersed in water for 30 min. in 1 m depth.

*) These protection classes define only protection against water!

Chemical ResistanceThe Resistance relates to the Housing of the Fieldbus Box and the used metal parts.

Character ResistanceSteam at temperatures >100°C: not resistantSodium base liquor(ph-Value > 12)

at room temperature: resistant> 40°C: not resistant

Acetic acid not resistantArgon (technical clean) resistant

EP31xx138 Version: 2.2.0

Appendix

Keyresistant: Lifetime several monthsnon inherently resistant: Lifetime several weeksnot resistant: Lifetime several hours resp. early decomposition

11.2 EtherCAT Box - Accessories

Fixing

Ordering information DescriptionZS5300-0001 Mounting rail (500 mm x 129 mm)

Marking material, plugs

Ordering information DescriptionZS5000-0000 Fieldbus Box set M8 (contact labels, plugs)ZS5000-0002 Fieldbus Box set M12 (contact labels, plugs)ZS5000-0010 plugs M8, IP67 (50 pieces)ZS5000-0020 plugs M12, IP67 (50 pieces)ZS5100-0000 marking labels, not printed, 4 stripes at 10 piecesZS5100-xxxx printed marking labels, on request

Tools

Ordering information DescriptionZB8800 Torque socket wrench with ratchet wrench for M8 connectors (over molded)ZB8800-0001 ratchet wrench for M8 connectors (field assembly)ZB8800-0002 ratchet wrench for M12 connectors (over molded)

Note

Further accessoriesFurther accessories may be found at the price list for Beckhoff fieldbus components and atthe internet under www.beckhoff.com.

EP31xx 139Version: 2.2.0

Appendix

11.3 Support and ServiceBeckhoff and their partners around the world offer comprehensive support and service, making available fastand competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoffproducts!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internetpages:http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff HeadquartersBeckhoff Automation GmbH & Co. KG

Huelshorstweg 2033415 VerlGermany

Phone: +49(0)5246/963-0Fax: +49(0)5246/963-198e-mail: [email protected]

Beckhoff SupportSupport offers you comprehensive technical assistance, helping you not only with the application ofindividual Beckhoff products, but also with other, wide-ranging services:

• support• design, programming and commissioning of complex automation systems• and extensive training program for Beckhoff system components

Hotline: +49(0)5246/963-157Fax: +49(0)5246/963-9157e-mail: [email protected]

Beckhoff ServiceThe Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service• repair service• spare parts service• hotline service

Hotline: +49(0)5246/963-460Fax: +49(0)5246/963-479e-mail: [email protected]

EP31xx140 Version: 2.2.0

Table of figures

Table of figuresFig. 1 EtherCAT Box Modules within an EtherCAT network................................................................ 9Fig. 2 EtherCAT Box with M8 connections for sensors/actuators........................................................ 10Fig. 3 EtherCAT Box with M12 connections for sensors/actuators...................................................... 10Fig. 4 EP3162-0002............................................................................................................................. 12Fig. 5 Dimensions of the EtherCAT Box Modules ............................................................................... 20Fig. 6 Mounting Rail ZS5300-000 ........................................................................................................ 21Fig. 7 EtherCAT Box with M8 connectors............................................................................................ 22Fig. 8 EtherCAT Box with M8 and M12 connectors............................................................................. 22Fig. 9 7/8" connectors .......................................................................................................................... 23Fig. 10 ZB8801 torque socket wrench ................................................................................................... 23Fig. 11 EtherCAT Box: M8 (30 mm housing)......................................................................................... 24Fig. 12 EtherCAT Box: M8 60 mm housing (EP9214 for example ) ...................................................... 24Fig. 13 Coupler Box: M12 ...................................................................................................................... 24Fig. 14 EtherCAT-LEDs ......................................................................................................................... 25Fig. 15 EtherCAT Box, Connectors for power supply ............................................................................ 26Fig. 16 Pin assignment M8, Power In and Power Out ........................................................................... 26Fig. 17 EP92x4-0023, Connectors for Power In and Power Out ........................................................... 28Fig. 18 Pin assignment 7/8”, Power In and Power Out.......................................................................... 28Fig. 19 Status LEDs for power supply ................................................................................................... 29Fig. 20 Power cable conductor losses ................................................................................................... 30Fig. 21 ZK2030-xxxx-yyy - Conductor losses ........................................................................................ 31Fig. 22 ZK1090-3131-0xxx .................................................................................................................... 32Fig. 23 ZK2020-3132-0xxx .................................................................................................................... 33Fig. 24 ZK2000-7171-0xxx .................................................................................................................... 33Fig. 25 UL label...................................................................................................................................... 34Fig. 26 BG2000-0000, putting the cables .............................................................................................. 36Fig. 27 BG2000-0000, fixing the cables................................................................................................. 37Fig. 28 BG2000-0000, mounting the protection enclosure .................................................................... 37Fig. 29 Analog Voltage inputs M12, Channel 1 ..................................................................................... 39Fig. 30 Analog voltage inputs M12, Channel 2 ...................................................................................... 39Fig. 31 Status LEDs at the M12 connectors .......................................................................................... 40Fig. 32 Analog current inputs M12, channel 1 ....................................................................................... 40Fig. 33 Analog current inputs M12, channel 2 ....................................................................................... 41Fig. 34 Status LEDs at the M12 connectors .......................................................................................... 41Fig. 35 Analog voltage inputs M12 ........................................................................................................ 42Fig. 36 Analog current inputs M12......................................................................................................... 43Fig. 37 Analog voltage inputs, digital outputs M12 ................................................................................ 45Fig. 38 Analog current inputs, digital outputs M12................................................................................. 46Fig. 39 Analog voltage inputs M12 ........................................................................................................ 48Fig. 40 Analog current inputs M12......................................................................................................... 49Fig. 41 Analog voltage inputs M12 ........................................................................................................ 50Fig. 42 Analog current inputs M12......................................................................................................... 51Fig. 43 Scanning in the configuration (I/O Devices -> right-click -> Scan Devices...)............................ 52Fig. 44 Appending a new I/O device (I/O Devices -> right-click -> Append Device...)........................... 53

EP31xx 141Version: 2.2.0

Table of figures

Fig. 45 Selecting the device EtherCAT.................................................................................................. 53Fig. 46 Appending a new box (Device -> right-click -> Append Box...) ................................................. 53Fig. 47 Selecting a Box (e.g. EP2816-0008) ......................................................................................... 54Fig. 48 Appended Box in the TwinCAT tree .......................................................................................... 54Fig. 49 EP31x4-0002: Selection of the signal type ................................................................................ 64Fig. 50 EP31x2-0002: Selection of the signal type ................................................................................ 65Fig. 51 2/3/4 wire connection as single-ended or differential connection technology............................ 75Fig. 52 Flowchart of the dataflow EP31xx ............................................................................................. 76Fig. 53 Dataflow with correction calculation for +/- 10 V or +/- 10 mA................................................... 76Fig. 54 Dataflow with correction calculation for 0…20 mA .................................................................... 77Fig. 55 Dataflow with correction calculation for 4…20 mA .................................................................... 77Fig. 56 Dataflow with correction calculation for 0…10 V ....................................................................... 77Fig. 57 CoE-Online tab .......................................................................................................................... 80Fig. 58 Startup list in the TwinCAT System Manager ............................................................................ 81Fig. 59 Offline list ................................................................................................................................... 82Fig. 60 Online list ................................................................................................................................... 82Fig. 61 EtherCAT state machine............................................................................................................ 84Fig. 62 Block diagram: galvanic isolation............................................................................................... 131Fig. 63 Selecting the Restore default parameters PDO......................................................................... 132Fig. 64 Entering a restore value in the Set Value dialog........................................................................ 132

EP31xx142 Version: 2.2.0