44
MATHEMATICAL BIOSCIENCES http://math.asu.edu/˜mbe/ AND ENGINEERING Volume 1, Number 2, September 2004 pp. 361–404 DYNAMICAL MODELS OF TUBERCULOSIS AND THEIR APPLICATIONS Carlos Castillo-Chavez Department of Mathematics and Statistics Arizona State University, Tempe, AZ 85287-1804 Baojun Song Department of Mathematical Sciences Montclair State University, Upper Montclair, NJ 07043 (Communicated by Yang Kuang) Abstract. The reemergence of tuberculosis (TB) from the 1980s to the early 1990s instigated extensive researches on the mechanisms behind the transmis- sion dynamics of TB epidemics. This article provides a detailed review of the work on the dynamics and control of TB. The earliest mathematical models de- scribing the TB dynamics appeared in the 1960s and focused on the prediction and control strategies using simulation approaches. Most recently developed models not only pay attention to simulations but also take care of dynamical analysis using modern knowledge of dynamical systems. Questions addressed by these models mainly concentrate on TB control strategies, optimal vacci- nation policies, approaches toward the elimination of TB in the U.S.A., TB co-infection with HIV/AIDS, drug-resistant TB, responses of the immune sys- tem, impacts of demography, the role of public transportation systems, and the impact of contact patterns. Model formulations involve a variety of mathemat- ical areas, such as ODEs (Ordinary Differential Equations) (both autonomous and non-autonomous systems), PDEs (Partial Differential Equations), system of difference equations, system of integro-differential equations, Markov chain model, and simulation models. 1. Introduction. Tuberculosis (TB) is a disease that affects human and animal populations. Ancient Egyptian mummies show deformities consistent with tuber- cular decay [20, 23]. TB was probably transmitted from animals to humans in areas where agriculture became dominant and animals were domesticated. The growth of human communities probably increased the recurrence of TB epidemics leading to its currently overwhelmingly high levels of endemicity in some developing na- tions. McGrath estimates that a social network of 180 to 440 persons is required to achieve the stable host pathogen relationship necessary for TB infection to become endemic in a community [58]. Historically the terms phthisis, consumption and white plague were used as synonym for TB. TB was a “fatal” disease. In earlier times, some physicians refused to visit the late-stage TB to keep their reputation. TB was responsible for at least one billion deaths during the nineteenth and early twentieth century and the leading cause of 2000 Mathematics Subject Classification. 92D30. Key words and phrases. Tuberculosis, dynamical models, prevention and control, global dy- namics, bifurcation, HIV, disease emergence and reemergence. 361

Dynamical Models of Tuberculosis and Their Applications

Embed Size (px)

DESCRIPTION

tuberkulosis

Citation preview

MATHEMATICALBIOSCIENCES http://math.asu.edu/mbe/ANDENGINEERINGVolume1,Number2,September2004 pp. 361404DYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONSCarlosCastillo-ChavezDepartmentofMathematicsandStatisticsArizonaStateUniversity,Tempe,AZ85287-1804BaojunSongDepartmentofMathematicalSciencesMontclairStateUniversity,UpperMontclair,NJ07043(CommunicatedbyYangKuang)Abstract. Thereemergenceoftuberculosis(TB)fromthe1980stotheearly1990sinstigatedextensiveresearchesonthemechanismsbehindthetransmis-siondynamicsofTBepidemics. Thisarticleprovidesadetailedreviewofthework on the dynamics and control of TB. The earliest mathematical models de-scribing the TB dynamics appeared in the 1960s and focused on the predictionandcontrol strategiesusingsimulationapproaches. Mostrecentlydevelopedmodelsnotonlypayattentiontosimulationsbutalsotakecareofdynamicalanalysisusingmodernknowledgeofdynamicalsystems. QuestionsaddressedbythesemodelsmainlyconcentrateonTBcontrol strategies, optimal vacci-nationpolicies, approachestowardtheeliminationof TBintheU.S.A., TBco-infectionwithHIV/AIDS,drug-resistantTB,responsesoftheimmunesys-tem, impacts of demography, the role of public transportation systems, and theimpact of contact patterns. Model formulations involve a variety of mathemat-icalareas,suchasODEs(OrdinaryDierentialEquations)(bothautonomousandnon-autonomoussystems),PDEs(PartialDierentialEquations),systemofdierenceequations,systemofintegro-dierentialequations,Markovchainmodel,andsimulationmodels.1. Introduction. Tuberculosis(TB)isadiseasethataectshumanandanimalpopulations. AncientEgyptianmummiesshowdeformitiesconsistentwithtuber-cular decay [20, 23]. TB was probably transmitted from animals to humans in areaswhereagriculturebecamedominantandanimalsweredomesticated. ThegrowthofhumancommunitiesprobablyincreasedtherecurrenceofTBepidemicsleadingtoitscurrentlyoverwhelminglyhighlevelsof endemicityinsomedevelopingna-tions. McGrath estimates that a social network of 180 to 440 persons is required toachieve the stable host pathogen relationship necessary for TB infection to becomeendemicinacommunity[58]. Historicallytheterms phthisis, consumptionandwhiteplaguewereusedassynonymforTB.TBwasafataldisease. Inearliertimes, somephysiciansrefusedtovisitthelate-stageTBtokeeptheirreputation. TBwasresponsibleforatleastonebilliondeathsduringthenineteenthandearlytwentiethcenturyandtheleadingcauseof2000MathematicsSubjectClassication. 92D30.Keywordsandphrases. Tuberculosis, dynamical models, preventionandcontrol, global dy-namics,bifurcation,HIV,diseaseemergenceandreemergence.361362 C. CASTILLO-CHAVEZANDB. SONGhuman death for centuries. Today, only 3 million deaths worldwide are attributedto TB every year. World Health Organizations (WHO) data shows that most casesofTBareindevelopingcountries. TwentythreecountiesinEastAsiaandAfricaaccountforover80%ofallcasesaroundtheworld[84].It was not clear how TB was transmitted until Robert Kochs brilliant discoveryof thetuberclebacillus in1882(Kochalsoidentiedthecauseof anthrax). HeidentiedMycobacteriumtuberculosisasthecausativeagentof TB. Thetuberclebacilli liveinthelungsof infectedhosts. Theyspreadintheairwheninfectiousindividuals sneeze, cough, speakor sing. Asusceptible individual maybecomeinfectedwithTBifheorsheinhalesbacillifromtheair. TheparticlescontainingMycobacterium tuberculosis are so small that normal air currents keep them airborneandtransportthemthroughoutroomsorbuildings[83]. Hence, individualswhoregularly share space with those with active TB (the infectious stage of the disease)haveamuchhigherriskof becominginfected. Thesebacilli becomeestablishedinthe alveoli of the lungs fromwhere theyspreadthroughout the bodyif notsuppressedbytheimmunesystem.The hosts immune responses usuallylimit bacilli multiplicationand, conse-quently, the spread that follows initial infections. About 10% of infected individualseventually develop active TB. Most infected individuals remain as latently infectedcarriers for their entire lives. The average length of the latent period (noninfectiousstage) ranges frommonths todecades. However, theriskof progressiontowardactiveTBincreasesmarkedlyinthepresenceof co-infectionsthatdebilitatetheimmunesystem. PersonswithHIVco-infectionsprogressfastertowardstheactiveTBstatethanthosewithoutthem[68].Mostformsof TBcanbetreated. Eectiveandwidespreadtreatmentforac-tive andlatentlyinfectedindividuals has beenavailable for about ve decades.Streptomycin is still used today to treat TB but in combination with pyrazinamide.1950 1960 1970 1980 1990 2000123456789x 104 year annual casesFigure1. Annual new cases of TB in the United States from 1953to2000. Datatakenfrom[22].DYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 363Isoniazidandrifampinarethought tobethemost eectiveintheght againstM. tuberculosis. Thewidespreadintroductionofantibioticsreducedmortalityby70% from 1945 to 1955 in the U.S.A. albeit most major reductions in TB mortalityrateshadalreadybeenachievedbeforetheirintroduction[4, 29, 54]. LatentTBcanbehandledwithisoniazidbuttreatmentiseectiveonlyifappliedforatleastsix months. Active cases must be treated for nine months with multiple drugs (iso-niazid,rifampin, pyrazinamide) and complex regimens. Treatment covers over 95%ofthecasesintheU.S.A.despiteitshighcost[85]. Antibiotic-resistantstrainsareeasily generated when treatment is not completed. The consequences of incompletetreatmentmaybeserious[15]. Lackof treatmentcompliancehasseriousconse-quencesduetoitsdramaticimpactontheevolutionofantibioticresistantstrains[49]. The expenses associated with treatment programs for those with active TB aresohighthattheireectiveimplementationisoutofthereachformostdevelopingnations.As shown in Fig. 1,the mortality associated with TB in the U.S.A. continues toexhibit a downwardtrend. The annual case rate of TB had been declining steadilybutraisedslightlyinthe1980sandearly1990sintheU.S.A.. ThechangeinthistrendhadbeenlabeledasaperiodofTBreemergence. TBreemergenceoverthepast decade and a half has challenged existing prevention and control TB programsindevelopingnations.Inthispaper, wereviewsomeoftheliteratureassociatedwithTBmodelsandtheirtheoreticalimpactparticularlythoseaspectswheretheauthorsortheircol-laborators havecontributed. Someresults appearinginthis paper bySongandCastillo-Chavezhavenotbeenpublished.The paper is organized as follows. Section 2 introduces the notation that we trytousethroughoutthemanuscript. Section3reviewssomeof theearliestknownTBmodels. Section4dealswiththeexplorationoftheimpactofvariousepidemi-1860 1880 1900 1920 1940 1960 1980 200000.511.522.533.54x 103 year TB mortalityFigure2. TBmortalityoftheUnitedStatesfrom1860to2000.Datatakenfrom[78,79].364 C. CASTILLO-CHAVEZANDB. SONGological factorsaswell astheroleof closeandcasual contactsonTBdynamics.section5looksattheimpactof demographyonTBdynamics. Insection6, wereviewsomecell-basedmodelsforTBtransmissionattheimmunesystemlevel. AMarkovchainmodel onTBprojectionsisdescribedinsection7. Modelsdealingwith TB control strategies are discussed in section 8. A model dealing with the roleof public mass transportation on TB evolution and control is reviewed in section 9.Finally,alistofchallengesassociatedwithmodelingTBdynamicsisoutlined.2. Notation. The populationof interest is dividedinto several compartments(classes, categories, or subpopulations) dictated by the epidemiological stages (hoststatues). For the most part, inthe context of TB, four or ve epidemiologicalstagesareidentied(seeTable1). Weshalldoourbesttodenotethesesubclassesusinguniformsymbolsaswediscussamultitudeof models. Tables1and2listthedenitionsandsymbols(subpopulationsandparameters)thatwetrytouse.Ifitisnecessarytosubdivideapopulationintosubpopulations,subscriptswillbeTable1. Symbolsanddenitionsofsubpopulationssymbol name denitionS Susceptible notinfectedbutsusceptibletoinfectionE Exposed infectedbutunabletoinfectothers(latentorcarrier)I Infectious active-TBinfections,i.e.,he/shecaninfectothersT Treated treated(fromlatent-TBoractive-TBinfection)V Vaccinated possiblyreducedsusceptibilitytoTBusedtodistinguishthem. Forinstance,IsandIrrepresentthedrug-sensitiveanddrug-resistantinfectiousTBclasses, respectively. ActiveTB, caseTB, indexTB,matureTB,opencase,andlesioncaseallmeanactive-TBinfectiouscasehere.We use to measure of the likelihood of transmission or the force of infection.However, the meaning of or its interpretation often changes from model to model.3. Earlydynamical models. Therstmodel forthetransmissiondynamicsofTB was built in 1962 by Waaler [81], the chief statistician of the Norwegian Tuber-culosisControlServices. Waalerdividedthepopulationintothreeepidemiologicalclasses: noninfected (susceptible), infected non-cases (latent TB), and infected cases(infectious). Heformulatedtheinfectionrateasanunknownfunctionofthenum-ber of infectious individuals. He used a particular linear function to model infectionrates in the implementation of his model. The incidence (new cases of infections perunittime)wasassumedtodependonlyonthenumberofinfectious. Furthermore,theequationsforthelatentandinfectiousclasseswereassumedtobeuncoupledfromtheequationforthesusceptibleclass. Thecentralpartofthismodelisgivenbythefollowinglinearsystemofdierenceequations:Et+1= Et +aIt +eEtd2EtgEt, (1)It+1= It +gEtd3IteEt, (2)DYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 365Table2. Symbolsanddenitionsofparameters.symbol explanation recruitmentrate transmissionrate(meaningvaries)c averagenumberofcontactsperpersonperunittimek per-capitaregularprogressionrate per-capitanaturalmortalityrated per-capitaexcessdeathrateduetoTBr0per-capitatreatmentrateforrecentlylatently-infectedr1per-capitatreatmentrateforlatently-infectedr2per-capitatreatmentrateforactively-infected per-capitaprogressionrateforearlylatent-TBprogressionwheretheincidencerateaItisproportional tothenumberof infectious; eistheper-capitaprogressionratefromlatent-TBtoinfectious-TBcases; g is theper-capitatreatmentrate(treatedindividualswillbecomemembersoflatent-TBclassagain.); d2istheper-capitadeathrateof thelatent-TBclass; andd3istheper-capitadeathrateoftheinfectious-TBclass. UsingdatafromaruralareainsouthIndiafortheperiodof1950to1955,Waaler[35]estimatedtheparametersofthislinearmodel tobea=1, e=0.1, d2=0.014, g=0.10085, d3=0.07. Becausetheeigenvaluesallhavenormscloseto1(1.04),Waalerpredictedthatthetimetrendof TBisunlikelytoincrease(itmaydecrease, albeitslowly). Thislinearmodeldidnotmodelthemechanicsoftransmission. However,theparameters,estimatedfromaspecicareainIndia,setusefulrangesfortheestimationofparametersindevelopingnations.Broggerdevelopedamodel [10] thatimprovedonWaalers. Broggernotonlyintroducedheterogeneity(age)butalsochangedthemethodusedforcalculatinginfectionrates. TheinfectionrateinBroggersmodelwasacombinationoflinearandnonlinearinfectionterms. Infact,itwasgivenbythetermS(1 Z +ZIN),where Zwas an adjusting parameter used to dierentiate between normal infection,superinfection, and direct leaps (within a very short period, an uninfected individualbecomesalesioncaseoranactive-TBcase). Twoextremecaseswerecoveredinthemodel: Z=1makingtheincidencebeSIN, thefamiliar versionof today,and, Z=0givinganinfectionrateproportional tothenumber of susceptibles.TheprevalenceINwasusedtoadjustall owratesincludingthosefrominfectedtoopencases. ThiswasnotsurprisingasBroggerwantedtouseprevalenceasanindicatoroftheeectivenessofcontrolpolicies. Hisaimwastocomparedierentcontrol strategiesthatincludedndingandtreatingmorecases, theutilizationofvaccination, and mass roentgenograph. The data of two WHO/UNICEF projects inThailand from 1960 to 1963 were used to estimate the parameters incorporated intohismodel. Broggerchosethoseparametersthatbesttsavailabledata. Controlstrategies (additional new parameters) were squeezed into the model. Simulations366 C. CASTILLO-CHAVEZANDB. SONGwererunandcomparisonsmadetoevaluatethevalueofdierentstrategiesofTBcontrol programs. Thismodel didnotformulateclearlytherelationshipbetweeninfection rate and prevalence. ReVelle classied this important relationship in 1967.UsingBroggerandWaalersmodel asatemplate, ReVelleintroducedtherstnonlinearsystemofordinarydierential equationsthatmodelsTBdynamics[63,64]. Inmodelingtheinfectionrate, hedidnotfollowthetypicalmassactionlaw,givenbythebilinearfunctionSIofKermackandMcKendrick[47]. ItwasReV-elle who rst, at least in the context of TB dynamics, rigorously explained why theinfectionratedependslinearlyontheprevalenceusingtheprobabilisticapproachthat is common today (homogeneous mixing). The form SINfor the infection rateis found in most epidemic models used today. Mathematically it is well known thatif thetotal populationsizeNremainsconstantovertimeorif itasymptoticallyapproaches a constant then the use of an infection rate proportional to SIdoes notchange the qualitative properties of the model. However, when modeling epidemicsfor developing countries, as Revell did with his model, SINseems a more appropri-ate form of modeling the infection rate. ReVelle modeled TB dynamics via a systemof non-linear dierential equations but he ignored population structure. Nine com-partmentswereintroducedinRevellsnonlinearmodel. ThetotalpopulationwasgovernedbytheMalthusmodel becausehewantedtoapplyittodevelopingna-tions. Makingprojects(inWaalerswordstimetrendof tuberculosis)wasnotRevellsmaintheme. Infact,hismainobjectiveseemedtobeassociatedwiththeevaluationandimplementationofcontrolpolicesandtheircost. Hedevelopedanoptimizationmodel andusedittoselectcontrol strategiesthatcouldbecarriedoutataminimalcost. ItisworthtomentionthatWaaleralsodevelopedamodelin1970thatwouldminimizethecostofalternativetuberculosiscontrol measures[82].All dynamical modelspriortoFerebeesworkweremotivatedbythestudyofTBindevelopingnations. ThetwodatasetsusedwerefromThailandandIndia.NospecicmodelseemstohavebeendevelopedfortheU.S.A.. Ferebee,associatechief of theresearchsectionof thePublicHealthServiceTuberculosis Programof U.S.A., changedthistrend. Shesetupadiscretemodel, baseduponasetofsimpleassumptions, tomodel thedynamicsof TBintheU.S.A. [34]. Sheusedthe same compartments as Waaler did, that is, susceptible, infected and infectious.The basic time unit was ayear. Hence, withinone year, newinfectedpeoplewouldbecomeinfectiousandcontributetothepoolofnewinfected,namely,someindividuals wouldmovefromthesusceptibletotheinfectedclass andfromtheinfectedtotheinfectious class withinayear. Ferebeedescribedher algorithm,methods of estimation of relevant parameters, and the number of infected people intheU.S.A.. Theresultsshowedthatthenumberofnewcaseswoulddecrease,butslowly, if vaccination were not applied to the US population. It is worth mentioningthattheestimationof demographicparameterswassolelybasedonthe1963USdata. Despiteitsshortcomings,thisworkindeedgavetherstroughestimateandforecast of TB cases in the U.S.A.. She stated that her assumptions were checked forconsistencywithbitsandpiecesofinformationobtainedfromavarietyofsources.These assumptions have since played an important role theoretically and practicallyinthecontextofTB.Inotherwords,therstUSstudydenedanappropriateparameterrange. Weshalloutlineunderlyingassumptions:i. Thereare25millioninfectedindividualsand125millionsusceptible;DYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 367ii. Theper-capitaprogressionratefrominfectedtoinfectiousisk1=1/625peryear;iii. Primary infected people exhibit a higher per-capita progression rate in the rstyear(k2=1/12); thatis, oneoutof every12newinfectionswill progresstotheinfectiousstageduringtherstyear;iv. Eachnewinfectiousindividualswillinfect3people;v. Nosignicantadditionaldeathisascribedtotuberculosis.Herassumptionk2>> k1hasdirectedmodelsimulationsandconstructions. Thisassumption has been recently incorporated via the inclusion of additional compart-mentsforfastTBandslowTB(seesection4.1).Earlier mathematical models for TBtransmissionwere developedmostlybystatisticians. Theirapproachfollowedapattern: buildamathematical model forTBtransmission; withhelpfromadataset, estimateparameters; ndnumericalsolutions; and predict or make inferences about the relative value of alternative con-trolstrategies. Therewasnoqualitativeanalysisofthemodels,andthelong-timebehavior(asymptoticproperties)ofthemodelswasalsonotstudied.The continuous decline of TB incidence in developed nations and the introductionof eective antibiotics suggested that elimination of active TB in developed nationswaspossible. Thisviewmayhavebeenthemainreasonwhytherewasalmostnotheoretical workonTBdynamicsfromthe1970stotheearly1990s. Thestoryhas changed over the last decade because of the reemergence of TB (new outbreaksintheU.S.A. andinmanydevelopednations). Inthefollowingsectionsweshallreviewsomeofthemostrecentmodelsandthetheoreticalresults.4. Intrinsicmechanicsoftransmission.4.1. Slowandfastroutes. Theinitiallyexposedindividuals(infectedindividu-als) have a higher risk of developing active TB. With time passing, those individualsstillfacethepossibilityofprogressingtoinfectiousTB,buttherateofprogressionslowsdown. Inotherwords, thelikelihoodof becominganactiveinfectiouscasedecreaseswiththeageof theinfection. Bearingthisinmind, several researchersconstructedaseriesof dynamical modelsforTBprogressionandtransmissioninscenariosthattookthesefactorsintoconsideration[6, 7, 8, 19, 32, 60]. Weshallreviewsomeof thiswork. Inthesimplestmodel (thatweknow), thepopulationofinterestispartitionedintothreeepidemiologicalclasses: susceptible,latent,andinfectious. TheinfectionrategivenbySI(usingthemassactionlaw)isdivided.AportionpSI givesrisetoimmediateactivecases(fastprogression), whiletherest(1 p)SIgivesrisetolatent-TBcaseswithalowriskofprogressingtoac-tiveTB(slowprogression). TheprogressionratefromlatentTBtoactiveTBisassumed to be proportional to the number of latent-TB cases, that is, it is given bykE, where k ranges from 0.00256 to 0.00527 (slow progression). The total incidencerateispSI +kE. Theversionin[6]isgivenbyfollowingsystem:dSdt= SI S, (3)dEdt= (1 p)SI kE E, (4)dIdt= pSI +kE dI I, (5)368 C. CASTILLO-CHAVEZANDB. SONGwheretheparametersaredenedinTable2. Thequalitativedynamicsof model(35)aregovernedbythebasicreproductivenumberR0= p +d+ (1 p)k +k. (6)Thisdimensionlessquantitymeasurestheaveragenumberofsecondaryinfectiouscases produced by a typical infectious individual in a population of susceptibles ata demographic steady state. The rst term in (6) gives the new cases resulting fromfast progression while the second those resulting from slow progression. Sensitivityanduncertaintyanalysis were carriedout. Simulationresults showedthat TBdynamicswerequiteslowforacceptableparameterranges. Waalersmodel alsosupportedslowTBdynamics[81]. Model (35)requiresthatpbeknownapriori(itisnotallowedtochange)and,the R0derivedfromthemodeldependslinearlyonpopulationsize. Amodelthatremovestheserestrictionsisreviewednext.4.2. Variablelatentperiod. Insteadofassumingexponentialdistributionofla-tencyperiod, Fengstudiedamodel withanarbitrarydistributionforthelatencyperiod[31]. Todescribethismodel,weletp(s)beafunctionrepresentingthepro-portionofthoseindividualsexposedsunitsoftimeagoandwho,ifalive,arestillinfected(butnotinfectious)attimes. Theremovalrateofindividualsfromthe EclassintotheIclass unitsoftimeafterexposureisgivenby p(). Hence,thetotalnumberofexposedindividualsfromtheinitialtimet = 0tothecurrenttimet,whoarestillintheEclass,isgivenbytheintegral_t0cS(s)I(s)N(s)p(t s)e(+r1)(ts)dswhilethenumberofindividualswhodevelopinfectiousTBcasesfrom0tot,whoarestillaliveandintheIclass,isgivenbythedoubleintegral_t0_0cS(s)I(s)N(s)e(+r1)(s)_ p( s)e(+r2+d)(t)_dsd.The following system of integro-dierential equations is used to model TB dynamicswithavariablelatentperiod:dSdt= SIN S +r1E +r2I, (7)E(t) = E0(t) +_t0S(s)I(s)N(s)p(t s)e(+r1)(ts)ds, (8)I(t) =_t0_0S(s)I(s)N(s)e(+r1)(s)_ p( s)e(+r2+d)(t)_dsd+I0e(+r2+d)t+I0(t), (9)N= S +E +I,where=cistheforceof infectionperinfective; r1andr2aretheper-capitatreatmentratesfortheEclassandIclass,respectively;isthenaturalmortalityrate; d is the per-capita death rate due to TB; E0(t) denotes those individuals in theEclassattimet = 0whoarestillinthelatentclassattimet;I0(t)denotesthoseindividualswhoareinitiallyintheEclasswhohavemovedintoclassI andstillaliveattimet;andI0e(+r2+d)twithI0= I(0)representsthoseindividualswhoareinfectiousattime0whoarestillaliveintheIclassattimet. Mathematically,itisassumedthatE0(t)andI0(t)havecompactsupport.DYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 3690 0.5 1 1.5 200.511.522.5 R1 R2IIIIVIIIFigure 3. Bifurcationdiagramfor model (1015) whenq =0.InregionI,thedisease-freeequilibriumisgloballyasymptoticallystable; inregions II andIV, one of strains disappears; andIIIrepresentsthecoexistenceregion.0 0.5 1 1.5 200.511.522.5 R1 R2IIIIIIFigure 4. Bifurcationdiagramfor model (1015) whenq >0.Thecoexistenceofthetwostrainsisimpossible.370 C. CASTILLO-CHAVEZANDB. SONGTheintroductionofanarbitrarydistributionoflatencyperioddidnotchangethequalitativedynamicsof TB; thatis, aforwardbifurcationdiagramcharacterizesthedynamicsofthelastmodel(79).4.3. Multiple strains. Incomplete treatment, wrong therapy, andco-infectionwithother diseases, for instance, HIV, maygiverisetonewresistant strains ofTB (multipledrug resistant,or MDR strains). Form First Lady EleanorRooseveltwasoneofthevictimsofMDRTB[24, 62]. ModelsthatincludemultiplestrainsofTBhavebeendeveloped[7,15,17]. Arecentlypublishedtwo-strainTBmodelincludedrug-sensitiveanddrug-resistantstrains[15,17]. Hence,twosubclassesoflatent andinfectious individuals arerequired. Thesubscriptssandrstandfordrug-sensitiveanddrug-resistanttypes. Themodelisgivenbythefollowingsetofequations:dSdt= scSIsN rcSIrN S, (10)dEsdt= scSIsN ( +ks)Esr1sEs +pr2sIsscEsIrN , (11)dIsdt= ksEs( +ds)Isr2sIs, (12)dTdt= r1sEs + (1 p q)r2sscT IsN rcT IrN T, (13)dErdt= qr2sIs( +kr)Er +rc(S +Es +T)IrN , (14)dIrdt= krEr( +dr)Ir, (15)N= S +Es +Is +T+Er +Ir.It can be seen from Equation (15) that the treatment rate for the Irclass is equaltozero,meaningthatTBduetothisstrainisnottreatablebycurrentantibiotics.The proportion of treated infectious individuals who did not complete treatment isp+q. The proportion p modies the rate at which they depart from the latent class;qr2sIsgivestherateatwhichindividualsdevelopresistant-TBduetotheirlackofcompliancewithTBtreatment. Theproportionofsuccessfullytreatedindividualsis1 p q. ThedimensionlessquantitiesR1=_sc +pr2s +ds +r2s__ks +ks +ds_andR2=_rc +dr__kr +kr_givethebasicreproductivenumberof strainsj, wherej =1, 2. Theasymptoticbehavior of model (1015) is determined by Rj. Fig.s 3 and 4 show the bifurcationdiagramforthistwo-strainmodel. Thesediagramsshowsthatnaturallyresistantandnaturaltypescanco-exist,albeittheregionofcoexistenceissmall(regionIVinFig. 3). Furthermore, in[15] it was shownthat antibiotic-inducedresistanceresultsinthesubstantial expansionof theregionof coexistence. Infact, regionsIVand IIIbecomeasinglelargeregionofcoexistence. Inotherwords,antibiotic-inducedresistanceguaranteesthesurvivalofresistantstrains. Atwo-strainmodelthatincorporatestheeectsofmultipledrugresistancecanalsobefoundin[7].DYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 3714.4. Multiple strains and variable latent period. A model that considers bothmultiple strains and variable latent period is proposed by Feng [33]. Drug-resistantand drug-sensitive strains are modeled, but only the age of the infection with drug-sensitivestrainisconsidered. Theyintroduceafunctionp()astheproportionofthesensitive-strainthatareactiveatinfection-agetodistinguishactiveTBandinactive TB. The model does not make a dierence between active and inactive TBfor the drug-resistant strain because after acquiring drug-resistent TB, an individualdies quickly. Consequentlyforthedrug-resistant straintheyonly countactive TB.Thetotal populationis dividedintothreeclasses: susceptible(S(t)), infectionswithdrug-sensitivestrain(Is(t)),andinfectionswithdrug-resistantstrain(Ir(t)).Lettingis(, t)betheinfection-agedensityof infectedindividualswiththedrug-sensitivestrainattimet,themodelframeworktakesthefollowingsystem:dSdt= b(N)N _ +1cIasN+2cIrN_S(t) + (1 r)r2Ias, (16)_ t+_is(, t) + ((1 r +qr)r2p() + +d1) is(, t) = 0, (17)dIrdt= 2cSIrN ( +d2)Ir +qrr2Ias, (18)is(0, t) = 1cSIasN , (19)whereIas(t) =_0p()is(, t)disthetotalnumberofactiveTBofdrug-sensitivestrain; Is(t) =_0is(, t)dthetotal number of infectedindividuals withdrug-sensitiveTB(bothlatentTBandactiveTBareincluded);b(N)theper-capita00.20.40.60.81R0I*Rp1Figure 5. Backwardbifurcationdiagramwhenexogenous rein-fectionisincludedinmodel(2023). When R0< Rp,thedisease-freeequilibriumisgloballyasymptoticallystable. However, whenRp< R0 0,b > 0. When < 0with || 1,0islocallyasymptoticallystable,andthereexistsapositiveunstableequilibrium;when0 < 1,0isunstableandthereexistsanegativeandlocallyasymptoticallystableequilibrium;ii. a 0, U < 0,x> 0, U > 0,x< 0, Sa < 0,b < 0 < 0, U > 0, S < 0,x> 0, S > 0,x< 0, Ua < 0,b > 0 < 0, S > 0, U < 0,x< 0, U > 0,x> 0, Sa > 0,b < 0 < 0, U > 0, S < 0,x< 0, S > 0,x> 0, URemark 1. The requirement that w is nonnegative in Theorem 4.1 is not necessary.Whensomecomponentsinwarenegative,westillcanapplythistheorem,butonehastocomparewwithactual theequilibriumbecausethegeneral parameterizationofthecentermanifoldbeforethecoordinatechangeisWc= {x0 +c(t)w +h(c, ) : v h(c, ) = 0, |c| c0, c(0) = 0}providedthatx0isanonnegativeequilibriumofinterest(Usuallyx0isthedisease-freeequilibrium). Hence,x02ba> 0requiresthatw(j) > 0wheneverx0(j) = 0.Ifx0(j) > 0,thenw(j)neednotbepositive.Corollary4.1. Whena>0andb>0, thebifurcationat =0issubcritical(backward).ApplyingCorollary4.1tomodel (2023), wegivearigorousproof thatmodel(2023)undergoesabackwardbifurcation. Wedoitinarathersimplecase= 1thoughwhen =1theargumentsareidentical. Let=cbethebifurcation376 C. CASTILLO-CHAVEZANDB. SONGparameter. Introducingx1= S +T,x2= E,x3= I,theSystem(2023)becomesdx1dt= x1x3x1 +x2 +x3x1:= f1, (32)dx2dt= x1x3x1 +x2 +x3px2x3x1 +x2 +x3( +k)x2:= f2, (33)dx3dt= px2x3x1 +x2 +x3+kx2( +r +d)x3:= f3, (34)with R0= 1 corresponding to = =(k+)(+r+d)k. The disease-free equilibriumis [x1=, x2= 0, x3= 0]. The linearization matrix of system (3234) around thedisease-free-equilibriumwhen = isDxf=__ 0 0 (k +) 0 k ( +r +d)__.It is clear that 0 is a simple eigenvalue of Dxf. A right eigenvector associated with0 eigenvalue is w = [+kk,1k,1+r+d], and the left eigenvector vsatisfying v w = 1isv= [0,k(+r+d)(k+)+(+r+d),(k+)(+r+d)(k+)+(+r+d)]. Algebraiccalculationsshowthat2f2x2x3= (1 +p)x1,2f2x23= 2x1,2f3x2x3= px1,2f2x1= 1.Therestofthesecondderivativesappearingintheformulaforain(26)andbin(27)areallzero. Hence,a =x1k((k +) + ( +r +d))_p k_1 +k +r +d__,b = v2w3=k(k +) + ( +r +d)> 0.Wecollecttheseresultsinthetheorembelow:Theorem4.2. If p >p0=k_1 +k+r+d_, the directionof the bifurcationofsystem(3234)(orsystem(2023))at R0= 1isbackward.Model(2023)exhibitstotallydierentbehaviorasitsupportsmultiplestable-steadystatesviaabackwardbifurcation(subcriticalbifurcation). Theresultsarecounter-intuitive. thatis,whenthebasicreproductivenumber R0=c+r+dk+k nL, Q0 p1np1+n+(1 p)KKnwhich levels oat the value p1+(1 p)). Hence,an increase in n translates an increase in TBtransmissionbuttheincreaseisnon-linear. Initially, thisincreaseisalmostlinearbut as n becomes larger the rate of increase decreases, because the time spent by aninfectious individual per contact cancels out increases in cluster size. Hence, R0(n)isboundedbyaconstantvalue,andthisboundlimitsthesizeofTBprevalence.Case2. Thesecondcaseassumes(n)tobeinverselyproportional ton(thatis,(n) =1n ). Itcanbeseenfrom45that R0(n)isthesumofcontributionsfromboth the within and out of cluster new secondary cases of infection. The ratio E(n)ofwithintobetweenclustercontributionsisgivenbyE(n) =1pK(1 p)n(K n)(p1 +n).Function E(n) increases with n and reaches its maximum value at n=K1+_1+Kp1.Hence,nheredenestheoptimal clustersize;thatis,thevaluemaximizeswithinclustertransmission.Singular perturbationtheoryandmultipletimescales techniques areusedtostudytheglobaldynamicsoftheclustermodels[71]. Sincetheaverageinfectiousperiod(about34months)ismuchshorterthantheaveragelatentperiod, whichhas the same order as the host population, two dierent time scales can be identied.Time is measured using the average latency period 1/kas the unit of time (that is,=kt). VariablesS2andE2arere-scaledby, thetotalasymptoticpopulationsize ( =); N1 could be re-scaled by instead, it is re-scaled by the balance factork+. The rescaling formulae are x1=S2 , x2=E2, y1=+kS1 , y2=+kE1, andy3=+kI. Thesenewre-scaledvariablesandparametersarenon-dimensional.380 C. CASTILLO-CHAVEZANDB. SONGThere-scaledmodelequationsaregivenbydx1d= B(1 x1) + (1 m)y1nx1x2x1 +x2, (46)dx2d= (1 m)y2(1 +B)x2nx22x1 +x2, (47)dy1d= y1 +nx1x2x1 +x2, (48)dy2d= my1(1 m)y2 +nx22x1 +x2, (49)dy3d= x2(1 m)y3, (50)where =k+,m =+< 1andB=k. Thetermsinright-handsideofsystem(4647)all havethesameorderofmagnitudewhenever 1. Therefore, y1, y2,andy3arefastvariablesandx1andx2areslowvariables. Hoppensteadtsearlytheorem[44]helpustoshowtheglobalstabilityoftheendemicequilibriumwhenissmall. ALiapunovfunctionandaDulacfunctionareselectedtoestablishtheglobalstabilityofthedisease-freeequilibrium. Hence,aglobalforwardbifurcation(seeFig.7)characterizesthedynamicsoftheclustermodels.R0I*1global transcriticalbifurcationFigure7. GlobalforwardbifurcationdiagramfortheTBmodels.5. Modelswithdensitydependentdemography. Demographyplaysanim-portant role inthe transmissiondynamics of TBsince the average rate of pro-gressionfrominfected(non-infectious)toactive(infectious)TBisveryslow. Infact, theaveragelatentperiodhasthesameorderof magnitudeasthelife-spanof thehostpopulation. Twodistinctdemographicscenariosarestudied. Intherst, exponentialgrowthisobservedoveralongtimescale, andinthesecondex-ponential growthisobservedoverashorttimescale(quasi-exponential growth).DYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 381Consequently,threedierentrecruitmentratesareusedinthestudyofdynamicalmodelsforTBtransmissionwithdemography: constantrecruitmentrate()[15],linear recruitment rate (rN) [74], and logistic recruitment rate (rN(1N/K)) [74].ThegeneralmodelisgivenbydSdt= B(N) cSIN S, (51)dEdt= cSIN ( +k +r1)E +cTIN , (52)dIdt= kE ( +d +r2)I, (53)dTdt= r1E +r2I cTIN T, (54)N= S +E +I +T,where the recruitment rate B(N) includes the three demographies described above,namely, rN, rN(1N/K), and . The basic epidemiological reproductive numberisgivenbyR0=_k +r1 +k__c +r2 +d_(55)However,thisnon-dimensionalnumberisnotenoughtocharacterizethedynamicsofmodel(51-54).5.1. Linearrecruitmentrate. Currently, mostdeathscausedbyTBrepresentasmall proportionof thedeathsformostpopulations, inotherwords, disofteninsignicant. Therefore, alinearrecruitmentrateB(N)=rNwithreasonablervaluesislikelytosupportexponential growthonaTB-infectedpopulation. TheuseofalogisticrecruitmentrateB(N) = rN(1 N/K)tomodelthedemographyin general is also likely to result in logistic growth for the total population Nin thepresenceofTB.Tosimplifyouranalysis,wefurtherassumethattheinfectedandreinfectedproportionsareequal =. Theuseofthevariables, N, EandI, isenough. Hence,model(5154)reducesto:dNdt= B(N) N dI, (56)dEdt= c(N E I)IN ( +k +r1)E, (57)dIdt= kE ( +d +r2)I. (58)Weshallconsistentlyusethefollowingcompressednotationmr= r +r2 +d, nr=r +r1+k, m= +r2+d, n= +r1+k, and = c to simplify the discussions.First, westudythedynamicsof model (5658)withB(N)=rN. Thatis, itisassumedthatthetotal populationexhibitsexponential growthintheabsenceof TB(thenet growthrateof thepopulation, intheabsenceof thedisease, isr ). Total population size increases exponentially if r > , and remains constantif r =. Thecasewherer if d is large enough; that is, technically, a fatal disease can impactpopulation growth (see also May and Anderson,[57];Busenberg and Hadeler [11]).Realistic examples of situations where a disease has or is likely to to have an impactonthedemographicgrowthcanbefoundintheworkonmyxomatosis[51]andon382 C. CASTILLO-CHAVEZANDB. SONGHIV[1,56]. Threenon-dimensionalthresholdparameters R0, R1,and R2provideafull characterizationofthepossibledynamical regimesofsystem(5658)underthevariousdemographicregimes. ThebasicreproductivenumberR0=_ +r2 +d__k +r1 +k_, (59)givestheaveragenumberofsecondarycasesproducedbyatypicalinfectiousindi-vidual during his/her entire life in a population of mostly susceptibles. It is impliedfrom R0< 1thattheinfectedpopulationsgoestozero,while R0> 1impliesthatthe infectedpopulations grows (initially) exponentially(together withthe totalpopulation N). In this last case, there are two possibilities: Ngrows faster than I,orNdoesnotgrowfasterthanI. Intherstcase,thefractionu =INapproacheszeroastimeincreases,andtheadditionalthresholdparameterR1=_r +r2 +d__kr +r1 +k_(60)plays a role;that is, R1discriminates between the last two possibilities. If R1< 1,then limtu=0, while R1>1implies that limtu>u>0. Our assumptionr > impliesthat R0> R1istrue. Iftheinfectious(I)populationchangesfasterthanthetotal population(N)then(afatal)diseasecandrivethepopulationtoextinction(evenwhen R1>1). ThethresholdparameterthatdecidesthislastsituationisgivenbyR2=r du, (61)where uis a positive constant (independent of (see (67)); that is, R2determineswhetherornotthetotal populationsizegrowsexponentially. Infact, populationsize woulddecrease exponentially(fromTB) onlyif R2, the trivial equilibrium(0, 0) isgloballyasymptoticallystableif R1 1. Furthermorethereexistsauniquepositiveequilibriumthatisgloballyasymptoticallystableif R1> 1.The standard classication of planar quadratic dierential systems rules out theexistenceof closedorbitsorlimitcycles. (Otherapproachescanbeusedtodrawthesameconclusion, forexample, seeBusenbergandvandenDriessche[12]; Linand Hethcote [53]. The full structure of system (5658) is provided in Theorem 5.2below:Theorem5.2. Considersystem(5658)andassumethatr > :i. If R0< 1,then(, 0, 0)isgloballyasymptoticallystable.ii. If R1< 1 < R0, then (, , ) is globally asymptotically stable and limtIN=0, limtEN= 0.iii. If1 < R1< R0,then(a). (0, 0, 0)isgloballyasymptoticallystableand limtIN=u, limtEN=vwhen R2< 1,(b). (, , )isgloballyasymptoticallystableand limtIN=u, limtEN=vwhen R2> 1,whereu= [d(mr +nr) (mr +k)] +2d( d)(k mrnr), (67)v=mr(a2 +a3 + 1/2) 2a2du22a2k,= [d(mr +nr) (mr +k)]2+ 4d( d)(k mrnr), = (a2 +a3)2+ 4a1a2> 0.Hence, whenever R0< 1 the disease dies out while the total population increasesexponentially. Althoughthediseasespreads(thatis,thenumberofinfectedgrowsin total number) when R1< 1 < R0, the proportionsINandENapproach zero. Onecanobservefromthecase1< R1< R0thatdisease-inducedmortalitycanleadtotheextinctionof apopulationthatwouldotherwiseincreaseexponentially(afatal disease can indeed regulate a population). Note that R2is positive since uispositiveandindependentof. Wealsohaveestablishedthatwhenr< ,(0, 0, 0)384 C. CASTILLO-CHAVEZANDB. SONGisgloballyasymptoticallystableeventhough limtIN= uand limtEN= vwhenR1>1, and R1 . Theorem 5.2 provides a complete characterization of the dynamicstructureof model (5658). Theglobal dynamicsareshowninFig. 8. Here, weprovidetheproofthatthedisease-freeequilibriumisaglobalattractor.R1R0I I/N 0I 0I/N 0I/N u*N 0r={N 0 (R21)11Figure8. Bifurcationdiagramforlinearrecruitmentrate.Proof. The disease-free equilibrium is (rr, 0, 0). It is straightforward to show thattheendemicequilibriumisuniquewhenever R0>1and R2>1andthedisease-freeequilibriumislocallystablewhenever R0 1. Here,weonlyneedtoestablishtheglobal stabilityof thedisease-freeequilibriumundertheassumption R0 1.Letf(t)=E(t) + 2I(t), where=_(mn)2+ 4k + m n. Itsucestoshowlimtf(t) = 0.df(t)dt= dE(t)dt+ 2dI(t)dt (I(t) nE(t)) + 2(kE(t) mI(t))= (2k n)E(t) + ( 2m)I(t)= (n +2k)E(t) + (2 m)2I(t)= (E(t) + 2I(t))__(mn)2+ 4k (m +n)2_= (1 R0)_(mn)2+ 4k +m +nf(t).DYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 385Thisactuallyproducesadierentialinequalityonthefunctionf(t);thatis,df(t)dt< (1 R0)_(mn)2+ 4k +m +nf(t). (68)It follows that limtf(t) =0from(1R0)(mn)2+4k+m+n>0and R0 0.Hence,f(t)isadecreasingfunctionandf(t) f(0)e1_t0I(t)dt. (69)If liminftI(t) > 0, thenlimtf(t) = 0 by (69), which yields limtI(t) = 0 from thedenitionoff(t). Hence, liminftI(t)=0. ItfollowsthatliminftE(t)=0from the uctuation lemma of Hirsch et al. [43] and Proposition 2.2 by Thieme [77].Consequently, liminftf(t) = 0 and limtf(t) = 0 because f(t) is decreasing.5.2. Logisticrecruitmentrate. When logistic recruitment rate B(N) = rN(1N/K) is considered in model (5154), the dynamics become determined by R0andR2=r +dk+d+r2+kR01R0.Forsystem(5154), if R0 1, thedisease-freeequilibriumisaglobal attractor;if R0>1and R2>1, thereexistsauniqueendemicequilibriumthatisgloballyasymptotically stable under some assumptions. Hence, a global forward bifurcationdescribes thedynamics if R2>1(seeFig. 7). Toshowtheglobal stabilityoftheendemicequilibrium, anequivalentmonotonesystemtotheoriginal onewasidentiedandastrongversionofthePoincare-Bendixontheoremapplied. Furtherwhen the disease dies out, the decay is of exponential form with a rate proportionalto R0 1. Particularly, interestingdynamics are observedwhen1 k=0.00256.(One has seen this in Ferebees assumptions in section 3.)Model (9194) allows onetoexploretheroleof treatingearlylatent-TBcases. Resultsfromthistwo-stage392 C. CASTILLO-CHAVEZANDB. SONGlatent TB model show that treatment of 25% of early latent-TB cases together withtreatmentof80%ofactive-TBcasesmayresultintheeliminationofTB.8.3. EliminationofTBintheU.S.A.. A comprehensive and executable modelthat leads to TB elimination in the U.S.A. is proposed by Song [72, 73]. CollectingpublicTBanddemographicdatafortheU.S.A.forthepasthalfcentury,amodelofnon-autonomoussystemsofordinarydierentialequationsisusedtotU.S.A.tuberculosisincidenceoverthepastvedecades. ItisshownthattuberculosisintheU.S.A. maybecontrolledtothepointofmeetingCDCscriterionofonecasepermillion, butonlybytheyear2020. Thisgoal maybeaccomplishedonlyifatleast 20% of latently-infected individuals are treated. The eect of HIV/AIDS after1983isincludedintheanalysisviaavariationof ourmodel thatincorporatesafunctionthatacceleratesTBprogressionoverawindowoftime. ItisshownthatTBscaseratemaybecontrolleddespiteincreasesintherateof TBprogressionduetoHIV. Fromthecensusandprojectiondata, thetotal populationsizeN(t)is includedinthemodel as anexternal input. Twolatently-infectedclasses areintroduced, primary latent/exposed class (L1) and a permanently latent class (L2).Anon-autonomousODEmodel withtwolatentclassesandtheincorporationofHIVstandsdL1dt= (N(t) L1L2I)IN(t) ((t) +k +r1 +p +A(t))L1, (95)dL2dt= pL1((t) +r2 +A(t))L2, (96)dIdt= kL1 +A(t)(L1 +L2) ((t) +d(t) +r3)I, (97)whereA(t)hastheform:A(t) =_1(t 1983)2e3(t1983)4if1983 < t,0 otherwise.Hereiisconstanttobedeterminedviasimulations. N(t), nowassumedtobeindependent of the disease, is aknownexternalinput tothe epidemiologicalmodel. Thevaluesof N(t)areinfactinputfromextrapolatedpublishedU.S.A.demographicdata. Thetransmissionrateisassumedtobeaconstant; k, TBsactivationrate,isalsoassumedtobeconstant;ri(i = 1, 2, 3),thetreatmentratesdenedbefore, arealsoassumedtobeconstant; pis therateat whichprimarylatent-TB cases become permanent latent-TB cases; and (t) and d(t) are functionsoftime. EstimatesforsomeoftheseparametersarelistedinTable5. Fig.9showsTable5. EstimatedparametersofTBtransmissionfortheU.S.A..parameter c k r1r2r3pestimation 0.22 10 0.01 0.05 0.05 0.65 0.1thatfortheselectedparameterranges, theprogressionratefunctionA(t)tsthedataverywell. Thatis,thetsuccessfullycapturesthepasthistoryofTBintheU.S.A.. Thevaluesofr1=r2=0.05meansthatinthepastonly5%oflatently-infectedindividuals got treatedper year. The treatment of 100%of active-TBcases per unit time (r3= 1, instead of 0.65) is insucient to reach CDCs goal (seeDYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 393Fig. 10). However, treatment of morelatently-infectedindividuals, forinstance,raisingr1andr2to20%peryear, wouldhelpreachCDCstargetof 1/1,000,000inamorereasonableperiodoftime(seeFig.s10and11). Fig. 12illustratestheeectofHIVonthecontrolofTB.ItisclearthatHIVdelaystheachievementofCDCsgoalbuthasnopermanentimpactonthelong-termpersistenceofTB.However,prolongingTBssurvivalenhancesthe likelihoodof its evolution, asituationthat is not exploredhere. We haveintroduced the impact of HIV/AIDS on TB progression during the past two decadesviaatemporaryperturbationonthedistributionof TBprogressiontimes. Ourselection of this perturbation is driven by our desire to t active-TB data since ourprimarygoal istolookatnotthecoevolutionof co-infectionsbutatHIV/AIDSco-infections on the ability of the U.S.A. to meet CDCs target by 2010. Our modelsuggeststhatifemphasisisplacedontreatingatleast20%ofthelatently-infectedindividuals then CDCs target may be met by 2020. Our model also shows that re-emergence of diseases that compromise the immune system (or recurrent outbreaks)wouldmakeitverydiculttocontrolTBunlesstreatmentemphasisisputontheearlier(non-detectable)stagesofTBdisease.TheoreticallysucientconditionsforTBextinctionandpersistencearederivedintermsof upperlimitsandlowerlimitsof themortalityfunctionsforthenon-autonomousmodel. Weplacethismathematicalresultinsubsection8.58.4. Regressionapproach. Topartiallybackupourconclusionsfromastatis-tical viewpoint, weuseregressiontostudythetrendof newTBcaseseachyear.Weletthenumberofnewcasesbetheresponsevariable,denotedbyY ,andtimebethepredictor, denotedbyX. AscanbeseenfromFig. 1, thescatterplotofannual newcasesY versusyearXappearstobeexponential. Intuitively, aloga-rithmictransformationistakenontheresponsevariable. Thequadratic regression1950 1960 1970 1980 1990 2000123456789x 104yearnew casespredicted valuesdataFigure9. NewcasesofTBanddata.394 C. CASTILLO-CHAVEZANDB. SONG2010 2015 2020 2025 2030 2035 2040 2045 205005101520253035r1=r2=5%yearcase rate per millionpredicted valuesCDCs goalFigure10. r1=r2=5%. CDCsTBeliminationcannotbeachievedby2020.2010 2015 2020 2025 2030012345678910 r1=r2=20%yearcase rate per millionpredicted valuesCDCs goalFigure 11. r1=r2=20%. CDCs TBeliminationcanbeachievedby2020.isturnedouttobethebestt. Theregressionequationlog Y= 11.3970 0.0597X + 0.0006X2, (98)is thebest t. Fig. 13shows thettedcurve, 90%condencebands, and90%predictionbands.DYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 3951950 1960 1970 1980 1990 2000 2010 20200123456789x 104yearnew casesFigure12. Impactof HIV. ThelowercurverepresentsnoHIVeect; theuppercurverepresentsthecaseratewhenHIVisin-cluded;botharethesamebefore1983. Dotsrepresentrealdata.0 10 20 30 40 509.69.81010.210.410.610.81111.211.411.6yearlogcasesregression95% CI95% PIFigure13. Quadraticregressionlog Y vs. X. Dotsaretherealdata. Condencebandsandpredictionbandsareincluded.Thequadraticregressionmodelturnsouttobeappropriateaftertheregressionassumptionsareveried. Consequently, wecanuseEquation(98)topredictthenumberofnewcasesinthenearfuture. Theresultsshowsthatthepredictedcase396 C. CASTILLO-CHAVEZANDB. SONGrate in 2010 is 7.1659/1, 000, 000. The same rate from our deterministic model (9597)is5.2952/1, 000, 000. Bothguresdrawthesameconclusion; thatis, CDCsgoalsforTBeliminationareunrealisticwithintheproposeedtimehorizon.8.5. Asymptotic behavior of thenon-autonomous model. Anasymptoticanalysisof model (9597)iscarriedoutandtheresultsarediscussed[72] inthissectionsincetheyplayaroleintheparameterizationof themodel. Theanalysishelpsestablishacriterionfordiseasepersistence(thatis, athresholdcondition)whichmustbemetbytheparameterizedmodel. Thelong-termbehaviorof oursystemisdeterminedbytheasymptoticpropertyofthefunctionsN(t), (t), andd(t). Thefollowingtheoremcharacterizessuchbehavior.Theorem8.1. Assume that liminft(t) = , liminftd(t) =d, andlimsupt(t) = ,limsuptd(t) = d.i. If R=_kk++r1+p__+d+r3_ 1 then limtL1(t) = L2(t) =limtI(t) =0.ii. IfR=_kk++r1+p__+d+r3_ 1thenlimsuptL1(t) > 0,limsuptL2(t) > 0,andlimsuptI(t) > 0.Proof. Wewillusethefollowingequalities,whicharestraightforwardinrealanal-ysis. WheneverlimAexists,thefollowinglimitequalitieshold:limsup(A+B) = limA+ limsupB,liminf(A+B) = limA+ liminfB,limsup(AB) = limAlimsupB,liminf(AB) = limAliminfB.The proof is basedonthe uctuationlemma[43] andits extensionbyThieme(seeTheorem2.3in[77]). ApplyingTheorem2.3from[77]toEquations(95)and(97) directly, one obtains that 0 I(+k+r1+p)L1andkL1(+ d+ r3)I. ItfollowsthatI+k+r1+pk(+ d+ r3)I; thatis,I_kk++r1+p+d+r31_= I(R 1) 0. SinceR< 1andI(t)isbounded,itfollowsthatI= 0. AsimilarargumentresultsinL= 0. Therstpartofthetheoremisproved.It is not dicult to show that limsuptL1(t) = 0 if and only iflimsuptI(t) =0. For instance, the fact that limsuptI(t) =0 implieslimsuptL1(t) = 0isveriedbelow. FromEquation(95),weobtaindL1dt I ((t) +k +r1 +p)L1.ItfollowsfromthecomparisonprinciplethatL1(t) L1(0) +_t0I(s)e_s0 (()+k+r1+p)ddse_t0(()+k+r1+p)d.Hence,limsuptL1(t) limsuptI(t)e_t0(()+k+r1+p)d((t) +k +r2)e_t0(()+k+r1+p)d= limsuptI(t)(t) +k +r1 +p= 0.DYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 397The same argument can be used to show that limsuptL1(t) = 0 im-plies limsuptI(t) =0. It is also clear that limsuptL1(t) =0 implieslimsuptL2(t) = 0fromEquation(96). Twocasearehandledseparately:Case 1: If kL1(t) ((t)+k+r1+p)I(t) holds for all t > 0, thendIdt> 0 directlyimplieslimsuptI(t) > 0;Case2: IfkL1(t) < ((t) +k +r1 +p)I(t)holdsforallt > 0,thenlimsuptI(t) > 0. Thecase2isprovedbycontradiction. SupposelimsuptI(t) =0,thendL1dt I(t)N(t)_N(t) (t) +d(t) +r3kI L2I_((t) +d(t) +r3)((t) +k +r1 +p)kI=_ ((t) +d(t) +r3)((t) +k +r1 +p)k_I +o(I)_ (+d) +r3)(+k +r1 +p)k_I +o(I)=(+d) +r3)(+k +r1 +p)k(R1)I +o(I) > 0, fort >> 1.This implies that limsuptL1(t) > 0, which contradicts the assumptionlimsuptI(t) =0. Trajectories of system(9597) cannot intercept kL1(t) =((t) +d(t) +r3)I(t)innitelymanytimesifI(t) 0ast ,becausedL1dt> 0whenkL1(t) = ((t) +d(t) +r3)I(t)wheneverR> 1. Therefore,limsuptI(t) = 0implies that either kL1(t) > ((t) +d(t) +r3)I(t) or kL1(t) ((t) +d(t) +r3)I(t)holdseventually. Hence,limsuptI(t) > 0.When (t) and d(t) d (both constant), R= R= R0gives the classicalbasicreproductivenumberR0= _1 +d +r3__kk + +r1 +p_whereistheeectivecontactrate;1r3++distheeectiveinfectiousperiod;andkr1+p++kis theproportionof primarily-infectedindividuals whomakeit totheactivestage.Thetheoremprovides conditions for dierentiationof thetwoimportant bio-logical states: diseaseeliminationorpersistenceforthisnon-autonomoussystem.Thesethresholdsarehelpful notonlyinverifyingthereasonablenessofpublishedparametersbutalsointheselectionofreasonablerangesofunknownparameters.Ourmodel generalizestheresultsestablishedforrelatedautonomoussystemsbyFengetal.[31]andSongetal.[74].9. TBtransmittedbypublictransportation. In Argentina, the TB incidencerateinthe1990swas42/100,000ofthepopulation,butthisvaluewasmisleadingsinceintheinnercityofBuenosAiresitwas160/100,000(fourtimeshigherthanthenationalaverage). BuenosAireshas12millionpeople,and9.2millionpassen-gersarecarriedbythebussystem,accountingfor82%ofthemovementinpublictransportation[19]. Aspecicmodel targetingthepopulation(inBuenosAires)398 C. CASTILLO-CHAVEZANDB. SONGthatincorporatestheimpactofpublictransportation(buses)hasbeendevelopedbyCastillo-Chavezetal. [19].ThecityisdividedintoNneighborhoods. Eachneighborhoodisfurthersub-dividedaccordingtowhetherornotanindividual frequentlytakesabus. TypeIindividualsarethosewhoseldomtakebusesordonottakethematallwhiletypeIIindividualsarethosewhofrequentlytakebuses. Anindividualofanytypefallsintooneof fourepidemiological groupsatanytimesusceptible(S), infectedbutnotinfectious(E),infectious(I),andtreated(T).Type I and type II individuals have dierent levels of activity, which are modeledbythecontactratesC1iandC2i , whereiindexestheneighborhood. Themixingstructureof the populationis drivenbythe bus system, whichdepends ontheaveragetimespentonthebusbythetypeImembersof eachneighborhood. Todescribethemodel,letQji= Sji+Eji+Iji+Tjibethetotalnumberofindividualsof type-jin the ithneighborhood,j= 1, 2. The followingparameters are required:ai=per-capitaaveragecontactrateoftypeIindividualsinneighborhoodi;bi=per-capitaaveragecontactrateoftypeIIindividualsinneighborhoodi;i= per-capita rate of getting o the bus by type II individuals in neighborhood i;i=per-capitarateofboardingabusbytypeIIindividualsinneighborhoodi.Then,1i=averagetimeonabusbyatypeIIperson;ii+i=probabilityofstayinginthebus(typeIIperson);ii+i=probabilityofstayingothebus(typeIIperson).Proportionate mixing is assumed [13]. The mixing probabilities are calculated usingtheabovedenitions.P11i=aiQ1iaiQ1i+biii+iQ2iisthemixingprobabilityof typeIindividualswithinthesameneighborhoodi;P12i=biii+iQ2iaiQ1i+biii+iQ2iisthemixingprobabilitybetweentypeIandtypeIIindi-vidualswithinthesameneighborhoodi;P21i=aiQ1iaiQ1i+biii+iQ2i_ii+i_isthemixingprobabilitybetweentypeIIandtypeIindividualswithinthesameneighborhoodi;P22i=biii+iQ2iaiQ1i+biii+iQ2i_ii+i_is the mixing probability between type II individualsintheithneighborhood;P22ij=bjjj+jQ2jN

i=1_biii +iQ2i__ii+i_ the mixing probability between type II individ-ualsintheithneighborhoodandtypeIIindividualsinthejthneighborhood.ThesemixingprobabilitiessatisfyP11i+P12i= 1andP21i+P22i+N

j=1P22ij= 1.The recruitment rate jivaryacross neighborhoods andtypes. The naturalmortalityrateisassumedtobeidenticalforallneighborhoodsandallepidemi-ologicalgroups. Treatmentratesri, progressionrateki, andthelossofimmunityrate(treatedpersonbecomessusceptibleagain) idependontheneighborhoodDYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 399butnotonthetypes. ThemodelequationsaredSjidt= ji Bji(t) Sji+iTji , (99)dEjidt= Bji(t) ( +ki)Eji, (100)dIjidt= kiEji ( +ri +d)Eji, (101)dTjidt= riEji ( +i)Tji , (102)Qji= Sji+Eji+Iji+Tji ,wherei=1, 2, 3, . . . , N, andj=1, 2. Thesuperscriptsrefertothetypeandthesubscriptsindexneighborhoods. TheequationsoftypeIandtypeIIpopulationsandthepopulationacrossneighborhoodsarecoupledbytheincidenceratesB1i (t)andB2i (t),whereB1i (t) = iC1i Si_P11iI1iQ1i+Q2iii+i+P12iI2iii+iQ1i+Q2iii+i_,B2i (t) = iC2i S2i__P21iI1iQ1i+Q2iii+i+P22iI2iii+iQ1i+Q2iii+i+N

j=1P22ijI2jjj+jQ2jjj+j__.This researchfoundthat the larger the dierence of prevalence betweenneigh-borhoods,thelargerthebasicreproductivenumber. Afterestimatingtherelevantparameters, it was found that on average 100 people enter and leave the bus hourly,and that one TB infection per 1,000 travelers was generated per hour of travel. Us-ing another model they found bus travel could be responsible for about 30% of newcasesofTB[9,19]. TheyalsofoundthatvariationsinTBtransmissionweremostsensitivetotransmissionwithinthetransportationsystem.10. Questionsandconclusions.10.1. Anoldprediction. In the context of TB control, the importance of R0wasestablishedin 1937,more thantwodecades before the introductionof rst dynam-ical model for TB [36]. W. H. Frost, an epidemiologist at John Hopkins University,addressedthefundamentalroleofthereproductivenumberinthefollowingway:However, fortheeventualeradicationoftuberculosisitisnotnecessarythat transmission be immediately and completely prevented. It is necessaryonlythattherateoftransmissionbeheldpermanentlybelowthelevelatwhichagivennumberofinfectionspreading(i.e.,open)casessucceedinestablishing an equivalent number to carry on the succession. If in succes-sive periods of time, the number of infectious hosts is continuously reduced,the end-result of this diminishing ratio, if continued long enough, must beexterminationof tuberclebacillus..... This means that under presentconditionsof humanresistanceandenvironmentthetuberclebacillusislosingground, andthattheeventual eradicationof tuberculosisrequiresonlythatthepresentbalanceagainstitbemaintained.[36]400 C. CASTILLO-CHAVEZANDB. SONGTBis aslowdisease, andtherefore, thebasicreproductivenumberR0plays afundamental role in the study its dynamics and control. Its role (transcritical bifur-cation) goes well with the observed downward trend of TB mortality and incidencerates. In fact, it suggests that R0is moving downward as parameters (naturally)change. Mathematically, theresultsarenotsurprising, becausethemodelsusedaremodicationsof theframeworksdevelopedbyKermackandMcKendrick[47]andRoss[66].10.2. Challengingquestions. We have collected a number of dynamical models,theresults, andinsightsthathavegeneratedinthestudyof TBdynamics. Thehistorical evolution of dynamical models of TB follows a common pattern in biologyfromlineartononlinear, fromonestraintomultiplestrains, fromhomogenoustoheterogeneous,fromdeterministictostochastic,fromempiricaltotheoretical(andviceversa). Themodelsaregivenbysystemof dierenceequations, dierentialequations (ODEs andPDEs), integro-dierential equations, andMarkovchains.Althoughwehaveseenaremarkableprogressinthedevelopmentofatheoreticalframework for the study of the dynamics of TB and other epidemiological processes,theremanyinterestingandchallengingtopicsandquestionsremain. Apartiallistincludesi. ImmigrationAllmodelsessentiallyassumeclosedpopulations,ignoringtheeectsofim-migration. Immigration is probably the critical factor in the generation of newTBcases. IntheU.S.A.alone,over40%oftotalnewcaseshavebeenamongimmigrantsinthepastfewyears.ii. RaceandethnicityThereisevidenceshowingthatcaseratesofTBaredierentamongdierentgroupsofpeople. Thesechangesmayberelatedtovariationsinsusceptibilitytothe tubercle bacilli. We have seenacomplexMarkovchainmodel thattakesthisintoaccount. However, moreworkisrequiredif wearetobetterunderstandtheroleofraceandethnicityindiseasedynamics.iii. GeneticsThemajorreductiononTBmortalityrateswasachievedlongbeforethein-troductionof antibiotics. Canthisreductionbeexplained, atleastpartially,bytheevolutionofhumansusceptibility? RecentworkbyAparicioetal. [4]provideagoodstart. TheworkonHIVandgeneticsbyHsuSchmitz[69,70]suggestsvaluableapproaches.iv. SanitariumThesanitariumwaxedandwanedhistorically. Itplayedacritical roleiniso-latingandcuringactive-TBcaseswhenantibioticswerenotavailable. ModelsthatincorporatetheroleofisolationonTBcontrolarerare. Frostconcludedthatitcoulddelaythenumberofcases[36].v. Global dynamicsTheoretically, we characterized the global dynamics of a few models. For mostmodels, the characterization of their global dynamics remains an open question.Multiple strain models, like (1014) and models with fast and slow progression,like(35)shouldbefurtheranalyzed.vi. TimedependenceThe case of time-dependent coecients is not only more realistic but often nec-essary[73]. Time-dependentparametersleadtothestudyofnon-autonomousDYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 401models. Tostudythelong-termbehaviorofmodelswithtime-dependentco-ecients, thresholdvalues (like the basic reproductive number) needtobefurther developed. Obviously,the classic approach for computing the basic re-productive number is not helpful [26]. We found upper and lower limits for thepersistenceanderadicationofTB,butitseemshardtogetthesharpthresh-oldexplicitly. Themethodsof averagesbyMaetal. [55] maybehelpful inthestudyof this problem. Time-dependent models provideauseful wayofconnectingparameterstodata. Theworkof Aparicioetal. [4] showsthisconclusively.vii. MeanlatentperiodThe distribution of the latent period is unknown as well as its mean. Knowledgeoftheshapeofthisdistributionseemscriticalforcontrol. TheresultsofFengetal.[31]haveshownthatitmaynothaveanimportantqualitativerole,butitcertainlyplaysacriticalquantitativerole.REFERENCES[1] R. M. Anderson, R. M. May and A. R. Mclean (1988). Possible demographic impact of AIDSindevelopingcountries, Nature,332:228234.[2] J. P. Aparicio, A. F. Capurro, andC. Castillo-Chavez(2000). Transmissionanddynamicsoftuberculosisongeneralizedhouseholds, J. Theor. Biol.,206:327341.[3] J. P. Aparicio, A. F. CapurroandC. Castillo-Chavez(2002). Frequencydependentriskofinfectionandthespreadof infectiousdiseases, inMathematical Approaches forEmergingand Reemerging Infectious Diseases: An Introduction, C. Castillo-Chavez with S. M. Blower,P van den Driessche, D. Kirschner, and A. A. Yakubu (Eds.), IMA, Vol.125, Springer-Verlag,NewYork,341350.[4] J. P. Aparicio, A. F. Capurro, C. Castillo-Chavez (2002a). Long-term dynamics and reemer-gence of tuberculosis, in: MathematicalApproachesforEmergingandReemergingInfectiousDiseases: AnIntroduction,C.Castillo-ChavezwithS.M.Blower,P.vandenDriessche,D.Kirschner,A.A.Yakubu(Eds.),IMA,Vol.125,Springer-Verlag,NewYork,pp.351360.[5] B. R. Bloom and C. J. L. Murray (1992). Tuberculosis: Commentary on a reemergent killer,Science,257:10551064.[6] S.M.Blower, A.R.McLean, T.C.Porco, P.M.Small, P.C.Hopwell, M.A.Sanchez,andA. R. Moss(1995). Theintrinsictransmissiondynamicsof tuberculosisepidemics, NatureMedicine,1(8):815821.[7] S. M. Blower, P. M. Small, andP. C. Hopwell (1996). Control strategiesfortuberculosisepidemics: Newmodelsforoldproblems, Science,273:497500.[8] S. M. BlowerandJ. L. Gerberding(1998). Understanding, predictingandcontrollingtheemergenceof drug-resistant tuberculosis: Atheoretical framework, J.Mod. Med.,76:624636.[9] D. Brand (1999). Tuberculosis spreads via crowded city buses, biomathemtician nds,CornellChronicle,Vol.30,Number20,February4,1999.[10] S. Brogger (1967). Systems analysis intuberculosis control: Amodel, Amer. Rev. Resp.Dis.,95:419434.[11] S. Busenberg and K. P. Hadeler (1990). Demography and epidemics,Math.Biosci., 101:4162.[12] S.Busenberg andP.van denDriessche(1990).Nonexistenceofperiodicsolutionsforaclassof epidemiological models, inDierential EquationsModelsinBiology, EpidemiologyandEcology, S. Busenberg and M. Martelli (Eds.), Lecture Notes in Biology 92, Springer-Verlag,Berlin-Heidelberg-NewYork,7179.[13] S. BusenbergandC. Castillo-Chavez(1991). Ageneral solutionof theproblemof mixingsub-populations, andits applicationto risk-andage-structuredepidemic models for thespreadofAIDS,IMAJ. of MathematicsAppliedinMed. andBiol.,8:129.[14] J.Carr(1981), ApplicationsCentreManifoldTheory,Springer-Verlag,NewYork.[15] C. Castillo-ChavezandZ. Feng(1997), Totreatornottotreat: Thecaseof tuberculosis,J. Math. Biol.,35:629656.402 C. CASTILLO-CHAVEZANDB. SONG[16] C. Castillo-ChavezandZ. Feng(1998). Global stabilityof anage-structuremodel forTBanditsapplicationtooptimalvaccinationstrategies, Math. Biosci.,151:135154.[17] C. Castillo-ChavezandZ. Feng(1998). Mathematical modelsforthediseasedynamicsoftuberculosis, inAdvances in Mathematical Population Dynamics: Molecules, Cells andMan,O.Arino,D.Axelrod,andM.Kimmel(Eds.),WorldScientic,629656.[18] C. Castillo-ChavezandW. Huang(2002). Age-structurecoregroupmodel anditsimpactonSTDdynamics, in:. Mathematical ApproachesforEmergingandReemergingInfectiousDiseases: Models, MethodsandTheory, C. Castillo-ChavezwithS. M. Blower, P. vandenDriessche, D. Kirschner, andA. A. Yakubu(Eds.), IMA, Vol. 126, Springer-Verlag, NewYork,261274.[19] C. Castillo-Chavez, A. F. Capurro, M. Zellner, and J. X. Velasco-Hernandez (1998). El trans-porte pblico y la dinmica de la tuberculosis a nivel poblacional.AportacionesMatemaqticas,SerieComunicaciones,22:209225.[20] A.J.E.Cave(1939). BritishJournal of Tuberculosis,33:142.[21] CDC (1989). A strategic plan for the elimination of tuberculosis in the UnitedStates,MMWR,38: (suppl.No.S-3)125.[22] CDC (1999). Surveillance reports reported tuberculosis in the United States, 1999.http://www.cdc.gov/nchstp/tb/surv/surv99/surv99.htm.[23] A. Cockburn and E. Cockburn (1980). Mummies,disease,andancientCultures, Cambridge.[24] T. M. Daniel (2000). Captainof death: Thestoryof tuberculosis, Universityof RochesterPress,Rochester,NewYork.[25] A.M.Debanne,R.A.Bielefeld,G.M.Cauthen,T.M.Daniel,andD.Y.Rowland(2000).Multivariate Markovian modeling of tuberculosis: Forecasts for the United States,EmergingInfectiousDiseases,6(2):148157.[26] O. Diekmann, J. A. P. HeesterbeekandJ. A. J. Metz(1990). Onthedenitionandcom-putationof thebasicreproductiveratioinmodelsforinfectiousdiseasesinheterogeneouspopulation, J. Math. Biol.,28:365382.[27] P. van den Driessche and J. Watmough (2000). A simple SIS epidemic model with a bickwardbifurcation, J. Math. Biol.,40:525540.[28] P. vandenDriesscheandJ. Watmough(2001). Reproductivenumbersandsub-thresholdendemic equilibria for compartment models of disease trsmission,Math.Biosci., 180:2948.[29] R. DubosandJ. Dubos(1952). TheWhitePlague: tuberculosis, man, andsociety, LittleandBrown,Boston.[30] J.Dusho,W.Huang,andC.Castillo-Chavez(1998).Backwardbifurcationsandcatastro-pheinsimplemodelsoffataldiseases,J. Math. Biol.,36:227248.[31] Z. Feng, W. Huang, andC. Castillo-Chavez(2001). Ontheroleof variablelatentperiodsinmathematicalmodelsfortuberculosis, Journal of DynamicsandDierential Equations,13(2):425452.[32] Z. Feng, C. Castillo-Chavez,andA. F. Capurro(2000). Amodel fortuberculosiswithex-ogenousreinfection, Theor. Pop. Biol.,57:235247.[33] Z. Feng, M. Iannelli, and F. Milner (2002). A two-strain TB model with age-structure,SIAMJ. Appl. Math.,62(5):16341656.[34] S. H. Ferebee(1967). Anepidemiological model oftuberculosisintheUnitedStates, NTABulletin,January,47.[35] J. A. Frimodt-M oller(1960). TuberculosisstudyinasouthIndiarural populations, 19501955, Bull. WorldHealthOrgan.,22:413.[36] W.H.Frost(1937).Howmuchcontroloftuberculosis, AmericanJournal of PublicHealthandtheNationsHealth,27(8):759766.[37] J.GukerhamerandP.Homes(1983).Nonlinearoscillations,dynamical systems,andbifur-cationsof vectorelds,Springer-Verlag,NewYork.[38] J.Guckenheimer(1996).Towardsaglobaltheoryofsingularlyperturbedsystems,ProgressinNonlinearDierential EquationsandTheirApplications,19:214225.[39] K. P. Hadeler and K. Ngoma (1990). Homogeneous models for sexually transmitted diseases,RockyMountain, J. Math.,20:967986.[40] K. P. Hadeler (1992). Periodic solutions of homogeneous equations, J. Dierential Equations,95:183202[41] K.P.HadelerandC.Castillo-Chavez(1995).Acoregroupmodelfordiseasetransmission,J. Math. Biosci.128:4155DYNAMICALMODELSOFTUBERCULOSISANDTHEIRAPPLICATIONS 403[42] C.Herrera,S.Lima,R.Munoz,G.Ramos,A.Rodriguez,andC.Salzberg(1996).Amodeldescribingtheresponseof immunesystemtoMycobacteriumtuberculosis, DepartmentofBiometricsTechnicalReportSeries#BU-1364-M,BiometricsDepartment,CornellUniver-sity.[43] W.M.Hirsch, H.Hanisch, andJ.P.Gabriel(1985). Dierentialequationmodelsforsomeparasitic infections: methods for the study of asymptotic behavor, Comm.PureAppl.Math.,38:733753.[44] F. Hoppensteadt(1974). Asymptoticstabilityinsingularperturbationproblems. II: Prob-lems having matched asymptotic expansion solutions,J.DierentialEquations, 15:510521.[45] W. Huang, K. L. Cook,and C. Castillo-Chavez (1992). Stability and bifurcation for amultiple-groupmodel forthedynamicsofHIV/AIDStransmission, SIAMJ. Appl. Math.,52(3):835854.[46] T.A.Kenyon,S.E.Valway,W.W.Ihle,etal.(1996).Transmissionofmultidrug-resistantMycobacterium tuberculosis during a long airplane ight, NewEnglandJournal of Medicine,334:933938.[47] W.O.KermackandA.G.McKendrick(1927).Acontributiontothemathematicaltheoryofepidemics, Proc. R. Soc.,A,115:700721.[48] D.Kirschner(1999).Dynamicsofco-infectionwithM.tuberculosisandHIV-1,TheoreticalPopulationBiology,55:94109.[49] G. Kolata(1995). Firstdocumentedcasesof TBpassedonairlinerisreportedbyU.S.A.,TheNewYorkTimes,March3.[50] C. M. Krisb-ZeletaandJ. X. Velasco-Hernandez(2001). Asimplevaccinationmodel withmultipleendemicstates,Math. Biosci.,164(2):183201.[51] S.A.LevinandD.Pimentel(1981).Selectionofintermediateratesofincreaseinparasite-hostsystems,Am. Nat.,117:308315.[52] T. LietmanandS. M. Blowe(2000). Potential impactoftuberculosisvaccinesasepidemiccontrolagents, Clinical InfectiousDiseases,30(Suppl. 3): S316322.[53] X. Lin, H. W. Hethcote, andP. vandenDriessche(1993). Anepidemiological modelsforHIV/AIDSwithproportionalrecruitment, Math. Biosci.,118:181195.[54] A. M. Lowell, L. B. Edwards, andC. E. Palme(1969). Tuberculosis, HarvardUniversityPress,Cambridge,MA.[55] Z. Ma, B. Song, andT. G. Hallam(1989). The thresholdof survival for systems inauctuatingenvironment, Bull. Math. Biol.,51(3):311323.[56] R. M. MayandR. M. Anderson(1989). Possibledemographicconsequenceof HIV/AIDSepidemics: II, assumingHIVinfectiondoesnotnecessarilyleadtoAIDS, inMathematicalApproaches toProblems inResourceManagement andEpidemiology, C. Castillo-Chavez,S. A. Levin, andC. A. Shoemaker(Eds.), LectureNotesinBiomathematics81, Springer-Verlag,Berlin,220248.[57] R.M.MayandR.M.Anderson(1985).Endemicinfectionsingrowingpopulations, Math.Biosci.,77:141156.[58] J. W. McGrath(1988). Social networkof disease spreadinthe lower Illinios valley: asimulationapproach, Am. J. Phys. Anthropol.,77:483496.[59] NewsinBrief(1999).WHOwarningforairpassengers, Lancet,353:305.[60] T. C. PorcoandS. M. Blower(1998). Quantifyingtheintrinsictransmissiondynamicsoftuberculosis, Theoretical PopulationBiology,54:117132.[61] J. Raalli, K. A. Sepkowitz, andD. Armstrong(1996)Community-basedoutbreaksof tu-berculosis, Arch. Intern. Med.,156:10531060.[62] L. B. ReichmanandJ. H. Tanne(2002). Timebomb: The global epidemic of multi-drugresistanttuberculosis,McGraw-Hill,NewYork.[63] C. S. ReVelle,W. R. Lynn, and F. Feldmann (1967). Mathematical models for the economicallocationof tuberculosis control activities indevelopingnations, Am. Rev. Respir. Dis.,96:893909.[64] C. S. ReVelle (1967). The economics allocation of tuberculosis control activities in developingnations,CornellUniversity.[65] Reuters(1993). AgencycitiesurgentneedtoghtincreaseinTB. TheNewYorkTimes,November16,C8.[66] R.Ross(1911). Thepreventionof malaria,Murry,London.[67] A.A.SalyersandD.D.Whitt(1994). Bacterial pathogenesis,WashingtonD.C.404 C. CASTILLO-CHAVEZANDB. SONG[68] P. A. Selwyn, D. Hartel, andV. A. Lewisetal. (1989). Aprospectivestudyof theriskoftuberculosisamongintravenousdruguserswithhumanimmunodeciencyvirusinfection.N. Engl. J. Med.,320:545550.[69] S-F. Shu Schmitz (2000a). A mathematical model of HIV transimission in homosexuals withgeneticheterogenity, Journal of Theoretical Medicine,bf2:285296.[70] S-F. ShuSchmitz(2000b). TreatmentandvaccinationagainstHIV/AIDSinhomosexualswithgeneticheterogenity, Math. Biosci.,167:118.[71] B. Song, J. P. Aparicio, andC. Castillo-Chavez(2002). Tuberculosismodelswithfastandslowdynamics: Theroleofcloseandcasualcontacts, Math. Biosci.,180:187205.[72] B.Song(2002).Dynamicalepidemicalmodelsandtheirapplications,CornellUniversity.[73] B. Song andC. Castillo-Chavez (2001). Tuberculosis control inthe U.S.A.: Astrategytomeet CDCs goal, Department of Biometrics Technical Report Series #BU-1562-M,BiometricsDepartment,CornellUniversity.[74] B. Song, C. Castillo-Chavez, andJ. P. Aparicio(2002). Global dynamics of tuberculosismodels with density dependent demography, inMathematicalApproachesforEmergingandReemergingInfectiousDiseases: Models,Methods,andTheory.,C.Castillo-ChavezwithS.M. Blower, P. vandenDriessche, D. Kirschner, andA. A. Yakubu(Eds.), IMA, Vol. 126,Springer-Verlag,NewYork,275294.[75] K.Styblo(1985).Therelationshipbetweentheriskoftuberculosisinfectionandtheriskofdeveloping infectious tuberculosis,BulletinoftheInternationalUnionagainstTuberculosis,60:117119.[76] K. Styblo(1991). Epidemiologyof tuberculosis, SelectedPapers, 24, Royal NetherlandsTuberculosisAssociation,TheHague.[77] H. R. Thieme(1993). Persistenceunderrelaxedpoint-dissipativity(withapplicationtoanendemicmodel), SIAMJ. Math. Anal.,24(2): 407435.[78] U.S. Census Bureau(1975). Historical statistics of the UnitedStates: Colonial times to1970,GovernmentPrintingOceWashington,D.C..[79] U.S.CensusBureau(1999). Statistical Abstractsof theUnitedStates,119thedition,Wash-ington,D.C.[80] E. Vynnycky and P. E. M. Fine (1997). The natural history of tuberculosis: The implicationsof age-dependent risks of disease and the role of reinfection, Epidemiol.Infect., 119:183201.[81] H. T. Waaler, A. Gese, andS. Anderson(1962) Theuseof mathematical models inthestudyoftheepidemiologyoftuberculosis, Am. J. Publ. Health,52:10021013.[82] H. T. WaalerandM. A. Piot(1970). Useof anepidemiological model forestimatingtheeectivenessoftuberculosiscontrolmeasures, Bull. WorldHealth. Org.,43:116.[83] W. F. Wells(1995). Aerodynamicsof droplet nuclei, airbornecontagion, andairhygiene,HarvardUniversityPress,Cambridge.[84] WHO(2001). Global TuberculosisControl, WHOreport2001,Geneva.[85] WHO(2000). Global TuberculosisControl, WHOreport2000,Geneva.[86] S. Wiggins (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos,Springer-Verlag,Berlin.[87] Y. Ye(Ed.) (1986) Theoryof limit cycles, Translations of mathematical monographs ByAmericanMathematicalSociety,66: 245260.[88] E.Ziv,C.L.Daley,andS.M.Blower(2001)Earlytherapyforlatenttuberculosisinfection,Am. J. Epidemiol.,153(4):381385.ReceivedonFeb. 27,2004. RevisedonJune20,2004.E-mail address: [email protected] address: [email protected]