E10

  • Upload
    minuri

  • View
    115

  • Download
    0

Embed Size (px)

Citation preview

SECTION 10Air-Cooled ExchangersAn air-cooled exchangeris used t o cool fluids wit h ambientair. Sever al ar t icles have been published descr ibing in det ailt heirapplicat ion and economic analysis. (See Bibliogr aphy att heendoft hissect ion.)Thissect iondescr ibest hegener aldesign of air-cooled exchanger s and pr esent s a met hod of ap-pr oximat e sizing.ARRANGEMENT AND MECHANICALDESIGNFigs. 10-2 and 10-3 show t ypical elevat ion and plan views ofhor izont al air-cooled exchanger s as commonly used. The basiccomponent sar eoneor mor et ubesect ionsser vedbyoneormor e axial flow fans, fan dr iver s, speed r educer s, and an en-closing and suppor t ing st r uct ur e.Air-cooled exchanger s ar e classed as for ced dr aftwhen t het ube sect ion is locat ed on t he dischar ge side of t he fan, and asinduced dr aftwhen t he t ube sect ion is locat ed on t he suct ionside of t he fan.Advantages of i nduced draft are: Bet t erdist r ibut ion of airacr oss t he sect ion. Lesspossibilit yoft hehot effluent air r ecir culat ingar oundt ot heint akeoft hesect ions.Thehot air isdis-Ai= inside sur face of t ube, sq ftAb= out side bar e t ube sur face, sq ftAx= out side ext ended sur face of t ube, sq ftAt= t ube inside cr oss-sect ional ar ea, sq in. (see Fig. 9-25)ACFM = act ual cubic feetperminut eAPF = t ot al ext er nal ar ea/ftof fint ube, sq ft /ftAPSF = ext er nal ar ea of fint ube, sq ft /sq ftof bundle face ar eaAR = ar ea r at io of fint ube compar ed t o t he ext er iorar eaof 1 in. OD bar e t ubeB = cor r ect ion fact or, psi (see Fig. 10-14)Cp= specific heatataver age t emper at ur e, Bt u/(lb F)CMTD = cor r ect ed mean t emper at ur e differ ence, FD = fan diamet er, ftDi= inside t ube diamet er, in.Do= out side t ube diamet er, in.DR= densit y r at io, t he r at io of act ual airdensit y t o t hedensit y of dr y airat70F and 14.7 psia, 0.0749lb/cu ft(see Fig. 10-16)f = fr ict ion fact or(see Fig. 10-12)F = cor r ect ion fact or(see Fig. 10-8)Fa= t ot al face ar ea of bundles, sq ftFp= airpr essur e dr op fact or, in. of wat erperr owof t ubesFAPF = fan ar ea perfan, ft2/fang = local acceler at ion due t o gr avit y, ft /s2G = mass velocit y, lb/(sq ft s)Ga= airface mass velocit y, lb/(hr sq ft ) of face ar eaGt= t ubeside mass velocit y, lb/(sq ft s)ha= airside film coefficientBt u/(h sq ft F)hs= shell side film coefficientbased on out side t ubear ea, Bt u/(h sq ft F)ht= t ube side film coefficientbased on inside t ube ar ea,Bt u/(h sq ft F)J = Jfact or(see Fig. 10-15)k = t her mal conduct ivit y, Bt u/[(hr sq ft F)/ft ]L = lengt h of t ube, ftLMTD = logmean t emper at ur ediffer ence, F (see Fig. 9-3)N = number of r ows of t ubes in dir ect ion of flowNP= numberof t ube passesNR= modified Reynolds number, (in lb/(sq ft s cp)Nt= numberof t ubesP = pr essur e dr op, psiPF = fan t ot al pr essur e, inches of wat era= densit y of air, lb/ cu ftw= densit y of wat er, lb/ cu ftP = t emper at ur e r at io (see Fig. 10-8)Q = heatt r ansfer r ed, Bt u/hrd= fouling r esist ance (fouling fact or ), (hr ft2 F/Bt u)rf= fluid film r esist ance (r ecipr ocal of film coefficient )rmb= met al r esist ance r efer r ed t o out side bar e sur facermx= met al r esist ance r efer r ed t o out side ext endedsur faceR = t emper at ur e r at io (see Fig. 10-8)S = specific gr avit y (wat er= 1.0)t = t emper at ur e airside, FT = t emper at ur e t ube side, FU = over all heatt r ansfercoefficient , Bt u/(h ft2 F)W = mass flow, lb/hrY = cor r ect ion fact or, psi/ft(see Fig. 10-14) = viscosit y, cpw= viscosit y ataver age t ube wall t emper at ur e, cp = viscosit y gr adientcor r ect ionSubscri pts :a = airsideb = bar e t ube sur face basiss = shell sidet = t ube sidex = ext endedt ube sur face basis1 = inlet2 = out letFIG. 10-1Nomenclature10-1char ged upwar d atappr oximat ely 212 t imes t he velocit yof int ake, orabout1500 ft /min. Lesseffect ofsun,r ain,andhail,since60%oft hefacear ea of t he sect ion is cover ed. Incr easedcapacit y in t he eventof fan failur e, since t henat ur al dr aftst ack effectis much gr eat erwit h induceddr aft .Di sadvantages of i nduced draft are: Higherhor sepowersince t he fan is locat ed in t he hotair. Effluent air temperature should be limited to 200F, to pre-ventpotentialdamagetofanblades,bearings,V-belts,orother mechanical components in the hot air stream. The fan dr ive component s ar e less accessible formaint e-nance, which may have t o be done in t he hotairgener -at ed by nat ur al convect ion. Forinletpr ocess fluids above 350F, for ced dr aftdesignshould beused; ot her wise, fan failur e could subjectt hefan blades and bear ings t o excessive t emper at ur es.Advantages of forced draft are: Slight lylower hor sepower sincet hefanisincoldair.(Hor sepower var iesdir ect lyast heabsolut et emper a-t ur e.) Bet t eraccessibilit y of mechanical component s formain-t enance. Easily adapt able forwar m airr ecir culat ion forcold cli-mat es.The disadvantages of forced draft are: Poordist r ibut ion of airovert he sect ion. Gr eat ly incr eased possibilit y of hotairr ecir culat ion, duet o low dischar ge velocit y fr om t he sect ions and absenceof st ack. Low nat ur al dr aftcapabilit y on fan failur e due t o smallst ack effect . Tot al exposur e of t ubes t o sun, r ain, and hail.The hor izont al sect ion is t he mostcommonly used aircooledsect ion,andgener allyt hemost economical.For afluidwit hfr eezingpot ent ial,t het ubesshouldbeslopedat least18 in.perfoott o t he out letheader. Since in mostcases t her e will benopr oblem associat ed wit hfr eezing,and itismor ecost lyt odesign a sloped unit , mostcooler s ar e designed wit h level sec-t ions.Ver t ical sect ions ar e somet imes used when maximum dr ain-age and head ar e r equir ed, such as forcondensing ser vices.Angled sect ions, like ver t ical sect ions, ar e used forcondens-ing ser vices, allowing posit ive dr ainage. Fr equent ly, angle sec-t ionsar eslopedt hir t ydegr ees(30)fr omt hehor izont al.A-fr ames ar e usually sloped sixt y degr ees (60) fr om t he hor i-zont al. See Fig. 10-4.Forced draftDriver DriveassemblyFan FanringSupportingstructureAir plenumchamberTube sectionHeadersNozzlesInduced draftFan Fan ringAir plenumchamberHeadersNozzles DriveassemblyDriverTubeSectionFIG. 10-2Typical Side Elevations of Air CoolersBaywidthBaywidthUnit widthUnit widthTubelengthTubelengthTubelengthTubelengthTwo-fan bay with2 tube bundlesTwo two-fan bays with6 tube bundlesOne-fan bay with3 tube bundlesTwo one-fan bays with4 tube bundlesFIG. 10-3Typical Plan Views of Air CoolersNon-freezeDividedrear headerTubebundleHot airHotairExhaust streamCoolair FIG. 10-4Angled Section Layout10-2Fan sizes r ange fr om 3 ftt o 28 ftdiamet er. However, 14 ftt o 16 ftdiamet eris t he lar gestdiamet ernor mally used. Fandr iver s may be elect r ic mot or s, st eam t ur bines, hydr aulic mo-t or s, orgas-gasoline engines. A speed r educer, such as a V-beltdr ive orr educt ion gearbox, is necessar y t o mat ch t he dr iverout putspeed t o t he r elat ively slow speed of t he axial flow fan.Fant ipspeedsar enor mally12,000ft /minor less.Gener alpr act iceist ouseV-belt dr ivesupt oabout 30bhpandgeardr ives athigher power. Individual dr iversize is usually lim-it ed t o 50 hp.Twofanbaysar epopular,sincet hispr ovidesadegr eeofsafet y againstfan ordr iverfailur e and also a met hod of cont r olby fan st aging. Fan cover age is t he r at io of t he pr oject ed ar eaoft hefant ot hefaceoft hesect ionser vedbyt hefan.Goodpr act ice is t o keep t his r at io above 0.40 wheneverpossible be-cause higherr at ios impr ove airdist r ibut ion acr oss t he face oft he t ube sect ion. Face ar ea is t he plan ar ea of t he heatt r ansfersur face available t o airflow att he face of t he sect ion.The heat -t r ansferdevice is t he t ube sect ion, which is an as-sembly of side fr ames, t ube suppor t s, header s, and fin t ubes.Aluminumfinsar enor mallyappliedt ot het ubest opr ovidean ext ended sur face on t he airside, in or dert o compensat e fort her elat ivelylowheat t r ansfer coefficient oft heair t ot het ube. Fin const r uct ion t ypes ar e t ension-wr apped, embedded,ext r uded, and welded.Tension-wr apped is pr obably t he mostcommon fin t ype usedbecause of economics. Tension wr apped t ubing is common forcont inuous ser vice wit h t emper at ur es below 400F. Ext r udedfin is a mechanical bond bet ween an innert ube exposed t o t hepr ocess and an out ert ube orsleeve (usually aluminum) whichis ext r uded int o a high fin. Embedded fin is an aluminum orst eel fin gr ooved int o t he base t ube. Embedded fins ar e usedin cyclic and high t emper at ur e ser vices. Ot hert ypes of finnedt ubes available ar e solder ed, edge wr apped, and ser r at ed t en-sionwr apped.Cooler sar er egular lymanufact ur edint ubelengt hs fr om 6 ftt o 50 ftand in bay widt hs fr om 4 ftt o 30 ft .Use of longert ubes usually r esult s in a less cost ly design com-par ed t o using shor t ert ubes.Base t ube diamet er s ar e 58 in. t o 112 in. OD wit h fins fr om12 in. t o 1 in. high, spaced fr om 7 t o 11 perinch, pr oviding anext ended finned sur face of 12 t o 25 t imes t he out side sur faceof t he base t ubing. Tubes ar e usually ar r anged on t r iangularpit ch wit h t he fin t ips of adjacentt ubes t ouching orsepar at edby fr om 116 in. t o 14 in. Mat ching of t he t ube sect ion t o t he fansyst em and t he heatt r ansferr equir ement s usually r esult s int he sect ion having dept h of 3 t o 8 r ows of fin t ubes, wit h 4 r owst he mostt ypical.A 1-in. OD t ube is t he mostpopulardiamet er, and t he mostcommonfinsar e 12 in. or58in.high. Thedat a pr esent ed inFig. 10-11 ar e for1 in. OD t ubes wit h 12 in. high fins, 9 fins/in.(designat edas 12x 9) and 58 in. high fins, 10 fins/in. (desig-nat ed as 58 x 10).Commonmat er ialsofconst r uct ionfor header sar efir eboxqualit y car bon st eel, ASTM SA-515-70, SA-516-70. Tubes ar egener ally ASTM SA-214 (ERW), SA-179 (SMLS), car bon st eel.Louver s ar e gener ally car bon st eel, oraluminum wit h car bonst eel const r uct ion being t he mostgener al and mosteconomi-cal.Finsar enor mallyaluminum.Bot hst ainlessandbr assalloyshavet heir applicat ionsbut ar emor eexpensivet hancar bon st eel.HEADER DESIGNPlugheader const r uct ionusesaweldedboxwhichallowspar t ial access t o t ubes by means of shoulderplugs opposit e t het ubes.Plugheader sar enor mallyusedast heyar echeapert han t he alt er nat e coverplat e design. Coverplat e headercon-st r uct ion allows t ot al access t o header, t ube sheet , and t ubes.This design is used in high fouling, low pr essur e ser vice.Fig. 10-5showst ypicaldesignsfor bot hplugheader andcoverplat e header.AIR-SIDE CONTROLAir-cooledexchanger sar esizedt ooper at eat war m(sum-mer ) airt emper at ur es. Seasonal var iat ion of t he airt emper a-t ur e can r esultin over-cooling which may be undesir able. Oneway t o cont r ol t he amountof cooling is by var ying t he amountofair flowingt hr ought het ubesect ion.Thiscanbeaccom-plishedbyusingmult iplemot or s,2-speeddr ives,var iablespeed mot or s, louver s on t he face of t he t ube sect ion, orvar i-able pit ch fans.St aging of fans orfan speeds may be adequat e forsyst emswhich do notr equir e pr ecise cont r ol of pr ocess t emper at ur e orpr essur e. Louver s will pr ovide a full r ange of airquant it y con-t r ol. Theymay beoper at ed manually, oraut omat ically oper -169103113111861735124 151718 14Cover plate header16931105286316Plug header131112414715FIG. 10-5Typical Construction of Tube Section with Plug and CoverPlate Headers1. Tube sheet 7. St iffener 13. Tube keeper2. Plug sheet 8. Plug14. Vent3. Top and bot t om plat es9. Nozzle15. Dr ain4. End plat e10. Side fr ame16. Inst r umentconnect ion5. Tube11. Tube spacer 17. Coverplat e6. Pass par t it ion12. Tube suppor tcr oss-member18. Gasket10-3at ed by a pneumat ic orelect r ic mot orcont r olled fr om a r emot et emper at ur e orpr essur e cont r ollerin t he pr ocess st r eam. Lou-ver susedwit hconst ant speedfansdonot r educefanpowerr equir ement s.Aut o-var iable-pit ch fans ar e nor mally pr ovided wit h pneu-mat ically oper at ed blade pit ch adjust mentwhich may be con-t r olled fr om a r emot e sensor. Blade pit ch is adjust ed t o pr ovidet he r equir ed amountof airflow t o maint ain t he pr ocess t em-per at ur eor pr essur eat t hecooler.Ther equir edbladeangledecr easesasambient air t emper at ur edr opsandt hiscon-ser ves fan power. Hydr aulic var iable speed dr ives r educe fanspeed when less airflow is r equir ed and can also conser ve fanpower.A design consider at ion which mightbe r equir ed forsat isfac-t or y pr ocess fluid cont r ol is co-cur r entflow. In ext r eme casesof high pourpointfluids, no amountof airside cont r ol wouldallowsat isfact or ycoolingandpr event fr eezing.Co-cur r entflow has t he coldestaircool t he hot t estpr ocess fluid, while t hehot t estaircools t he coolestpr ocess fluid. This is done in or dert o maint ain a high t ube wall t emper at ur e. This gives a muchpoor er LMTD,but for highlyviscousfluidsisoft ent heonlyway t o pr eventfr eezing orunaccept able pr essur e dr ops. Wit haircooler s, t he mostcommon met hod of accomplishing co-cur -r entflow is t o have t he inletnozzle on t he bot t om of t he headerwit h t he pass ar r angementupwar ds. This t ot ally r ever ses t hest andar d design, and may cause a pr oblem wit h dr ainage dur -ing shut -downs. In addit ion, airside cont r ol is necessar y wit hco-cur r entdesigns.WARM AIR RECIRCULATIONExt r eme var iat ion in airt emper at ur e, such as encount er edin nor t her n climat es, may r equir e special airr ecir culat ion fea-t ur es.These ar eneeded t o pr ovide cont r ol of pr ocess st r eamt emper at ur es, and t o pr eventfr eezing of liquid st r eams. War mairr ecir culat ion var ies fr om a st andar d coolerwit h one r ever s-ing fan t o a t ot ally enclosed syst em of aut omat ic louver s andfans. These t wo widely used syst ems ar e t er med int er nal r e-cir culat ion and ext er nal r ecir culat ion.At ypicallayout for int er nalr ecir culat ionisshowninFig.10-6. Dur ing low ambientoper at ion, t he manual fan cont inuest o for ce airt hr ough t he inlethalf of t he sect ion. The aut o-var i-able fan oper at es in a r ever sing mode, and dr aws hotairfr omt he upperr ecir culat ion chamberdown t hr ough t he out letendoft hesect ion.Becauseoft helower r ecir culat ionskir t ,t hemanualfanmixessomeoft hehot air br ought downbyt heaut o-var iable fan wit h cold out side airand t he pr ocess r epeat s.The t op exhaustlouver s ar e aut omat ically adjust ed by a t em-per at ur econt r oller sensingt hepr ocessfluidst r eam.Ast hefluid t emper at ur e r ises, t he louver s ar e opened. Dur ing designambient condit ions,t helouver sar efullopenandbot hfansoper at e in a st andar d for ced dr aftmode.A coolerwit h int er nal r ecir culat ion is a compr omise bet weenno r ecir culat ion and fully cont r olled ext er nal r ecir culat ion. Itis cheapert han full ext er nal r ecir culat ion, and has less st at icpr essur elossdur ingmaximumambient t emper at ur econdi-t ions. A coolerwit h int er nal r ecir culat ion is easiert o er ect , andr equir es less plotar ea t han an ext er nal r ecir culat ion design.However, t his lat t erdesign is mor e cost ly t han a coolerwit hnor ecir culat ion,andcannot pr ovidecomplet efr eezepr ot ec-Without recirculationAuto-variable fan(slight negative pitch)Manual fan(on)ExhaustExhaust ExhaustAutomatic louversAutomatic louvers (partially closed)upper recirculationchamberCoilManual fan(on)Auto-variable fan(positive pitch)Lower recirculation skirtMinimumNormal airflowRecirculated airflowNormal airflowLower recirculationskirtUpper recirculationchamberCoilWith recirculationFIG. 10-6Internal Recirculation Design10-4tion. Because there is no control over air intake, and fans alonecannotfullymixair,stratifiedcoldairmaycontactthesection.With the fans off, high wind velocity during low ambient condi-tions could cause excessive cold air to reach the section.A typical layout for external recirculation is shown in Fig. 10-7.During low ambient temperature conditions, two-speed motors onlow speed, or auto-variable fans at low pitch, are normally used.Forthisdesign,thesidesofthecoolerareclosedwithmanuallouvers. Over both ends, a recirculation chamber projects beyondthe section headers, and provides a duct for mixing cold outsideair with warm recirculated air. As with the internal recirculationdesign, the top exhaust louvers are controlled by the temperatureof the process fluid. However, this design provides for control ofthe inlet air temperature. As the inlet air louver closes, an internallouver in the end duct opens. These adjustments are determinedby a controller which senses air temperature at the fan. Once thesystemreachesequilibrium,itautomaticallycontrolsprocesstemperatureandpreventsexcessivecooling.Duringwarmweather, the side manual louvers are opened, while close controlis maintained by adjustment of the exhaust louvers.The external recirculation design is preferred for critical controland prevention of freezing. Once operational, it requires little at-tention.Uponfailureofpowerorairsupply,thesystemclosesautomatically to prevent freezing. It can be designed to automat-ically reduce motor energy use when excess cooling is being pro-vided. The main drawback for t his t ype of system is it s high cost .Severalactuatorsandcontroldevicesarerequired,alongwithmore steel and louvers. It is usually too large to be shop assembled,andrequiresmorefieldassemblythananinternalsystem.Be-cause of the need to restrict air intake, this design increases thestaticpressure,causinggreaterenergyuse,and20-25%largermotors than a standard cooler.Whendesigninganext er nalr ecir culat ionunit ,consider a-t ion mustbe given t o t he plenum dept h and ductwor k t o allowairmixing and pr eventexcessive st at ic pr essur e loss. The lou-ver int akear eashouldbelar geenought okeept heair flowbelow 500 ft /min dur ing maximum design condit ions.AIR EVAPORATIVE COOLERSWet /dr y t ype (airevapor at ive cooler s) aircooler s may be agood economical choice when a close appr oach t o t he ambientt emper at ur eisr equir ed.Int hesesyst ems,t hedesigner cant ake advant age of t he differ ence bet ween t he dr y bulb and wetbulb t emper at ur es. Ther e ar e t wo gener al t ypes of airevapo-r at ive coolercombinat ions used alt hough ot hercombinat ionsar e possible:We tairtypeInt hist ype,t heair ishumidifiedbyspr aying wat erint o t he airst r eam on t he inletside of t he aircooler. The airst r eam may t hen pass t hr ough a mistelimina-t ort o r emovet he excess wat er. The airt hen passes overt hefinned t ubes atclose t o it s wet -bulb t emper at ur e. If t he misteliminat or isnot used,t hespr ayshouldbeclean,t r eat edwat erort he t ube/fin t ype and met allur gy should be compat -ible wit h t he wat er.We t tubetype An airevapor at ive coolermay be oper -at ed in ser ies wit h an aircoolerif t her e is a lar ge pr ocess fluidt emper at ur e change wit h a close appr oach t o t he ambient . Thepr ocess fluid ent er s a dr y finned t ube sect ion and t hen passesint o a wet , plain t ube sect ion (orappr opr iat e finned t ube sec-t ion). The airis pulled acr oss t he wett ube sect ion and t hen,aft er dr oppingout t heexcessmoist ur e,passesover t hedr yt ube sect ion.Access door for each bayAutomatic louvers HandrailGratingwalkwayAutomatic louversBug and lint screen when requiredManual louversHingedaccessdoorFixed panel inrecirculation compartmentCoilCoil guardManual louversBug and lint screen when requiredFIG. 10-7External Recirculation Design10-5SPECIAL PROBLEMS IN STEAMCONDENSERSTher e ar e oft en pr oblems wit h st eam condenser s which needspecial at t ent ion att he design st age.Imploding(collapsingbubbles)or knockingcan cr eat e vio-lent fluidfor ceswhichmaydamagepipingor equipment .Thesefor cesar ecr eat edwhenasubcooledcondensat eisdumpedint oat wo-phasecondensat eheader,or whenlivest eampassesint osubcooledcondensat e.Thispr oblemisavoidedbydesigningt hest eamsyst emandcont r olssot hatst eam and subcooled condensat e do notmeetin t he syst em.Non-condensable gas st agnat ion can be a pr oblem in t he aircooled st eam condenserany t ime t her e is mor e t han one t uber ow perpass. The t emper at ur e of t he airincr eases r ow by r owfr ombot t omt ot opoft heair cooledsect ion.Thecondensingcapacit y of each r ow will t her efor e var y wit h each t ube r ow inpr opor t iont ot heTdr ivingfor ce.Sincet het ubesar econ-nect ed t o common header s and ar e subjectt o t he same pr es-sur e dr op, t he vaporflows int o t he bot t om r ows fr om bot h ends.The non-condensables ar e t r apped wit hin t he t ube att he pointof lowestpr essur e. The non-condensables cont inue t o accumu-lat einallbut t het opr owsunt ilt heyr eacht het ubeout let .The syst em becomes st able wit h t he condensat e r unning outof t hese lowert ube r ows by gr avit y. This pr oblem can be elimi-nat ed in sever al ways: By assigning only one t ube r ow perpass. By connect ing t he t ube r ows att he r et ur n end wit h 180r et ur n bends and eliminat ing t he common header.AIR COOLER LOCATIONCir culat ion of hotairt o t he fans of an aircoolercan gr eat lyr educet hecoolingcapacit yofanair cooler.Cooler locat ionshould t ake t his int o consider at ion.Si ngle Installati onsAvoid locat ing t he air-cooled exchangert oo close t o buildingsorst r uct ur es in t he downwind dir ect ion. Hotairvent ing fr omt heair cooler iscar r iedbyt hewind,andaft er st r ikingt heobst r uct ion,someoft hehot air r ecyclest ot heinlet .Anin-duceddr aft fanwit hsufficient st ackheight alleviat est hispr oblem, butlocat ing t he aircooleraway fr om such obst r uc-t ions is t he bestsolut ion.An aircoolerwit h for ced dr aftfans is always suscept ible t oair r ecir culat ion.Ift heair cooler islocat edt oocloset ot hegr ound,causinghighinlet velocit iesr elat ivet ot heexhaustair velocit yleavingt hecooler,t hehot air r ecir culat ioncanbecomever ysignificant .For ceddr aft cooler sar epr efer ablylocat ed above pipe lanes r elat ively high above t he gr ound. In-duced dr aftcooler s ar e less likely t o exper ience r ecir culat ionbecauset heexhaust velocit iesar enor mallyconsider ablyhighert han t he inletvelocit ies.Banks of CoolersCooler s ar r anged in a bank should be close t oget herorhaveair sealsbet weent hemt opr event r ecir culat ion bet ween t heunit s. Mixing of induced dr aftand for ced dr aftunit s in closepr oximit yt oeachot her invit esr ecir culat ion.Avoidplacingcooler s atdiffer entelevat ions in t he same bank.Avoid placing t he bank of cooler s downwind fr om ot herheatgener at ing equipment .Since aircan only ent eron t he ends of cooler s in a bank, t hebank should be locat ed above gr ound high enough t o assur e ar easonably low inletvelocit y.The pr evailing summerwind dir ect ion can have a pr ofoundeffect ont heper for manceoft hecooler s.Nor mallyt hebankshould be or ient ed such t hatt he wind flows par allel t o t he longaxis of t he bank of cooler s, and t he it ems wit h t he closestap-pr oacht ot heambientt emper at ur eshouldbe locat edon t heupwind end of t he bank.Thesegener alizat ionsar ehelpfulinlocat ingcooler s.TheuseofComput at ionalFluidDynamicst ost udyt heeffect ofwind dir ect ion, velocit y, obst r uct ions, and heatgener at ing ob-ject s should be consider ed t o assur e t he bestlocat ion and or i-ent at ionofair cooledheat exchanger s,especiallyfor lar geinst allat ions.MULTIPLE SERVICE DISCUSSIONIf differ entser vices can be placed in t he same plotar ea wit h-outexcessive piping r uns, itis usually less expensive t o com-binet hemononest r uct ur e,wit heachser vicehavingasepar at e sect ion, butshar ing t he same fan and mot or s. Sepa-r at elouver smaybeplacedoneachser vicet oallowinde-pendent cont r ol.Thecost andspacesavingsmakest hismet hod common pr act ice in t he aircoolerindust r y.Indesigningmult ipleser vicecooler s,t heser vicewit ht hemostcr it ical pr essur e dr op should be calculat ed fir st . This isbecause t he pr essur e dr op on t he cr it ical it em mightr est r ictt he maximum t ube lengt h t hatt he ot herser vices could t oler -at e. The bur den of for cing mor e t han one ser vice int o a singlet ube lengt h incr eases t he possibilit y of design er r or s.Sever alt r ial calculat ions may be needed t o obt ain an efficientdesign.Aft er allser viceplot ar eashavebeenest imat ed,combinet hem int o a unithaving a r at io of 2 or3 t o 1 in lengt h t o widt h(assumingat wofancooler ).Aft er assumingat ubelengt h,calculat e t he mostcr it ical ser vice forpr essur e dr op using t heassumed numberand lengt h of t ubes and a single pass. If t hedr op isaccept able orver y close, calculat e t he cr it ical ser vicecomplet ely. Once a design fort he mostcr it ical ser vice has beencomplet ed, follow t he same pr ocedur e wit h t he nextmostcr it i-cal ser vice. Aft ert he second orsubsequentser vices have beenr at ed, itis oft en necessar y t o lengt hen orshor t en t he t ubes orchange t he over all ar r angement . If t ubes need t o be added forpr essur e dr op r educt ions in alr eady over sur faced sect ions, itmightbe mor e costeffect ive t o add a r ow(s) r at hert han wident he ent ir e unit . The fan and mot orcalculat ions ar e t he sameas fora single ser vice unit , exceptt hatt he quant it y of airusedmustbe t he sum of airr equir ed by all ser vices.CONDENSING DISCUSSIONThe example given cover s cooling pr oblems and would wor kwit h st r aightline condensing pr oblems t hathave t he appr oxi-mat er angeofdewpoint t obubblepoint oft hefluid.Wher ede-super heat ingor subcoolingor wher edispr opor t ionat eamount s of condensing occuratcer t ain t emper at ur es, as wit hst eamandnon-condensables,calculat ionsfor air cooler sshouldbedonebyzones.Aheat r eleasecur vedevelopedfr om ent halpy dat a will show t he quant it y of heatt o be dissi-pat edbet weenvar ioust emper at ur es.Thezonest obecalcu-lat edshouldbest r aight linezones;t hat is,fr omt heinlett emper at ur eofazonet oit sout let ,t heheat loadper degr eet emper at ur e is t he same.Aft ert he zones ar e det er mined, an appr oximat e r at e mustbefoundfor eachzone.Dot hisbyt akingr at esfr omvapor10-6cooling,condensing,andliquidcooling,t henaver aget hesebasedont heper cent ofheat loadfor t hat phasewit hint hezone. Next , calculat e t he LMTD of each zone. Begin wit h t heout letzone using t he final design out lett emper at ur e and t heinlett emper at ur e of t hatzone. Cont inue t o calculat e t he zoneas if itwer e a cooler, exceptt hatonly one pass and one ort wor ows should be assumed, depending on t he per cent age of heatloadint hat zone.Incalculat ingt hepr essur edr op,aver agecondit ions may be used forest imat ing.If t he calculat ions forzone one (orlat era succeeding zone)show a lar ge numberof shor tt ubes wit h one pass, as is usuallyt hecasewit hst eamandnon-condensables,r ecalculat et hezone wit h mult iple r ows (usually four ) and shor tt ubes havingone pass t hatuses only a per cent age of t he t ot al pr essur e dr opallowed. The t ot al coolerwill be calculat ed as if each zone wer ea coolerconnect ed in ser ies t o t he nextone, exceptt hatonlyt ube pr essur e dr ops should be calculat ed fort he middle zones.Thus, each zone musthave t he same numberof t ubes and t r ueambientmustbe used in calculat ing t he LMTD. Only t he t ubelengt h may var y, wit h odd lengt hs fora zone accept able as longas over all lengt h is r ounded t o a st andar d t ube lengt h.Ift hecalculat ionsfor zoneone(andsucceedingzones)fitwell int o a longert ube lengt h, t he LMTD mustbe weight ed.Aft ert he out letzone has been calculat ed, calculat e zone t wousing t he inlett emper at ur e foritand it s out lett emper at ur e,which is t he inlett emper at ur e of zone one. The ambient usedt o find t he zone t wo LMTD will be t he design ambientplus t heairr ise fr om zone one. Cont inue in t his manner, always usingt hepr eviouszones out let airt emper at ur ein calculat ing t hecur r entzones LMTD. Aft ert he coolersize and configur at ionhave been det er mined, t he fan and mot orcalculat ions will bemade in t he nor mal manner.The ult imat e pr essur e dr op is t he sum of t he dr ops foreachzone orappr oximat ely t he sum of t he dr op foreach phase usingt he t ube lengt h and pass ar r angementforeach phase. An es-t imat ed over all t ube side coefficientmay be calculat ed by es-t imat ing t he coefficientforeach phase. Then t ake a weight edaver age based on t he per cent age of heatload foreach phase.Thet ot alLMTDmust bet heweight edaver ageoft hecalcu-lat ed zone LMTDs.THERMAL DESIGNThebasicequat iont obesat isfiedist hesameasgiveninSect ion 9, HeatExchanger s:QUA CMTDEq 10-1Nor mally Q is known, U and CMTD ar e calculat ed, and t heequat ionissolvedfor A.Theambient air t emper at ur et obeused will eit herbe known fr om available plantdat a orcan beselect ed fr om t he summerdr y bulb t emper at ur e dat a given inSect ion 11, Cooling Tower s. The design ambientairt emper a-t ur e is usually consider ed t o be t he dr y bulb t emper at ur e t hatis exceeded less t han 5 per centof t he t ime in t he ar ea wher et he inst allat ion is r equir ed.A complicat ion ar ises in calculat ing t he LMTD because t heairquant it y is a var iable, and t her efor e t he airout lett emper a-t ur e is notknown. The pr ocedur e given her e st ar t s wit h a st epforappr oximat ing t he air-t emper at ur e r ise. Aft ert he air-out -lett emper at ur e has been det er mined, t he cor r ect ed LMTD iscalculat ed in t he mannerdescr ibed in t he shell and t ube sec-t ion,exceptt hat MTDcor r ect ionfact or st obe used ar e fr omFigs. 10-8 and 10-9 which have been developed fort he cr oss-flow sit uat ion exist ing in air-cooled exchanger s.Fig. 10-8 is forone t ube pass. Itis also used formult iple t ubepassesifpassesar esidebyside.Fig.10-9isfor t wot ubepasses and is used if t he t ube passes ar e overand undereachot her. A MTD cor r ect ion fact orof 1.0 is used forfourormor epasses, if passes ar e overand undereach ot her. A cor r ect ionfact orof 1.0 may be used as an appr oximat ion fort hr ee passes,alt hought hefact or willbeslight lylower t han1.0insomecases.Thepr ocedur efor t het her maldesignofanair cooler con-sist s of assuming a select ion and t hen pr oving itt o be cor r ect .Thet ypicalover allheat t r ansfer coefficient sgiveninFig.10-10 ar e used t o appr oximat e t he heatt r ansferar ea r equir ed.The heatt r ansferar ea is conver t ed t o a bundle face ar ea usingFig. 10-11whichlist st heamount ofext endedsur faceavail-ableper squar efoot ofbundlear ea fort wo specificfin t ubeson t wo differ entt ube pit ches for3, 4, 5, and 6 r ows. Aft eras-suming a t ube lengt h, Fig. 10-11 is also used t o ascer t ain t henumberof t ubes. Bot h t he t ube side and airside mass veloci-t ies ar e now det er minable.The t ube-side film coefficientis calculat ed fr om Figs. 10-12and 10-13. Fig. 10-17 gives t he air-side film coefficientbasedonout sideext endedsur face.Sinceallr esist ancesmust bebased on t he same sur face, itis necessar y t o mult iply t he r e-cipr ocal of t he t ube-side film coefficientand t ube-side foulingfact orby t he r at io of t he out side sur face t o inside sur face. Thisr esult s in an over all t r ansferr at e based on ext ended sur face,designat ed as Ux. The equat ion forover all heatt r ansferr at eis:1 Ux |

.1 ht `

, |

. Ax Ai`

, + rdt |

. Ax Ai`

, + rmx + 1 ha Eq 10-2Thebasicequat ionwillt henyieldaheat t r ansfer ar eainext ended sur face, Ax, and becomes:Q(Ux) (Ax) CMTDEit hermet hod is valid and each is used ext ensively by t her -maldesignengineer s.Fig.10-10givest ypicalover allheatt r ansfercoefficient s based on bot h ext ended sur face and out -side bar e sur face, so eit hermet hod may be used. The ext endedsur face met hod has been select ed foruse in t he example whichfollows. The air-film coefficientin Fig. 10-17 and t he airst at icpr essur edr opinFig.10-18ar eonlyfor 1in.ODt ubeswit h58in.highfins,10finsper inchon214in.t r iangular pit ch.Refert o Bibliogr aphy Nos. 2, 3, and 5 forinfor mat ion on ot herfin configur at ions and spacings.Theminimumfanar eaiscalculat edinSt ep16usingt hebundle face ar ea, numberof fans, and a minimum fan cover ageof0.40.Thecalculat edar eaist henconver t edt oadiamet erandr oundedupt ot henext availablefansize.Theair-sidest at ic pr essur e is calculat ed fr om Fig. 10-18 and t he fan t ot alpr essur e is est imat ed using gr oss fan ar ea in St ep 20. Finally,fanhor sepower iscalculat edinSt ep21assumingafaneffi-ciency of 70%, and dr iverhor sepoweris est imat ed by assum-ing a 92%-efficientspeed r educer.Example 10-1 Pr ocedur e forest imat ing t r ansfersur face,plotar ea, and hor sepowerRequired data for hot flui dName and phase:48API hydr ocar bon liquidPhysical pr oper t ies atavg t emp = 200FCp0.55 Bt u/(lb F)0.51 cp10-7FIG. 10-8MTD Correction Factors (1 Pass Cross Flow, Both Fluids Unmixed)FIG. 10-9MTD Correction Factors (2 Pass Cross Flow, Both Fluids Unmixed)10-8k0.0766 Bt u/[(hr sq ft F)/ft ](Fr om t his Dat a Book Sect ion 23)Heatload:Q=15,000,000 Bt u/hrFlow quant it y:Wt=273,000 lb/hrTemper at ur e in:T1=250FTemper at ur e out :T2=150FFouling fact orrdt=0.001 (hr sq ft F)/Bt uAllowable pr essur e dr op:Pt=5 psiRequired data for ai rAmbientt emper at ur e:t1=100FElevat ion:Sea level (see Fig. 10-16 foralt it udecor r ect ion)CPair = 0.24 Bt u/(lb F)Basi c as sumptionsType:For ced dr aft , 2 fansFint ube:1 in. OD wit h 58 in. high finsTube pit ch:2 12 in. t r iangular()Bundle layout :3 t ube passes, 4 r ows of t ubes, 30 ftlong t ubesFi rs t trial1. Pickappr oximat eover allt r ansfer coefficient fr omFig.10-10. Ux=4.22. Calculat e appr oximat e airt emper at ur e r iseta|

.Ux + 110`

, |

.T1 + T22 t1`

,ta|

.4.2 + 1.010`

, |

.250 + 1502 100`

,52F3. Calculat e CMTDHydocar bonAir 250 15298

150 10050 LMTD=71.3F (see Fig. 9-3)CMTD=(71.3) (1.00)=71.3F (3 t ube passes assumed)4. Calculat e r equir ed sur faceAxQ(Ux) (CMTD)Ax15,000,000(4.2) (71.3)50,090 sq ft5. Calculat e face ar ea using APSF fact orfr om Fig. 10-11 FaAxAPSFFa50,090107.2467 sq ft(4 r ows assumed)6. Calculat e unitwidt h wit h assumed t ube lengt hSer vice1in.Fint ube12in.by958in.by10UbUxUbUx1.Wat er& wat ersolut ions(Seenot ebelow)Engine jacketwat er(rd = 0.001)1107.51306.1Process wat er(rd = 0.002)956.51105.250-50 et hylene glycol-wat er(rd = 0.001)906.21054.950-50 et hylene glycol-wat er(rd = 0.002)805.5954.42.Hydr ocar bon liquid cooler sViscosit y,cp,at avg.t emp.UbUxUbUx0.2855.91004.70.5755.2904.21.0654.5753.52.5453.1552.64.0302.1351.66.0201.4251.210.0100.7130.63.Hydr ocar bon gas cooler sPr essur e,psigUbUxUbUx50302.1351.6100352.4401.9300453.1552.6500553.8653.0750654.5753.51000755.2904.24.Airand flue-gas cooler sUse one-half of value given forhydr ocar bon gas cooler s.5.St eam Condenser s (At mospher ic pr essur e & above)UbUxUbUxPure St eam(r d = 0.0005)1258.61456.8St eam wit hnon-condensibles604.1703.36.HC condenser sCondensing*Range,FUbUxUbUx0range855.91004.710range805.5954.425range755.2904.260range654.5753.5100&over range604.1703.37.Ot hercondenser sUbUxUbUxAmmonia1107.61306.1Fr eon 12654.5753.5Not es:Ubisoverallr at ebasedonbaret ubear ea,andUxisover allr at ebased on ext ended sur face.Basedonapproximat eairfacemassvelocit iesbet ween2600and2800lb/(hrsq ftof face area).*Condensingrange=hydr ocar boninlet t emper at uret ocondensingzoneminus hydr ocar bon out lett emperat ur e from condensing zone.FIG. 10-10Typical Overall Heat-Transfer Coefficients for Air Coolers10-9Widt hFaLWidt h4673015.57 ftFor simplificat ionr oundt hisanswer t o15.5,t husFa=465 (30-ft -long t ubes assumed)7. Calculate number of tubes using APF factor from Fig. 10-11NtAx(APF) (L)Nt50,090(5.58) (30)2998. Calculat e t ube-side mass velocit y fr om assumed numberof passes and r eading At fr om Fig. 9-25 fora 1 in. OD x16 BWG t ubeAt = 0.5945 sq in.Gt(144) (Wt) (Np)(3600) (Nt) (At)Gt(0.04) (273,000) (3)(299) (0.5945)184 lb/(ft2 sec)9. Calculat e modified Reynolds numberNR(Di) (Gt)(0.87) (184)0.5131410. Calculat et ube-sidepr essur edr opusingequat ionfr omFig. 10-14 and fr om Fig. 10-15PtfYLNp + BNpPt(0.0024) (14.5) (30) (3)0.96 + (0.25) (3)4.0 psi(isadifficultfunct ion t o calculat er igor ously, see Fig.10-19)11. Calculat e t ube-side film coefficientusing equat ion fr omFig. 10-15 andk |

.Cpk`

,13 fr om Fig. 10-13htJ k |

.Cpk`

,13 Di(1900) (0.12) (0.96)0.8725212. Calculat e airquant it yWaQ(0.24) (ta)Wa15,000,000(0.24) (52)1,200,000 lb/hr13. Calculat e airface mass velocit yGaWaFalb/(hr sq ftof face ar ea)Ga1,200,0004652,58114. Read air-side film coefficientfr om Fig. 10-17ha8.515. Calculat e over all t r ansfercoefficientAxAi(AR) (Do)DiAxAi(21.4) (1.0)0.8724.61Ux|

.1ht`

, |

.AxAi`

,+ rdt |

.AxAi`

, + rmx + 1ha1Ux|

.1252`

, (24.6) + (0.001) (24.6) + 18.5Ux4.17(rmx is omit t ed fr om calculat ions, since met al r esist anceis small compar ed t o ot herr esist ances)Secondandsubsequenttri als .IfUxcalculat edinSt ep 15 is equal orslight ly gr eat ert han Ux assumed in St ep 1,andcalculat edpr essur edr opinSt ep9iswit hinallowablepr essur e dr op, t he solut ion is accept able. Pr oceed t o St ep 16.Ot her wise, r epeatSt eps 1-15 as follows:1. AssumenewUxbet weenvalueor iginallyassumedinSt ep 1 and value calculat ed in St ep 15.Fi nHei ghtby Fi ns/inch12i n. by958 i n.by 10APF, sqft /ft 3.805.58AR, sqft /sqft 14.521.4Tube Pit ch2in.214 in. 214 in. 238 in. 212 in. APSF(3r ows)68.460.689.184.880.4(4r ows)91.280.8118.8113.0107.2(5r ows)114.0101.0148.5141.3134.0(6r ows)136.8121.2178.2169.6160.8Not es:APF ist ot alext er nalar ea/ftof fint ube insq ft /ft .ARis t hear ear at iooffint ubecompar ed t o t heext er iorar eaof1in.OD bar e t ube which has 0.262 sqft /ft .APSF ist he ext er nal ar ea insq ft /sq ft ofbundleface ar ea.FIG. 10-11Fintube Data for 1-in. OD Tubes10-10FIG. 10-12Friction Factor for Fluids Flowing Inside Tubes10-11FIG. 10-13Physical Property Factor for Hydrocarbon Liquids10-12FIG. 10-14Pressure Drop for Fluids Flowing Inside Tubes10-13FIG. 10-15J Factor Correlation to Calculate Inside Film Coefficient, h t10-142. Adjust tabyincr easingtaifcalculat edUxishighert hanassumedUx,or decr easingtaifcalculat edUxislowert han assumed Ux.3.-15. Recalculat evaluesinSt eps3-15changingassumednumber ofpassesinSt eps3and8,andt ubelengt hinSt ep6,ifnecessar yt oobt ainapr essur edr opascalcu-lat ed in St ep 9 as high as possible wit houtexceeding t heallowable.16. Calculat e minimum fan ar ea.Fan ar ea/fa nFAP F(0.40) (Fa)(No. fans)FAPF(0.40) (465)293 ft2 (2 fans assumed)17. Fan diamet er [4 (FAPF)/]0.5=[4 (93)/3.1416]0.511 ft(r ounded up)18. Calculat eair st at icpr essur edr opusingFpfr omFig.10-18 and DR atavg airt emp fr om Fig. 10-16.Ta, avg100F + 152F2126FPa(Fp) (N)(DR)Pa(0.10) (4)0.900.44 i n ch esof wat er19. Calculat e act ual airvolume using DR of airatfan inlet .t1=100F250200150100500-501000.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4Density ratio, Dg, dimensionlessTemperature, FReference state dry air at 70Fand sea level, 14.7 psiaElevation Ft.8,0007,0006,0005,0004,0003,0002,0001,0000FIG. 10-16Air-Density Ratio ChartFIG. 10-17Air Film CoefficientFIG. 10-18Air Static-Pressure DropCorr ect ion fact or when|

.w`

, 0.14(See Fig. 10-15)Cor rect ionFact or, 1. Hydr ocar bon vapor ; st eam; wat er 1.02. Hydr ocar bon liquids (18 t o 48 API), MEA/DEAsolut ions0.963. Wat er /glycol solut ions; heatt r ansferfluids0.924. Lube oils; heavy pet roleum fract ions (10 t o 18 API)0.85 When N r< 17, ( w)0.25 A Reynolds numberof less t han 17 is onlylikelyforlubeoilsor heavypet roleumfract ions.Theminimumr ecom-mendedvalueoft ouseinSt ep10is0.80,event hought hecalculat edvalue may be lower.FIG. 10-19Correction Factor for Fluid Viscosity Within the Tubes10-15ACFMWa(DR) (60) (0.0749)ACFM1,200,000(0.94) (60) (0.0749)284,000 Tot alor142,000 / Fan20. Appr oximat e fan t ot al pr essur e using DR of airatfan andfan ar ea.PFPa +

ACFM 4005|

. D2 4 `

, ]]]]] 2 (DR)Wher e: 40052 g w (3600) a 12 at70FPF0.44 + |

.142,000(4005) (0.785) (112)`

,2 (0.94)0.57 inches of wat er21. Appr oximat ebr akehor sepower per fan,using70%fanefficiency.bhp(ACFM/fan) (PF)(6356) (0.70)Wher e t he conver sion fact or6356|

.33,000 ft lbmin hp`

, |

.12 in.ft`

, |

.ft362.3 lb`

,Not e:62.3 is t he weightof one cubic footof wat erat60F.bhp(142,000) (0.57)(6356) (0.70)18.2Act ualfanmot or neededfor 92%efficient speedr educer is18.2/0.92 = 19.8 hp. Fort his applicat ion, 20 hp dr iver s wouldpr obably be select ed.Soluti on:(15.5 ft ) (30 ft )=465 sq ft(465 sq ft ) (APSF)=ext ended sur face ar ea(465) (107.2)=49,848 sq ftTher efor e,oneunit having49,848sqft ofext endedsur face,t wo 11 ftdiamet erfans, and t wo 20 hp fan dr iver s, is r equir ed.MAINTENANCE AND INSPECTIONAt t ent iont ot hedesignoft heair cooler,andt hechoiceofmat er ials, is essent ial t o pr ovide low maint enance oper at ion.Majorfact or s t o be consider ed ar e at mospher ic cor r osion, cli-mat iccondit ions,andt emper at ur ecyclingoffluidbeingcooled.Scheduledpr event ivemaint enanceandinspect ionist hekey t o t r ouble-fr ee aircooleroper at ion. A check of all fans forvibr at ion should be made r egular ly. Att he fir stsign of unduevibr at ion on a unit , t he unitshould be shutdown att he ear liestoppor t unit y fort hor ough examinat ion of all moving par t s. Asemi-annual inspect ion and maint enance pr ogr am should: Check and r eplace wor n orcr acked belt s. Inspect fanbladesfor deflect ionandfor cr acksnearhubs. Gr ease all bear ings. Change oil in geardr ives. Checkt heinsideoft ubesect ionfor accumulat ionofgr ease, dir t , bugs, leaves, et c., and schedule cleaning be-for e t ubes become packed wit h such debr is.BIBLIOGRAPHY1. A.P.I.St andar d661,Air CooledHeat Exchanger sfor Gener alRefiner y Ser vices.2. Br iggs, D. E., Young, E. H., Convect ion HeatTr ansferand Pr es-sur eDr opofAir FlowingAcr ossTr iangular Pit chofTubes,ChemicalEngineer ingPr ogr essSymposiumSer ies,Volume59,No. 41, 1963.3. Cook, E. M., AirCooled HeatExchanger s, Chemical Engineer -ing,May25,1964,p.137;J uly6,1964,p.131;andAugust 3,1964, p. 97.4. Gar dner, K. A., Efficiency of Ext ended Sur faces, Tr ans ASME,Volume 67, 1945, pp. 621-631.5. Robinson,K.K.,Br iggs,D.E.,Pr essur eDr opofAir FlowingAcr oss Tr iangularPit ch Banks of Finned Tubes, Chemical En-gineer ing Progress Symposium Series, Volume 62, No. 64, 1966.6. Rubin, Fr ank L., Wint er izing AirCooled HeatExchanger s, Hy-dr ocar bon Pr ocessing, Oct ober1980, pp. 147-149.10-16