20
Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1 , Matthieu Talpe 2 , F. Lemoine 3 , R. Steven Nerem 2 , Felix Landerer 1 , Michael Watkins 1 . 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 2 Univ. of Colorado, Boulder, CO. 3 NASA Goddard Space Flight Ctr, Greenbelt, MD 1 JPL Document Clearance CL#14-3086

Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

Embed Size (px)

DESCRIPTION

Four ways to measure gravity from space satell tracking from earth (laser, doppler) (since 1975) high low sat sat tracking: GPS (since 1992) low-low sat-sat tracking GRACE (since 2002) gradiometry GOCE (mostly time-mean) ( ) 3 oldest newest

Citation preview

Page 1: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

1

Earth System Data Record of mass transport from time-variable gravity

data

Victor Zlotnicki1, Matthieu Talpe2, F. Lemoine3, R. Steven Nerem2, Felix Landerer1, Michael Watkins1.

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

2Univ. of Colorado, Boulder, CO.3NASA Goddard Space Flight Ctr, Greenbelt, MD

JPL Document Clearance CL#14-3086

Page 2: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

Gravity changes track water storage changes

2

Everything has mass, hence use gravity changes to track Water Storage changes

Groundwater storage

Soil Moisture

Reservoirs

Snow Glaciers

Ice Sheets

Sea Level

Page 3: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

3

Four ways to measure gravity from space• satell tracking from

earth (laser, doppler)(since 1975)

• high low sat sat tracking: GPS(since 1992)

• low-low sat-sat tracking GRACE(since 2002)

• gradiometry GOCE (mostly time-mean)(2009-2013)

oldest

newest

Page 4: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

4

GRACE is best, why bother with others?GRACE has provided the highest resolution and accuracy estimates of time changes in water/ice, but need:

• to extend the time series in time before GRACE launch

• to patch a possible gap between GRACE and GRACE Follow-on

Page 5: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

5

GPS + laser satellite tracking 1

M.Weigelt, T. Van Dam, et al, 2014, GRACE STM Mtg.

Page 6: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

6

GPS + laser satellite tracking 2

M.Weigelt, T. Van Dam, et al, 2014, GRACE STM Mtg.

wavelength ~ 40,000km/l

4,000 2,000 1,333 1,000 800 667 ~wavelength (km)

Page 7: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

7

GPS + laser satellite tracking 3

K. Sosnica, A. Jaggi, M.Weigelt et al, 2014, GRACE STM Mtg.

Page 8: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

8

DORIS + Laser satellite tracking 1

F. Lemoine, GSFC, 2014

Page 9: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

9

DORIS + Laser satellite tracking EOF reconstruction

Page 10: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

10

DORIS + Laser satellite tracking EOF reconstruction

Page 11: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

11

DORIS + Laser satellite tracking EOF reconstruction

Greenland

Page 12: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

12

Differences in GRACE processingno instrument bias differences between different satellites, main diff is spatial resolution

But, differences due to processing choices can have spatial patterns.

Example: RMS difference between two GRACE processing centers, using the same underlying GRACE data

Page 13: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

13

How to validate mass fluxes 1Validation

• OCEAN– comp to bottom pressure recorders (Boening, GRL 2008)– comp to altimetry-argo (Chambers, Bonin 2012)– comp to ocean+data model (Chambers, Bonin 2012)

• ICE– comp Greenland to SMB (Velicogna 2014)– comp Amundsen SMB, Icesat, Envisat (Velicogna 2015)

• LAND– comp to GPS deformation in Calif. (Argus & Landerer,

2015)– comp to well data (Swenson, 2008)

Page 14: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

14

How to validate mass fluxes 2

Amundsen Sea Embayment, WAIS.1) GRACE2) mass budget method3) Envisat radar altimetry4) Icesat and airborne OIB

laser altimetry

Sutterley, Velicogna, et al GRL 2015

Bottom Pressure Recorders, 8S, 125W(Zlotnicki, Williams, Hughes, Boening, 2013)

Page 15: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

15

Summary, Discussion• GRACE is the most accurate method to

determine time-variable mass flux globally 2003 to 2015+, >300-500km. GFO in 2017.

• The time series can be extended with GPS+SLR or Doris+SLR (or all 3), at lower spatial resolution > ~2,000-8,000km

• There are no biases introduced by the different satellites, but there can be systematic differences due to processing choices

• There are several methods to validate gravity-derived mass fluxes, but limited in space and time

Page 16: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

16

BACKUP

Page 17: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

17

Gravity data measures mass flux• The longest wavelength, J2,

measured since 1976. Glacial isostatic adjustment + Greenland and Antarctica ice sheet melt, measured by SLR.

• Greenland, Antarctica, glaciers ice mass loss measured by GRACE since 2003

• Land total water content: GRACE

• Ocean mass and bottom pressure: GRACE

J2: Cheng, Tapley JGR 2013

Velicogna & Wahr, GRL 2013

Greenland ice mass

Page 18: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

18

DORIS + Laser satellite tracking EOF reconstruction

Page 19: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

• Magnitude of orbit perturbations (hence sensitivity) diminishes with altitude.• Sensitivity is not uniform across all coefficients of a given degree, especially given only SLR or DORIS tracking.• Envisat has sensitivity to many terms at order 1 – but not all terms are separable from SLR+DORIS data alone on that satellite.

(mm)

Orbit Perturbations (mm) for SLR+DORIS satellites from effects of Time-Variable Gravity (Cryosat2, Envisat, Jason-2)

Jason-2EnvisatCryosat-2

F. Lemoine, GSFC, 2014

Page 20: Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix

Correlations of SLR+DORIS 5x5 solution with GRGS GRACE+Lageos solution (2003-2012)

C coefficientsS coefficients

• C20, C22, sectorals, match GRACE solutions well;

• For C31, C32 and coefficients at L=5, the agreement becomes less good.

F. Lemoine, GSFC, 2014