23
Module still needs: Modeling activities in some lessons Clarification of some activities in teacher notes *Needs to include natural selection in the ecology unit in food webs and succession and in the fossil module. Scroll down to see the teacher instructions below.

Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

  • Upload
    trannga

  • View
    216

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Module still needs:Modeling activities in some lessonsClarification of some activities in teacher notes

*Needs to include natural selection in the ecology unit in food webs and succession and in the fossil module.

Scroll down to see the teacher instructions below.

Ecology

Page 2: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Essential questionsHow do matter and energy move through an ecosystem? (3.4 & 3.5)

What factors limit the amount of life an ecosystem supports? (4.1)What if one such factor is suddenly too abundant or totally missing?

What are some ways humans impact ecosystems? (4.2)

What impact do invasive species have in ecosystem stability? (4.3)

What is required to keep an ecosystem stable? (4.4)

How do ecosystems respond to disturbance?

Instructional goals

Create a food web and the importance of each organism within the web.

Describe the human impact on a lake ecosystem

Be able to create and explain ecological pyramids from data.

Be able to explain population growth and limiting factors.

Be able to explain the steps of ecosystem recovery after a disturbance.

Give students experience in observing and describing the role of ecological succession in ecosystems.

Be able to explain the climate effect on the distribution of biomes.

Be able to define and describe the possible ecological relationships between species that coexist in an ecosystem and their affect on the stability of an ecosystem.

Be able to identify non-native/invasive species and their affect on the stability of an ecosystem.

Be able to describe the use of natural resources by humans and its impact on the stability of ecosystems.

Be able to explain and describe the biogeochemical cycles and their role in ecosystems.

Indiana Standards

Page 3: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs and how organisms convert that matter into a variety of organic molecules to be used in part in their own cellular structures.

3.5: Describe how energy from the sun flows through an ecosystem by way of food chains and food webs and how only a small portion of that energy is used by individual organisms while the majority is lost as heat.

4.1: Explain that the amount of life environments can support is limited by the available energy, water, oxygen and minerals and by the ability of ecosystems to recycle the remains of dead organisms.

4.2: Describe how human activities and natural phenomena can change the flow and of matter and energy in an ecosystem and how those changes impact other species.

4.3: Describe the consequences of introducing non-native species into an ecosystem and identify the impact it may have on that ecosystem.

4.4: Describe how climate, the pattern of matter and energy flow, the birth and death of new organisms, and the interaction between those organisms contribute to the long-term stability of an ecosystem.

Misconceptions• Stronger organisms have more energy.

• There are more herbivores because they have more offspring.

• A species high on the food web is a predator to everything below it.

• Energy accumulates in an ecosystem so that a top predator has all the energy from

the organisms below it.

• Carnivores can exist in a plant free world if their prey reproduces enough.

• There is a starting and ending point in the food chain.

• The simpler the organism, the simpler the food it eats. Therefore, as an organism

increases in complexity the more complex the food it eats.

• Energy only flows from the top of the food chain down, with those at the top having the

most energy and increasing in number at the expense of those below.

• Energy flow is one-way, rather than cyclical or two-way.

• Organisms in a population are important only to those other organisms on which it

preys for food sources.

Page 4: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

• A population located higher on a given food chain within a food web is predator of all

populations located below it in the chain.

• Producers in a community are the most numerous because energy in a food chain

goes on diminishing and less energy passes to each animal. It is wasted in respiration

and growth.

• A size change in one population will have not too much effect over another population

of the same food web because the chains are spread out.

• In a food web, a size change in one population will only affect another population if two

populations are directly related as predator-prey.

• Populations will increase indefinitely because the resources are unlimited.

• There is no link between fluctuations in population size and environmental issues like

food supply.

• Chemical pollutants undergo no change in form as they move through food chains.

• The food that is eaten and used as a source of energy is part of the food chain; food

that is synthesized into the body of the eater is now food for the next level.

• Energy is not conserved.

• Students believe energy can be recycled through an ecosystem many times

• Plants obtain their energy directly from the sun.

• Plants have multiple sources of food (heterotrophic as well as autotrophic).

Essential vocabulary

autotrophheterotrophproducerprimary consumersecondary consumerherbivorecarnivoreomnivorescavengerdetritivore

population communityecosystemspeciespredatorpreyfood webfood chainbiomassfood pyramid

energy pyramidcommensalismsparasitismmutualismsymbiosisprimary successionsecondary successionpioneer species biomes

disturbance

invasive speciesexponential growthcarrying capacitytolerancelimiting factorsnichecompetitionbiosphereclimax community

Page 5: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Sequence Timing ~18 - 21 days (timing is based on 55-minute periods)This sequence does not include any time for quizzes and review, Also, you are strongly encouraged to incorporate one of the Vernier labs listed at the end of this module.

1. Model Development - Human Water Connection – WB and discuss (2-3 days)

2. Model Deployment - Alien Pyramid – WB and discuss (1 day)

3. Oh Deer Game/Wolf Limiting Factors OR A Predator -Prey Simulation (1-2 days)

4. Pond Succession pictures (½day)

5. Successful Succession Activity (1½ days)

6. Mr. Parr video about Biomes - Biome Whiteboard Activity (1 day)

7. Symbiotic Strategies Activity (4 days)

8. Local invasive species activity or presentation (2 days)

9. National Geographic Human Footprint Activity (3 days)

10.Modeling Deployment - Videos and songs about the Cycles/Act out the nutrient cycles in groups – WB and discuss. (2 – 3 days)

Instructional Notes:This sequence does not include any time for quizzes and review, Also, you are

strongly encouraged to incorporate one of the Vernier labs listed at the end of this module.

Energy Transfer:1. Model Development Activity – Human Water Connection

(Adapted from the Lake County Forest Preserve District, Lesson 15)Apparatus

 Lake Michigan Species Cards (found in the Ecology file folder for Human-Water Connection)Paper arrows (at least two sets per group) Water Pollution Overview (for teachers)Water Pollution Overview reproducible for studentsHuman Activity Scenario Cards Additional Notes with Scenario G and Food chains description

Page 6: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Information about various types of pollution available in the textbook or the Internet

      Human Activity and Pollution 

Pre-activity discussion Water has an impact on human activity; human activity has an impact on water.

Ask students to share their responses to the statement above on whiteboards. When sharing the boards, as a class, brainstorm ways that humans pollute the

water (i.e., sediment, toxic, bacterial, and nutrient pollution). 

InstructionsDivide the class into groups and assign each group a type of pollution to investigate.Using the Internet and books, each group will prepare a short 3-5 minute presentation for the class about their topic. Each presentation should include the following:• Definition of the chosen type of pollution • Cause(s) of the chosen type of pollution • Prevention of the chosen type of pollution• Handout for other students summarizing the information (Before their presentation, students should make enough copies for everyone in the class.)Before the presentations, distribute one blank Water Pollution Overview reproducible to each student. Instruct students to take notes on this reproducible during each presentation.

 Post-activity discussion

During the presentations be sure to ask students to think of the effect Humans have on the environment.Be sure to review their Pollution overview sheets for accuracy.Review each type of pollution and ask for examples.

 Pollution and the Lake Michigan Food Web

 Day 2 Pre-activity discussion

Review the concept of a food chain with students and have them recreate a food chain on the white boards and share out as a group. Make sure students have a working knowledge of the following terms: food chain, ecosystem, producer, consumer, herbivore, carnivore, omnivore.Arrange the students in groups.  Pass out the species cards and arrows to each group. Ask the groups to use the information on the cards to recreate a food chain on the whiteboard.  Then have a share out of all the different chains the students created.  Discuss how these things can all interact.

 

Page 7: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Day 2 InstructionsEach group will create a food web using the species cards (representing

organisms in the web) and arrows (representing the flow of energy). Walk around while students are working to make sure they are on the right track. Note: One common mistake students make is placing the arrows in the wrong direction. Remind them that the arrows point in the direction of energy flow — producer consumer, not the other way around!Once the groups have completed their webs, pass out the Human Activity Scenario Cards. Each group should receive a different card. Students should read the scenario cards and determine how this human activity will contribute to water pollution, and as a result affect their food webs. Students should rearrange their webs to show how the introduction of the pollution affects the environment. For example, an increase in nutrients might cause an algal bloom, followed by a decrease in consumers due to lack of oxygen. Within their groups, they discuss the impact of the varying types of pollution on the different organisms in their food webs. By rearranging the food web, students are able to see the impact of pollution at different levels.Create a whiteboard to present the results of the scenario changes.  Present these to the class.  If time allows, each group can repeat Step 14, using a different card.

 Extensions• As a follow-up, students are asked to pick one way that humans have an impact on the lake ecosystem and research possible methods of prevention/treatment.• Have students pick another ecosystem and create species cards and a food web for that system.• Ask students to research local, state and federal laws regulating pollution.Modifications• To shorten this lesson, the following modifications can be made:- Rather than having students do the research themselves, give them handouts or notes defining types of water pollution.- Save one human activity card aside and use that for the assessment. This eliminates the time needed for each group to create its own scenario.• To lengthen this lesson, the following modification can be made:- Create more scenario cards for students to practice with before the assessment.

 Post-activity discussion Over the past several days we have discussed the negative impact that humans

have had on the waters of Lake Michigan. Are there ways that human activity has had a positive impact on the lake? Explain.

Reflect on the effect of pollution in the ecosystem. What did students notice about the food webs?

Page 8: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Are all the webs the same? Are the scenarios a realistic representation of issues that arise in the

environment?

2. Model Deployment - Alien Pyramid

ApparatusWhite board and markersStory about the Aliens and tasks

      Pre-activity discussion

We use many models to represent various things in life.  It is always easier to see the big picture when it is put in some sort of model/chart.  We get to use our knowledge of a distant planet to create a pyramid of numbers and a pyramid of energy.Discuss how you can measure everything around you.  An ecological pyramid measures the various elements of the environment around you.

      Instructions

Using the Alien Pyramid story as a guide the students will need to create their own ecological pyramid on the whiteboards.  Once the students have finished you will have a board circle presentation.   Then give each group a different scenario to morph their pyramids.  Then have the groups present their findings individually, explaining the reasoning behind the changes that they have made.  (You will find the scenarios in the Post-activity discussion section.)

 Post-activity discussion Ask the class how the scenarios are related to a real-life situation. Why would you use the pyramid to show this information? What percent of energy moves from level to level? What happens to the energy missing?  Is it gone? Why might the numbers not be perfect? (the rule of ten-percent) How many tropic levels can an environment support?

 Sample Scenarios:

The biologists visiting the planet consume all of the Vorteks or food. A deadly disease wipes out all of the Klukes Animals called Skunkolas travel to the area being studied from another region of the planet.  The Skunkolas prey upon the Vorteks; the Klukes, the Klukes, however, dislike the taste of Skunkolas and refuse to eat them. More Vorteks are planted. A tertiary consumer called a Joon is introduced.

Page 9: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Populations and Limiting Factors:3. Oh Deer/Wolf Limiting Factors OR A Predator -Prey Simulation

(Adapted from Project Wild Oh Deer Game)Apparatus

A Predator -Prey Simulation HandoutMaterials (per team of 2): 400 small squares (mice) of construction paper (1 cm sqd)

1 larger square (4 cm squared) masking tape

meter stickOh Deer

Materials: playing field or large gympaper and pencil to record datawhiteboard or chalk board to compile data and graph

Wolf Limiting FactorsMaterials:

playing field or large gym2 sets of 3 x5 cards: one red, one green

1/3 of each set is labeled “water”1/3 of each set is labeled “food”

1/3 of each set is labeled “shelter”Paper and pencil to record dataWhiteboard or chalkboard to compile data and graph

Pre-activity discussion: What happens if a population gets too large? too small? How is a population controlled so the ecosystem remains in balance? Discuss in pairs, record ideas on whiteboard and share as a class.

InstructionsOh Deer or Wolf Limiting Factors activities are played outdoors or in a large gym. Oh Deer is recommended for its predator component but if your students did this in middle school, the wolf activity is an alternative that can be adapted to include a predator...humans!On a rainy day, the Predator-Prey Simulation (Owls and Mice) is suitable for the classroom. *

Page 10: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Post-activity discussion Students will make a graph on their whiteboard of the data collected during the

activity. Locate the discussion and summary questions on each activity to use for closure

discussion.* Cutting out all the mice and owls is extremely tedious, so one teacher asked the severely handicapped classroom if they would like to take on the job and they did a great job! Succession:4. Pond Succession Pictures

Apparatus

      Pond Succession PowerPointWhiteboards and markers

      Overhead Projector

Pre-activity discussion

      None needed

Instructions

      This is the introduction to succession with little to no prior knowledge.  For this activity students will be in groups of 2-4 students.  They will be shown the PowerPoint and asked to recreate the pictures in the correct order and give their justification for this arrangement on the Whiteboards.  After about 10-15 minutes the students should have a circle share out of the boards.

Post-activity discussion

Ask students the reason they placed the pictures in the order they did. Are all the arrangements the same? What organisms directed you to the order you selected? What would you expect to see next? Why do you think the pond island with no growth was bare? Is the order of regrowth always going to be the same?  Why or why not? What is this called? (succession) Introduce primary and secondary succession and then ask what type the pond is

representing.

5. Successful Succession(Adapted from Eastman Outdoors Texas, Successful Succession Curricula)Apparatus

Journals

Page 11: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Digital CamerasComputersPowerpoint or KeynoteWorksheets: Cloze Procedure, Flowchart (1 per student)Cards: Forest fire information (4)

Pre-activity discussion: None

InstructionsLabel the 4 corners of your classroom with the following signs:

Strongly Agree, Agree, Strongly Disagree, DisagreeThe teacher should make the statement, “All forest fires are bad.” Students will then go stand in the corner that best represents their feelings about this statement. Allow students time to share their thoughts in each corner and then have a spokesperson defend each position. Give each group a Forest Fire Information Card to read and discuss.

Students will then be allowed to move to a new corner if their views have changed. Allow them to defend their new choice using specific

examples or facts from the cards. Explain to students that there are times when an environment will change

drastically and that ecological succession is the orderly replacement of native species over time.

Have students use their succession knowledge and flow charts provided to represent the four levels of succession on their white boards. Ask them

to describe or draw the plants and animals that will come back in each stage.

Post-activity discussion:Students will complete the Cloze Procedure Activity on Succession in

pairs. They will use pre-existing knowledge to predict the reasons for and stages of ecological succession. Students whiteboard this

information.As a class, go over and discuss the Cloze Procedure Activity and the

whiteboards.  

Biomes:6. Mr. Parr’s Biome Song (video)

ApparatusMr. Parr Biome Song (found on YouTube http://www.youtube.com/watch?v=0A5eeE93uEA )Whiteboards and markersAdditional research materials- textbooks or the internet with information about Biomes

Page 12: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

 Pre-activity discussion

  Ask students what they know about Biomes.

 Instructions

 This activity is a brief overview of Biomes.  It is important for students to

know about the different Biomes around the world so that they are able to relate the flow of energy through various places and to understand how climates are variable around the world.  You should show the Mr. Parr video to the class.  They may want to see it a second time a little later.  After this you will divide the class into groups of 2-4 students and they will each select a different Biome to study.  For the next 30 minutes students should prepare a brief presentation about their Biome on a whiteboard.  You will then present these to the class one at a time.  During the presentations be sure to have students elaborate on the types of organisms that are present, the climate, precipitation, and locations on Earth.

 Post-activity discussion

  Ask students what types of things were the distinguishing characteristics of a

Biome.              What happens to the organisms that die in each of the Biomes? What type of cycles are you able to think of occurring in the Biomes and do they

vary in different places? What would happen if an organism from one location moved into another?  What

if it is a non-native species? Mention that species/biomes are migrating north.  Why do you think this might be

happening? What could have happened in the past? (Pangea)

Symbiosis:7. Symbiotic Strategies Activity

(Adapted from Nature on PBS.org)Apparatus (See handouts for materials)

Pre-activity discussion

Instructions (See handouts for instructions)

Post-activity discussion

Sustainability/Human Interaction/Invasive Species8. Local invasive species activity or presentation

Page 13: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

This model is variable depending on your availabilities in your area.  The best option is to have a local environmentalist visit your school or you can take your students to them.  If you are unable to do this you will need to prepare a presentation about the invasive species in your part of the world.  Students need to see the connection to their world.

 Apparatus

DNR or a local naturalist – Rum Village Park in South Bend Indiana has a wonderful presentation about Invasive species locally.

      OR A Presentation about invasive species in your area.

Pre-activity discussion Ask students to whiteboard the plant and animal species they can think of in their

neighborhood. Ask how many of these are native to the area.

Discuss what a non-native/invasive species is.

What might be the result of an invasive species in your neighborhood? 

InstructionsThis is where you should have the presenter or your own presentation about local invasive species.  Here is a site you can use as an example from Ohio. http://www.dnr.state.oh.us/portals/3/invasive/pdf/invasive_plants06.pdf

 Post-activity discussion

You can now whiteboard a reflection about the presentation and what types of species are present in your area.  The students can also research possible solutions to the invasive species and then present them to the class at a later time.  They could also help prepare some public awareness events or materials, such as a brochure or poster, to inform others of the issues caused by invasive species, and hopefully help prevent their spread.  (Rum Village needed assistance with pulling the Garlic Mustard invasive in the park and the school visited to help with this as a follow up to the activity.)

9. National Geographic Human Footprint Activity(Adapted from National Geographic Lessons online)Apparatus (See handout for materials)

Pre-activity discussion

Instructions (See handout for Instructions)

Post-activity discussion

Page 14: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Cycles of Carbon, Nitrogen, Phosphorus and Water10. Videos and songs about Nutrient Cycles

Apparatus:Youtube nutrient cycle songsvideos on nutrient cyclesballoonsconstruction or bulletin board paperyarnmarkerstapeother craft materials4 whiteboards per team

Pre-activity discussion:Ask students what is meant by “You are what you eat” or ask what they need to grow. Have them whiteboard their ideas.Elicit from them that they need more than energy...they need materials.Ask what materials they need to build a living thing.Ask where their food acquires these materials.Ask students why nutrients have to be recycled, but energy can get used up.Show videos and/or songs on the cycles to introduce the topic. Suggested media are in the appendix

InstructionsPlace on each wall of your classroom the following signs or images:

OceanAtmosphereSoil/rocksForest

Assign teams of students to act out one of each of the nutrient cycles.(If you have need of a fifth group, you may want to consider having one team act out a food web to contrast the flow of energy and the cycling of nutrients). Provide time to design their “skit”, assign roles, make costumes or props and rehearse.Have teams make one whiteboard of their cycle.Teams present their skits.

Post-activity discussion

While each team presents, have the other teams make one whiteboard of the cycle being presented. At the end of the skits, teams convene into board meetings to compare their boards to textbook versions. Record and repair any discrepancies. Hold a whole class board meeting and elicit the key processes of each cycle, where the reservoirs are, the role of decomposers, and human impact.

Page 15: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

The following are songs and videos to review or introduce the cycles:

Mr. Parr’s Water Cycle: http://www.youtube.com/watch?v=o3BVa7PH_JECarbon Cycle song: http://www.bing.com/videos/search?q=+%22carbon+cycle

%22+Songs&view=detail&mid=71CCF66DC0BEAE5A5A4071CCF66DC0BEAE5A5A40&first=0

Additional Activities: Vernier Primary Productivity Lab (2 days) Vernier Population Dynamics Lab (1 full day to set-up, 8 days for observations

(15-20 min/day) Vernier Biodiversity Lab (1 day) (can be done without Vernier equipment) Vernier Acid Rain Lab (1 day) Vernier Interdependence of Plants and Animals Lab (2 days)

Below are samples of the instructional notes for two Vernier lab.

Model Vernier Primary Productivity: 2 daysApparatus

Data collection hand-held LabQuest DevicesDissolved oxygen probesBottles or tubes that can form airtight sealsPond water or a source of Chlorella: 5 ml of Chlorella per liter of waterPlastic window screen from hardware store: 17 12cmx12cm piecesDispense water easily using a carboy with a spout at the bottom and a tube on the spout and a shallow pan to catch dripsFlorescent light to direct onto filled tubes laid horizontally on a table

Pre-activity discussion What do producers produce? (Elicit from past knowledge food and oxygen) How can we measure the amount of photosynthesis (productivity)? Introduce Vernier probes

InstructionsFirst part of lab can be done while on a field trip

Page 16: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Follow directions on “cookbook” lab but use “questioning” to guide the thinking of students as the lab proceeds.Students prepare data table, graph and conclusion on whiteboardsHold a board meeting.

Post-activity discussion Ask students to relate lab results to Energy Pyramids and food webs. Discuss what factors limit or increase productivity Discuss how this would affect the shape of the pyramid or food web

Model: Vernier Population Dynamics: 1 full day to set-up, 8 days for observations (15-20 min/day)

ApparatusPhoto of yeast under a microscopeData collection hand-held LabQuest DevicesVernier Colorimeter18x150 test tubesCuvette and lid2 5-ml pipettes or 10 ml graduated cylindersdropper pipetteglass marking pencilsgraph papermicroscope, slide, coversliptest-tube rackcotton swabs

Pre-activity discussion Give students their closed system of a yeast population with food. Show them the picture of yeast under a microscope. On their whiteboards have students answer the following questions. How could we determine the density of the yeast population? How might the yeast population change over time? What factors would determine the rate of change in their population?

Instructions Ask what aspects of populations might be measured. Elicit density. Ask how we could observe a yeast population. Elicit microscope. Elicit that one could count yeast per area under a scope. Introduce a colorimeter means of measuring density using turbidity.

Page 17: Ecology - University of Notre Damenismec/biomodel/mod2/Ecology Teacher Notes.docx · Web view3.4: Describe how matter cycles through an ecosystem by way of food chains and food webs

Post-activity discussion Students will whiteboard data tables, graphs and their conclusions. Class will

hold a board meeting to share, make observations, and the main point of the lab.

Additional Resources: Here are some additional resources for videos. Feel free to show these whenever

you find them appropriate throughout the module. The video called “How Ecosystems Work” is appropriate for Energy and nutrient cycles.

http://www.youtube.com/profile?user=greatpacificmedia&src_vid=o_RBHfjZsUQ&feature=iv&annotation_id=annotation_753252#grid/user/8F2AF6D5E617BA4B