14
C. Br&hignac P. Houdy M. Lahmani (Eds.) Nanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer

(Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

C. Br&hignac P. Houdy M. Lahmani(Eds.)

Nanomaterialsand NanochemistryWith 461 Figures and 26 Tables

R 5EUROPEAN MATERIALS

RESEARCH SOCIETY

ei Springer

Page 2: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

Contents

Part I Basic Principles and Fundamental Properties

1 Size Effects on Structure and Morphologyof Free or Supported NanoparticlesC. Henry 31.1 Size and Confinement Effects 3

1.1.1 Introduction 31.1.2 Fraction of Surface Atoms 31.1.3 Specific Surface Energy and Surface Stress 41.1.4 Effect on the Lattice Parameter 51.1.5 Effect on the Phonon Density of States 8

1.2 Nanoparticle Morphology 81.2.1 Equilibrium Shape of a Macroscopic Crystal 81.2.2 Equilibrium Shape of Nanometric Crystals 101.2.3 Morphology of Supported Particles 17

References 32

2 Structure and Phase Transitions in NanocrystalsJ.-C. Niepce, L. Pizzagalli 352.1 Introduction 352.2 Crystalline Phase Transitions in Nanocrystals 39

2.2.1 Phase Transitions and Grain Size Dependence 392.2.2 Elementary Thermodynamics of the Grain Size

Dependence of Phase Transitions 402.2.3 Influence of the Surface or Interface on Nanocrystals 422.2.4 Modification of Transition Barriers 44

2.3 Geometric Evolution of the Lattice in Nanocrystals 462.3.1 Grain Size Dependence 462.3.2 Theory 472.3.3 Influence of the Nanocrystal Surface or Interface

on the Lattice Parameter 50

Page 3: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

XII Contents

2.3.4 Is There a Continuous Variation of the Crystal StateWithin Nanocrystals? 51

References 53

3 Thermodynamics and Solid—Liquid TransitionsP. Labastie, F. Calvo 553.1 Size Dependence of the Solid—Liquid Transition 56

3.1.1 From the Macroscopic to the Nanometric 563.1.2 From Nanoparticles to Molecules 64

3.2 Thermodynamics of Very Small Systems 673.2.1 General Considerations 673.2.2 Non-Equivalence of the Gibbs Ensembles 683.2.3 Dynamically Coexisting Phases 693.2.4 Stability of an Isolated Particle.

Thermodynamic Equilibrium 733.3 Evaporation: Consequences and Observation 74

3.3.1 Statistical Theories of Evaporation 743.3.2 Link with the Solid—Liquid Transition. Numerical Results 793.3.3 Experimental Investigation of Evaporation 803.3.4 Beyond Unimolecular Evaporation 813.3.5 Toward the Liquid—Gas Transition 82

References 86

4 Modelling and Simulating the Dynamics of Nano-ObjectsA. Pimpinelli 894.1 Introduction 894.2 Free Clusters of Atoms.

Molecular Dynamics Simulations 904.3 Evolution of Free and Supported Nanoclusters

Toward Equilibrium. Kinetic Monte Carlo Simulations 93References 97

Part II Physical and Chemical Properties an the Nanoscale

5 Magnetism in NanomaterialsD. Givord 1015.1 Introduction 1015.2 Magnetism in Matter 102

5.2.1 Magnetic Moment 1025.2.2 Magnetic Order 1055.2.3 Magnetocrystalline Anisotropy 108

5.3 Magnetisation Process and Magnetic Materials 1105.3.1 Energy of the Demagnetising Field. Domains and Walls 1115.3.2 The Magnetisation Process 1125.3.3 Magnetic Materials 115

Page 4: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

Contents XIII

5.4 Magnetism in Small Systems 1165.4.1 Magnetic Moments in Clusters 1165.4.2 Magnetic Order in Nanoparticles 1195.4.3 Magnetic Anisotropy in Clusters and Nanoparticles 120

5.5 Magnetostatics and Magnetisation Processes in Nanoparticles 1215.5.1 Single-Domain Magnetic Particles 1215.5.2 Thermal Activation and Superparamagnetism 1225.5.3 Coherent Rotation in Nanoparticles 1235.5.4 From Thermal Activation to the Macroscopic Tunnel Effect 124

5.6 Magnetism in Coupled Nanosystems 1265.6.1 Exchange-Coupled Nanocrystals. Ultrasoft Materials

and Enhanced Remanence 1265.6.2 Coercivity in Nanocomposites 1285.6.3 Exchange Bias in Systems of Ferromagnetic Nanoparticles

Coupled with an Antiferromagnetic Matrix 130References 132

6 Electronic Structure in Clusters and NanoparticlesF. Spiegelman 1356.1 Introduction 1356.2 Liquid-Drop Model 1396.3 Methods for Calculating Electronic Structure 141

6.3.1 Born—Oppenheimer Approximation. Surface Potential 1426.3.2 Ab Initio Calculation of Electronic Structure 1446.3.3 Density Functional Theory 1476.3.4 Charge Analysis 1496.3.5 Approximate and Semi-Empirical Descriptions 1506.3.6 Energy Bands and Densities of States 152

6.4 Applications to Some Typical Examples 1546.4.1 Metallic Nanoparticles 1546.4.2 Molecular Clusters 1626.4.3 Tonic and Ionocovalent Clusters 1706.4.4 Covalent Systems 175

6.5 Valence Changes 1786.5.1 Transitions with Size 1786.5.2 Transitions with Stoichiometry 179

6.6 Nanotub es 1826.7 Prospects 185References 188

7 Optical Properties of Metallic NanoparticlesF. Valide 1977.1 Optical Response for Free Clusters

and Composite Materials 198

Page 5: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

XIV Contents

7.2 Optical Responsein the Quasi-Static Approximation: Nanospheres 199

7.3 Dielectric Constant of a Metal:Nanometric Size Effect 203

7.4 Surface Plasmon Resonancein the Quasi-Static Approximation: Nanospheres 207

7.5 Surface Plasmon Resonance:Quantum Effects for Small Sizes (D < 5 nm) 211

7.6 General Case for Nanospheres: The Mie Model 2137.7 Non-Spherical or Inhomogeneous Nanoparticles

in the Quasi-Static Model 2167.7.1 Shape Effects: Ellipsoids 2167.7.2 Structure Effects: Core–Shell System 217

7.8 Optical Response of a Single Metal Nanoparticle 2197.9 Electromagnetic Field Enhancement: Applications 221

7.9.1 Nonlinear Optical Response 2217.9.2 Time-Resolved Spectroscopy 2227.9.3 Local Enhancement of Raman Scattering: SERS 223

7.10 Conclusion 224References 226

8 Mechanical and Nanomechanical PropertiesC. Tromas, M. Verdier, M. Fivel, P. Aubert, S. Labdi, Z.-Q. Feng,M. Zei, P. Joli 2298.1 Macroscopic Mechanical Properties 229

8.1.1 Introduction 2298.1.2 Elastic Properties 2298.1.3 Hardness 2318.1.4 Ductility 2348.1.5 Numerical Modelling 236

8.2 Nanomechanical Properties 2388.2.1 Experimentation 2388.2.2 Computer Modelling 254

References 265

9 S up erplast icityT. Rouxel 2699.1 Introduction 2699.2 Mechanism 2709.3 Superplastic Nanostructured Materials 2769.4 Industrial Applications 277References 280

Page 6: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

Contents XV

10 Reactivity of Metal NanoparticlesJ.-C. Bertolini, J.-L. Rousset 28110.1 Size Effects 282

10.1.1 Structural Properties 28210.1.2 Electronic Pfoper-Hes 28610.1.3 Reactivity in Chemisorption and Catalysis

of Monometallic Nanoparticles 28810.2 Support Effects 29310.3 Alloying Effects 295

10.3.1 Effect of Surface Segregation 29610.3.2 Geometric Effects 29710.3.3 Electronic Effects 298

10.4 Preparation and Implementation in the Laboratoryand in Industry 299

References 302

11 Inverse Systems — Nanoporous SolidsJ. Patarin, 0. Spalla, F. Di Renzo 30511.1 Introduction 30511.2 Nomenclature: The Main Families

of Porous Materials 30511.3 Zeolites and Related Microporous Solids.

Definition and Structure 30711.4 Ordered Mesoporous Solids 30911.5 Disordered Nanoporous Solids 311References 314

12 Inverse Systems — Confined Fluids:Phase Diagram and MetastabilityE. Charlaix, R. Denoyel 31512.1 Displacement of First Order Transitions: Evaporation and

Condensation 31512.1.1 Adsorption Isotherms 31512.1.2 Capillary Condensation 31712.1.3 Capillary Pressure and the Kelvin Radius 31912.1.4 Non-Wetting Fluid 32012.1.5 Perfectly Wetting Fluid 32012.1.6 Hysteresis, Metastability and Nucleation 322

12.2 Melting—Solidification 32512.3 Modification of the Critical Temperature 32912.4 Ultraconfinement: Microporous Materials 331References 334

Page 7: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

XVI Contents

13 Supramolecular Chemistry: Applications and ProspectsN. Solladie, J.-F. Nierengarten 33513.1 From Molecular to Supramolecular Chemistry 33513.2 Molecular Recognition 33513.3 Anionic Coordination Chemistry

and Recognition of Anionic Substrates 33813.4 Multiple Recognition 33813.5 Applications 34113.6 Prospects 343References 344

14 Nanocomposites: The End of CompromiseH. Van Damme 34714.1 Composites and Nanocomposites 34714.2 Introduction to Polymers 351

14.2.1 Ideal Chains 35214.2.2 The Glass Transition 35414.2.3 Entropie Elasticity 357

14.3 Nanofillers 35914.3.1 Clays 35914.3.2 Carbon Nanotubes 363

14.4 Strengthening and Permeability Control: Models 36414.4.1 Strengthening: Increasing the Modulus 36414.4.2 Impermeability: Reducing the Diffusivity 367

14.5 Strengthening and Permeabilityof Nanocomposites: Facts and Explanations 36914.5.1 Strengthening: Successes and Failures 36914.5.2 Impermeability 37614.5.3 Dimensional Stability 37714.5.4 Fire Resistance 379

14.6 Conclusion 379References 380

Part III Synthesis of Nanomaterials and Nanoparticles

15 Specific Features of Nanoscale GrowthJ. Livage, D. Roux 38315.1 Introduction 38315.2 Thermodynamics of Phase Transitions 38315.3 Dynamics of Phase Transitions 385

15.3.1 Thermodynamics of Spinodal Decomposition 38615.3.2 Thermodynamics of Nucleation–Growth 388

15.4 Size Control 38915.5 Triggering the Phase Transition 391

Page 8: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

Contents XVII

15.6 Application to Solid Nanoparticles 39215.6.1 Controlling Nucleation 39215.6.2 Controlling Growth 39315.6.3 Controlling Aggregation. Stability of Colloidal Dispersions 393

15.7 Breaking Matter into Pieces 393References 394

16 Gas Phase Synthesis of NanopowdersY. Champion 39516.1 Introduction 39516.2 The Need for Gas State Processing 39716.3 Main Stages of Gas Phase Synthesis 40016.4 Spontaneous Condensation of Nanoparticles: Homogeneous

Nucleation 40116.5 Undesirable Post-Condensation Effects

and Control of the Nanometric State 40816.5.1 Why Do These Effects Occur? 40916.5.2 Particle Growth by Gas Condensation 41016.5.3 Coalescent Coagulation 411

16.6 Vapour Formationand the Production of Nanopowders 41616.6.1 Physical Processes 41616.6.2 Chemical Processing: Laser Pyrolysis 424

16.7 Conclusion 426References 426

17 Synthesis of Nanocomposite Powdersby Gas–Solid Reaction and by PrecipitationC. Laurent 42917.1 Introduction 42917.2 Synthesis of Nanocomposite Powders

by Gas—Solid Reactions 43017.2.1 Synthesis of Intergranular Nanocomposite

and Nano—Nano Composite Powders 43017.2.2 Synthesis of Intragranular and Hybrid

Nanocomposite Powders 43317.3 Conclusion 438References 438

18 Colloidal Methods and Shape AnisotropyD. Ingert 44118.1 Introduction 44118.2 Surfactants 44218.3 Reverse Micelles: Spherical Nanoreactors 44518.4 Factors Affecting Shape Control 448

18.4.1 Effect of the Colloidal Template an Shape Control 448

Page 9: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

XVIII Contents

18.4.2 Effect of Anions on Nanocrystal Growth 44918.4.3 Effect of Molecular Adsorption on Nanocrystalline Growth 451

18.5 Conclusion 452

References 453

19 Mechanical MillingE. Gaffet, G. Le Car 45519.1 Introduction 455

19.1.1 Mechanosynthesis 45519.1.2 Mechanical Activation 455

19.2 Ball Mills 45619.3 Mechanisms 458

19.3.1 Reducing Cristallite Sizes 45819.3.2 Parameters Relevant to Mechanical Alloying

and Activation 45919.3.3 Mechanics of Mechanical Alloying 461

19.4 Materials and Their Applications 46219.4.1 Mechanical Alloying 46219.4.2 Mechanical Activation 462

19.5 Shaping and Densifying Nanomaterials 46419.5.1 Standard Processes 46419.5.2 Mechanically-Activated Field-Activated Pressure-Assisted

Synthesis (MAFAPAS) 46419.6 Severe Plastic Deformation (SPD) 466

19.6.1 High-Pressure Torsion (HPT) 46719.6.2 Equal Channel Angular Pressing (ECAP) 468

19.7 Bulk Mechanical Alloying 46819.8 Synthesis of Nanocomposites by Extrusion, Drawing,

and Embossing 468References 469

20 Supercritical FluidsA. Taleb 47320.1 Definition 47320.2 Physicochemical Properties 475

20.2.1 Solubility 47520.2.2 Viscosity 47720.2.3 Diffusion 47720.2.4 Thermal Conductivity 479

20.3 Applications 47920.3.1 Purification and Extraction 47920.3.2 Synthesis 480

References 484

Page 10: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

Contents XIX

Part IV Fabrication of Nanostructured Bulk Materialsand Nanoporous Materials

21 Bulk Nanostructured MaterialsObtained by Powder SinteringF. Bernard, J.-C. Niepce 48921.1 Sintering 489

21.1.1 Definition 48921.1.2 The Physical Phenomena of Sintering 48921.1.3 Different Sintering Conditions 48921.1.4 Preserving Nanostructure During Sintering 491

21.2 Spark Plasma Sintering (SPS) 49121.2.1 Basic Principle 49121.2.2 Advantages of the SPS Process 49321.2.3 Illustrations in the Field of Nanomaterials 493

References 495

22 Self-Assemblr of Nanomaterials at Macroscopic ScalesA. Courty 49722.1 Fabrication of Nanomaterials 49822.2 2D and 3D Nanomaterial Structures 500

22.2.1 Depositing Nanomaterials an a Solid Substrate 50022.2.2 Forces Inducing Self-Organisation 50222.2.3 Crystal Structure of 2D and 3D Nanomaterials 508

22.3 Conclusion 513References 513

23 Assemblies of Magnetic NanoparticlesJ. Richardi 51523.1 Magnetic Properties of Nanoparticle Assemblies 51523.2 Structure of Magnetic Nanoparticle Assemblies Deposited

Without Field 51923.3 Structure of Magnetic Nanoparticle Assemblies Deposited with

Field 52323.3.1 Perpendicular Field 52323.3.2 Parallel Field 526

References 527

24 Nanostructured CoatingsJ. -P. Riviere 52924.1 Methodology for Malring Superhard Nanostructured Coatings 530

24.1.1 Multilayers with Nanometric Period 53024.1.2 Nanocomposites 532

24.2 Methods of Synthesis 53624.2.1 General Principles 536

Page 11: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

XX Contents

24.2.2 Plasma-Activated Chemical Vapour Deposition (PACVD) . 53924.2.3 Physical Vapour Deposition

by Sputtering and Cathodic Arc 54024.2.4 PVD by Ion Beam Sputtering 544

References 546

25 Dispersion in SolidsD. Babonneau 54925.1 Chemical Methods 550

25.1.1 Synthesis of Doped Glasses 55025.1.2 Sol–Gel Method 551

25.2 Physical Methods 55425.2.1 Ion Implantation 55525.2.2 Vapour Deposition and Sputtering Methods 55925.2.3 Pulsed Laser Deposition 56225.2.4 Low Energy Cluster Beam Deposition (LECBD) 563

References 565

26 Nanoporous MediaJ. Patarin, 0. Spalla, F. Di Renzo 56926.1 Introduction 56926.2 Synthesis of Crystalline Microporous Solids 569

26.2.1 Methods of Synthesis 56926.2.2 The Crystallisation Process Exemplified by Zeolites 57126.2.3 Main Organic Structure-Directing Agents

Used to Synthesise Crystalline Microporous Solids 57326.2.4 Role of Inorganic Cations and Organic Species 57326.2.5 Organic Species and the Template Effect 57426.2.6 Porosity of Zeolites and Related Solids 57626.2.7 Applications of Zeolitic Materials 577

26.3 Synthesis of Ordered Mesoporous Solids 57926.3.1 Methods of Synthesis 57926.3.2 Definition and Role of the Surfactant 58126.3.3 Mechanisms for the Formation of MCM-41 Phase 58226.3.4 Characteristics of Mesoporous Silicas

Obtained in the Presence of Amphiphilic Molecules 58826.3.5 Structural Characterisation of Nanoporous Solids

by X-Ray and Neutron Scattering 58926.4 Conclusion 593References 593

27 Molecular ImprintingV. Dufaud, L. Bonneviot 59727.1 Introduction 59727.2 Fundamental Considerations 598

27.2.1 General Principles 598

Page 12: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

Contents XXI

27.2.2 Role of Complexation Sites During the Imprinting Process . 59927.2.3 Structure and Properties of the Polymer Matrix 602

27.3 Procedures and Methods for Molecular Imprinting 60327.3.1 Imprinted Organic Polymers 60327.3.2 Imprinted Inorganic Matrices 604

27.4 Applications 60827.4.1 Separating a Mixture of Herbicides 60927.4.2 Synthesis of a-Aspartame 60927.4.3 Chiral Separation of Amino Acids by Ligand Exchange

at a Metal Site 61027.4.4 Specific Elimination of Lanthanides and Actinides

in a Highly Radioactive Efiluent 61027.5 Recent Challenges and Progress 612References 613

Part V Applications of Nanomaterials

28 Electronics and ElectromagnetismJ.-C. Nece, D. Givord 61728.1 Multilayer Ceramic Capacitors 617

28.1.1 What Is a Multilayer Ceramic Capacitor? 61728.1.2 Market Requirements 61928.1.3 Constraints Laid Down by these Requirements 62028.1.4 BaTiO3 Ceramic Dielectrics with Nanograins:

The Favoured Solution 62128.2 Magnetic Recording 626

28.2.1 General Operation 62628.2.2 Recording Materials.

Longitudinal and Perpendicular Recording 62728.2.3 Write Heads 62928.2.4 Read Heads 62928.2.5 Disk Drive Motor 630

References 631

29 OpticsP. Maestro, M. Chagny, P.-P. Jobert, H. Van Damme, S. Berthier 63329.1 Cosmetics 633

29.1.1 Introduction 63329.1.2 Nano-Titanium Oxides in Cosmetics: Solar Skin Protection 63329.1.3 Conclusion 635

29.2 Nanophosphors 63529.2.1 Introduction 63529.2.2 Phosphors: General Considerations 63629.2.3 Operating Principle 638

Page 13: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

XXII Contents

29.2.4 Industrial Applications 638

29.2.5 Conclusion 640

29.3 Surface Nanoengineering 640

29.3.1 What Is the Surface Area of a Town? 640

29.3.2 Superhydrophobic Surfaces 64129.3.3 Self-Cleaning and Superhydrophilic Surfaces 64429.3.4 When Concrete Cleans the Air We Breathe 648

29.4 Photonic Crystals 64929.4.1 The Colourful World of Birds and Insects 64929.4.2 Photonic Crystals and Photonic Band Gaps 650

29.4.3 Guides and Cavities 65329.4.4 From Colloidal Crystals to Photonic Crystals 654

References 658

30 MechanicsP. Maestro, E. Gaffet, G. Le Ca6r, A. Mocellin, E. Reynaud,T. Rouxel, M. Soulard, J. Patarin, L. Thilly, F. Lecouturier 66130.1 Silica Precipitates for High-Performance Tyres 661

30.1.1 Fabrication of Silica Precipitates 66130.1.2 Tyres and Other Applications 662

30.2 Ceramic—Metal Composite Welding Supports 66330.2.1 Ceramics 66430.2.2 Reactive Mechanical Alloying

and High-Energy Ball Milling 66530.2.3 Improving Properties 667

30.3 Reinforced Amorphous Matrices 66830.3.1 Not All Materials Are Ordered 66830.3.2 Incorporating Nanoparticles into Amorphous Matrices .... 66930.3.3 Prospects 67330.3.4 The Long Road 675

30.4 Nanoporous Solids as Molecular Springs,Shock Absorbers and Bumpers 67630.4.1 Introduction. 67630.4.2 Basic Idea 67630.4.3 Pressure—Volume Diagram 67730.4.4 Stored Energy and Restored Energy 67830.4.5 Causes of Irreversibility 67930.4.6 Behaviour of the Solid and Liquid 68030.4.7 Practical Applications 683

30.5 High Field Coils 68530.5.1 Specifications for Generating High Pulsed Magnetic Fields . 68530.5.2 Synthesis of Reinforced Copper Matrix Conductors 68730.5.3 Geometry and Microstructure

of Cu/Nb Nanofilamentary Conductors 688

Page 14: (Eds.) Nanomaterials and NanochemistryNanomaterials and Nanochemistry With 461 Figures and 26 Tables R 5 EUROPEAN MATERIALS RESEARCH SOCIETY ei Springer Contents Part I Basic Principles

Contents XXIII

30.5.4 Physical Propertiesof Cu/Nb Nanofilamentary Conductors 690

30.5.5 Conclusion 693References 693

31 Biology and the EnvironmentP. Maestro, P. Couvreur, D. Roux, D. Givord, J.-A. Dalmon,J.-C. Bertolini, F.J. Cadete Santos Aires 69531.1 Inorganic Catalysts for Diesel Engines 69531.2 Nanotechnology and New Medicines 697

31.2.1 Introduction 69731.2.2 Artificial Carriers: Liposomes and Nanoparticles 69731.2.3 Conclusion 701

31.3 Magnetic Nanoparticlesand Biomedical Applications 70131.3.1 Magnetotactic Bacteria 70231.3.2 Homing Pigeons 70231.3.3 Magnetic Separation 70331.3.4 Magnetic Nanoparticles as MRI Contrast Agents 70431.3.5 Magnetic Nanoparticles and Treatment of Tumours 705

31.4 Zeolitic Membranes for Separation Processesand Catalytic Reactors 70631.4.1 Introduction 70631.4.2 Microporous Membranes 70731.4.3 Zeolitic Membranes: Synthesis and Characterisation 70731.4.4 Application to Gas Separation 70831.4.5 Application to a Catalytic Reactor 709

31.5 Metal Nanoparticles and Catalysis 71031.5.1 Synthesis and Characterisation of Pd/Si3N4 Catalysts 71131.5.2 Total Oxidation of Methane:

Implementation in the Laboratory 71331.5.3 Application to Radiant Panels (Infrared Energy Emission) 713

References 715

Index 717