20
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc

EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter [email protected]

Embed Size (px)

Citation preview

Page 1: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

EE 5340Semiconductor Device TheoryLecture 14 – Spring 2011

Professor Ronald L. [email protected]

http://www.uta.edu/ronc

Page 2: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

2

S-R-H net recom-bination rate, U• In the special case where tno = tpo

= to = (Ntvthso)-1 the net rec. rate, U is

)pn( ,ppp and ,nnn where

kTEfiE

coshn2np

npnU

dtpd

dtnd

GRU

oo

oT

i

2i

Page 3: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

3

S-R-H “U” functioncharacteristics• The numerator, (np-ni

2) simplifies in the case of extrinsic material at low level injection (for equil., nopo

= ni2)

• For n-type (no > dn = dp > po = ni

2/no):

(np-ni2) = (no+dn)(po+dp)-ni

2 = nopo - ni

2 + nodp + dnpo + dndp ~ nodp (largest term)

• Similarly, for p-type, (np-ni2) ~

podn

Page 4: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

4

S-R-H rec forexcess min carr• For n-type low-level injection and

net excess minority carriers, (i.e., no > dn = dp > po = ni

2/no),

U = dp/tp, (prop to exc min carr)• For p-type low-level injection and

net excess minority carriers, (i.e., po > dn = dp > no = ni

2/po),

U = dn/tn, (prop to exc min carr)

Page 5: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

Minority hole lifetimesMark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991

The parameters used in the fit are

τo = 10 μs,

Nref = 1×1017/cm2, and

CA = 1.8×10-31cm6/s.

2DAorefD

op NCNN1 τ

ττ

©rlc L14-08Mar2011

5

Page 6: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

Minority electron lifetimesMark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991

The parameters used in the fit are

τo = 30 μs,

Nref = 1×1017/cm2, and

CA = 8.3×10-32 cm6/s.

2DAorefD

on NCNN1 τ

ττ

©rlc L14-08Mar2011

6

Page 7: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

Minority Carrier Lifetime, Diffusion Length and Mobility Models in Silicon

A. [40%] Write a review of the model equations for minority carrier (both electrons in p-type and holes in n-type material) lifetime, mobility and diffusion length in silicon. Any references may be used. At a minimum the material given in the following references should be used.Based on the information in these resources, decide

which model formulae and parameters are the most accurate for Dn and Ln for electrons in p-type material, and Dp and Lp holes in n-type material.

 B. [60%] This part of the assignment will be given by

10/12/09. Current-voltage data will be given for a diode, and the project will be to determine the material parameters (Nd, Na, charge-neutral region width, etc.) of the diode.©rlc L14-

08Mar20117

Page 8: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

References for Part ADevice Electronics for Integrated Circuits, 3rd ed., by Richard S.

Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003.

Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991.

D.B.M. Klaassen; “A UNIFIED MOBILITY MODEL FOR DEVICE SIMULATION”, Electron Devices Meeting, 1990. Technical Digest., International 9-12 Dec. 1990 Page(s):357 – 360.

David Roulston, Narain D. Arora, and Savvas G. Chamberlain “Modeling and Measurement of Minority-Carrier Lifetime versus Doping in Diffused Layers of n+-p Silicon Diodes”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-29, NO. 2, FEBRUARY 1982, pages 284-291.

M. S. Tyagi and R. Van Overstraeten, “Minority Carrier Recombination in Heavily Doped Silicon”, Solid-State Electr. Vol. 26, pp. 577-597, 1983. Download a copy at Tyagi.pdf.

©rlc L14-08Mar2011

8

Page 9: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

9

S-R-H rec fordeficient min carr• If n < ni and p < pi, then the S-R-H

net recomb rate becomes (p < po, n < no):

U = R - G = - ni/(2t0cosh[(ET-Efi)/kT])• And with the substitution that the

gen lifetime, tg = 2t0cosh[(ET-Efi)/kT], and net gen rate U = R - G = - ni/tg

• The intrinsic concentration drives the return to equilibrium

Page 10: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

10

The ContinuityEquation• The chain rule for the total time

derivative dn/dt (the net generation rate of electrons) gives

n,kz

jy

ix

n

is gradient the of definition The

.dtdz

zn

dtdy

yn

dtdx

xn

tn

dtdn

Page 11: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

11

The ContinuityEquation (cont.)

vntn

dtdn then

,BABABABA Since

.kdtdz

jdtdy

idtdx

v

is velocity vector the of definition The

zzyyxx

Page 12: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

12

The ContinuityEquation (cont.)

etc. ,0xx

dtd

dtdx

x

since ,0dtdz

zdtdy

ydtdx

xv

RHS, the on term second the gConsiderin

.vnvnvn as

ddistribute be can operator gradient The

Page 13: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

13

The ContinuityEquation (cont.)

.Equations" Continuity" the are

Jq1

tp

dtdp and ,J

q1

tn

dtdn

So .Jq1

tn

vntn

dtdn

have we ,vqnJ since ly,Consequent

pn

n

n

Page 14: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

14

The ContinuityEquation (cont.)

z).y,(x,at p

or n of Change of Rate Local explicit"" the

is , RHS, on the first term The

z).y,(x, spacein point particular aat por

n of Rate GenerationNet therepresents

Eq. Continuity theof -U,or LHS, The

t

port

n

dt

dp

dt

dn

Page 15: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

15

The ContinuityEquation (cont.)

q).( holes and (-q) electrons for signs

in difference the Note z).y,(x, point

the of" out" flowing ionsconcentrat

p or n of rate local the is Jq1

or

Jq1

RHS, the on term second The

p

n

Page 16: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

16

The ContinuityEquation (cont.)

inflowof rate rate generation net changeof rate Local

:as dinterprete be can Which

n

Udtdn

where , Jq1

dtdn

tn

and p

Udtdp

where , Jq1

dtdp

tp

:as equations continuity the write-re can we So,

n

n

p

p

τ

δ

τ

δ

Page 17: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

17

Review of depletion approximation

Depletion Approx.• pp << ppo, -xp < x

< 0• nn << nno, 0 < x

< xn

• 0 > Ex > -2Vbi/W,

in DR (-xp < x <

xn)

• pp=ppo=Na &

np=npo= ni2/Na, -

xpc< x < -xp

• nn=nno=Nd &

pn=pno= ni2/Nd, xn

< x < xnc

xxn xnc-xpc-xp

0

Ev

Ec

qVbi

EFi

EFn

EFp

Page 18: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

18

Review of D. A. (cont.)

nx

nnax

ppax

px

ndpada

daeff

npeff

bi

xx ,0E

,xx0 ,xxNq E

,0xx ,xxNq

- E

xx ,0E

,xNxN ,NN

NNN

,xxW ,qN

VaV2W

xxn xn

c

-xpc-xp

Ex

-Emax

Page 19: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

19

Forward Bias Energy Bands

1eppkT/EEexpnp ta VV0nnFpFiiequilnon

1/exp 0 ta VV

ppFiFniequilnon ennkTEEnn

Ev

Ec

EFi

xn xnc-xpc -xp 0

q(Vbi-Va)

EFPEFNqVa

x

Imref, EFn

Imref, EFp

Page 20: EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L14-08Mar2011

20

References1 and M&KDevice Electronics for Integrated

Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986. See Semiconductor Device Fundamentals, by Pierret, Addison-Wesley, 1996, for another treatment of the m model.

2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981.

3 and **Semiconductor Physics & Devices, 2nd ed., by Neamen, Irwin, Chicago, 1997.

Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989.