9
Herman L. Guillermety Associates Consulting Engineers document.xls 1 Project: Bridge over Gurabo River ELASTOMERIC BEARINGS 14.4.1 Method A - Design Procedure for Steel Reinforced Bearings. 14.4.1.1 Compressive Stress 300 by dead and live load excluding impact (See Appendix A) Hardness = 60 G = 130 psi L = 8 in W = 26 in 0.50 in No Layer = 4 S = 6.1 1 Average compressive stress A = 208 in2 DL DL + LL (excluding 89.6 kips 431 psi 663 48.2 kips OK 795 psi 14.4.1.2 Compressive Deflection 2.00 in 3.2 % See Figure 14.4.1.2B 0.0640 in Limit of initial compressive Deflection Average compressive strees sc shall satify: sc, TL < GS/b sc, TL < 1,000 psi for steel reinforced be sc, TL < 800 psi for plain pads G, shear modulus of elastomer (psi) at 73 o F (See Table 14.3.1) S, shape factor: LW / 2hri (L+W)) b, Modifying factor hri, Thickness of elastomer layer sc, P/A = average compressive stress on the bearing caused hri = b = PDL = sc = sc = PLL = GS/b = Dc , Instantaneous compressive deflection of be Dc = S ecihri eci , Intantaneous compressive strain in elastom S hri = hrt , Total elastomer thickness in an ela S hri = eci = Dc =

Elastomeric Bearing

Embed Size (px)

DESCRIPTION

Design of Elastomeric Bearing

Citation preview

Page 1: Elastomeric Bearing

Herman L. Guillermety AssociatesConsulting Engineers

document.xls 1

Project: Bridge over Gurabo River 6/20/2005

ELASTOMERIC BEARINGS

14.4.1 Method A - Design Procedure for Steel Reinforced Bearings.

14.4.1.1 Compressive Stress

300

by dead and live load excluding impact (See Appendix A)

Hardness = 60

G = 130 psi

L = 8 in

W = 26 in

0.50 in

No Layer = 4

S = 6.1

1 Average compressive stress

A = 208 in2 DL DL + LL (excluding impact)

89.6 kips 431 psi 663 psi

48.2 kips OK

795 psi

14.4.1.2 Compressive Deflection

2.00 in

3.2 % See Figure 14.4.1.2B

0.0640 in

Limit of initial compressive Deflection

Average compressive strees sc shall satify:

sc, TL < GS/b

sc, TL < 1,000 psi for steel reinforced bearings

sc, TL < 800 psi for plain pads

G, shear modulus of elastomer (psi) at 73oF (See Table 14.3.1)

S, shape factor: LW / 2hri (L+W))

b, Modifying factor

hri, Thickness of elastomer layer

sc, P/A = average compressive stress on the bearing caused

hri =

b =

PDL = sc = sc =

PLL =

GS/b =

Dc , Instantaneous compressive deflection of bearing (in.)

Dc = S ecihri eci , Intantaneous compressive strain in elastomer layer

S hri = hrt , Total elastomer thickness in an elastomeric bearing (in.)

S hri =

eci =

Dc =

A4
Ing. José A. Díaz Berríos: En el código LRFD la sección es la 14.7.6
F41
Ing. José A. Díaz Berríos: Entiendo esta condición nunca se dará ya que para que esto ocurra el strain debe ser mas de 7% el cual es el maximo de las graficas.
Page 2: Elastomeric Bearing

Herman L. Guillermety AssociatesConsulting Engineers

document.xls 2

Initial thickness = 1.94 in 0.035 per layer OK

Final thickness after creep = 1.91 in Creep 35% see Table 14.3.1

14.4.1.3 Shear

Temperature Zone

15 Temperature Rise

25 Temperature Fall

Thermal Coefficient = 0.000006

Length (3 Span) = 86.4 m

0.816 in 1.63 OK

14.4.1.4 Rotation

Rotation Allowable Actual

0.01600 0.0075 OK

0.00492 0 OK

14.4.1.5 Stability

Total thickness of the bearing shall not exceed the smallest of:

for reinforced bearings Total thickness of bearing = 2.00 in OK

L/3 = 2.67 in

W/3 = 8.67 in.

14.4.1.6 Reinforcement

Reinforcement resistance in pounds per linear inch at working stress

in each direction shall not be less than:

for fabric Min. Reinf. Resistance Steel Plate Resistance

for steel OK 0.5 in 0.075 in

850 lb/in 20000 psi

f = 1500 lb/in

14.5 Anchorage

If the design shear force, H, due to bearing deformation exceeds 1/5 of the compressive force P

due to dead load alone, the bearing shall be secured against horizontal movement.

17.92 kips

0.07hri =

oFoF

per oF hrt > 2Ds

Ds = Min thickness of Elastometer = 2 Ds =

qTL,x < 2DC/L

qTL,z < 2DC/W qTL,x 2DC/L

qTL,z 2DC/W

1,400 hri

1,700 hri hri = tsteel =

1,700 hri = Fa =

PDL / 5 =

F53
Ing. José A. Díaz Berríos: Se compora contra el numero de layer del bearing pad
G56
Ing. José A. Díaz Berríos: Se debe comparar contra las pendientes de la rasante del puente
Page 3: Elastomeric Bearing

Herman L. Guillermety AssociatesConsulting Engineers

document.xls 3

11.035 kips OKH = GADh/hrt =

Page 4: Elastomeric Bearing

Keeper Plate Schedule (for zero rotation on bearing pad)

Min. Slope 0.016

PG t1 t2 t1 t2 Slope

Structure Elevation Span Slope in in in in Check

A1 7.698 0.75 1.06 3/4 1 1/16 0.03906

P1 BACK 8.835 29.1 0.039 0.75 1.06 3/4 1 1/16 0.03906

P1 FWD 8.835 0.75 0.95 3/4 15/16 0.02344

P2 BACK 9.553 29.4 0.024 0.75 0.95 3/4 15/16 0.02344

P2 FWD 9.553 0.75 0.75 3/4 3/4 0

P3 BACK 9.846 29.4 0.010 0.75 0.75 3/4 3/4 0

P3 FWD 9.846 0.75 0.75 3/4 3/4 0

P4 BACK 9.993 29.4 0.005 0.75 0.75 3/4 3/4 0

P4 FWD 9.993 0.75 0.75 3/4 3/4 0

P5 BACK 10.137 29.4 0.005 0.75 0.75 3/4 3/4 0

P5 FWD 10.137 0.75 0.75 3/4 3/4 0

P6 BACK 10.019 29.4 -0.004 0.75 0.75 3/4 3/4 0

P6 FWD 10.019 0.90 0.75 7/8 3/4 -0.0156

P7 BACK 9.47 29.4 -0.019 0.90 0.75 7/8 3/4 -0.0156

P7 FWD 9.47 1.02 0.75 1 3/4 -0.0313

P7 BACK 8.488 29.4 -0.033 1.02 0.75 1 3/4 -0.0313

P7 FWD 8.488 1.13 0.75 1 1/8 3/4 -0.0469

A2 7.09 29.1 -0.048 1.13 0.75 1 1/8 3/4 -0.0469

D6
Si es menor que slope min no es necesario corregir el keeper plate y se dja de un ancho constante
Page 5: Elastomeric Bearing

Appendix A

From Simple (Page 4)

Live Load Reactions

Distribution factor 1.157

Truck axle loads control / lane: 97.098 kips

Additional live load / beam 0 kips

Number of lanes 3

Number of girders 7

Total LL excluding Impact 337.03 kips

LL excluding Impact/beam 48.15 k/beam

Dead Loads

Total dead load at left support 627.246 k

DL / beam 89.607 k/beam

Page 6: Elastomeric Bearing