12
ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2, 2014

ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

Embed Size (px)

Citation preview

Page 1: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

ELEC1300

1

Electrical Engineering 1

Friday Revision Lecture 11Maximum Power Transfer theorems in a.c.

CircuitsAnd Power in a.c. Circuits

Semester 2, 2014

Page 2: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,
Page 3: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

3ELEC13002014

Announcements• Week 12: Lab 6 (AC Power, Reactive Power)– Complicated lab– Read notes– Watch video

• Pre Lab 6 Quiz, due 2pm Mon 27 Oct

Page 4: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

4ELEC13002014

Outline• Further notes on Reactive Power

Compensation• RMS Values• Maximum Power Transfer• Real, Reactive and Complex Power• Lab 6: Power in AC Circuits

Page 5: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

5ELEC13002014

Reactive Power Compensation Example

• Vs (Voltage supply, 11kVrms)• Load A: Induction furnace, 500kVA, PF= 0.6 lagging• Load B: 300kW Motor, PF=0.8 lagging• Load C: Capacitor for ‘reactive power compensation’Questions:1. Without compensation (Load C absent) find the overall real

power, reactive power, power factor and |Is|?

2. Find the value for the capacitance, as load C, that will improve the power factor to 0.9. What is |Is|in this case?

IS

VS Load A Load B Load C

Page 6: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

6ELEC13002014

Reactive Power Compensation Example

Method:1. Draw up power

table2. Compute all

elements in table

IS

11kVA:500kVA0.6pf

B:300kW0.8pf

C

Item P (kW)

Q (kVAR)

|S|(kVA)

pfcos(θ)

θ

500 0.6A

300 0.8B

cos( )pf S P jQ

2 2| |S P Q | | cos( )P S

| | sin( )Q S

53.13°300 400

36.87°375225

A+B 600 625 866.39 0.6925 46.17°

Page 7: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

7ELEC13002014

Reactive Power Compensation ExampleMethod:1. Draw up power

table2. Compute all

elements in table3. Derive further

quantities needed

Item P (kW)

Q (kVAR)

|S|(kVA)

pfcos(θ)

θ

500 0.6A

300 0.8B

cos( )pf S P jQ

2 2| |S P Q | | cos( )P S

| | sin( )Q S

53.13°300 400

36.87°375225

A+B 600 625 866.39 0.6925 46.17°

| | | || I |S V

Without compensation:• real power = 600kW• reactive power = 625kVAR• power factor = 0.6925 (lagging)• |Is|= 866.39 (kVA)/11kV = 78.76 A

Page 8: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

8ELEC13002014

Reactive Power Compensation ExampleMethod:1. Draw up power table2. Compute all

elements in table3. Derive further

quantities needed4. Extend table to

include compensation

Item P (kW)

Q (kVAR)

|S|(kVA)

pfcos(θ)

θ

500 0.6A

300 0.8B

53.13°300 400

36.87°375225

A+B 600 625 866.39 0.6925 46.17°

0 0C -90°

A+B+C 600 0.9 25.84°290.59 666.67

| | cos( )P S cos( )pf | | sin( )Q S

-334.41

| || I | 60.61

| V |S

SA

Page 9: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

9ELEC13002014

Reactive Power Compensation ExampleIS

11kV 500kVA0.6pf

300kW0.8pf

C

Method:1. Draw up power table2. Compute all

elements in table3. Derive further

quantities needed4. Extend table to

include compensation

5. From Qc and line voltage, find C

334.41Q kVAR

*C CQ imag V I

*

CC

C

Vimag V

Z

*

*1/ ( )C CV V

imagj C

2

CQ V C

22 C

QC

f V

2

334.41

2 50 11

kC

k

8.80 F

Page 10: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

10ELEC13002014

RMS Values

Suppose v(t) is a periodic “sawtooth” waveform.

What is the period of v(t)?What is the r.m.s. value of v(t)?If v(t) is the voltage across an 8 resistor, what is the average power?

12Vv(t)

t5mS 10mS 15mS

Page 11: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

11ELEC13002014

Maximum Power Transfer Theoremin a.c. Circuits

• Maximum power will be delivered to a load when the load impedance is the complex conjugate of the Thévenin or Norton impedance of the a.c. circuit.So if:

ZTh = (3 + j4) then ZL =

ZTh = (-j5) then ZL =

ZTh = 5 then ZL =

Page 12: ELEC1300 1 Electrical Engineering 1 Friday Revision Lecture 11 Maximum Power Transfer theorems in a.c. Circuits And Power in a.c. Circuits Semester 2,

12ELEC13002014

Example: 2009 Final Exam1. Find the impedance, which when connected across

points a and b, will give maximum power transfer

2. Find the real power in the load under this condition.

2kW10H

5mF

4cos(200t+30°)A

a

b