33
Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava Ostrava, Czech Republic COST F2 Conference ”Electrochemical Sensors for Flow Diagnostics” Florence, Italy November 2001, 7 th -9 th

Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Embed Size (px)

Citation preview

Page 1: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Electrochemical diagnostics of dissolved oxygen diffusion

Kamil Wichterle and Jana Wichterlová

Department of Chemistry, VSB-Technical University of Ostrava Ostrava, Czech Republic

COST F2 Conference

”Electrochemical Sensors for Flow Diagnostics”Florence, Italy

November 2001, 7th-9th

Page 2: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

O2 + 2 H2O + 4e- 4 OH-

Page 3: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

[C/mol]]m[

[A]

sm

mol22 FzS

iM

Electric current

Faraday constant

Area of the cathode

Stoichiometric coefficient

Oxygen flow

Page 4: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

• Convection in a shear flow layer (Lévēque)

• Convection in a critical point (Levich)• Unsteady diffusion to the semiinfinite

space (Cotrel)• Steady diffusion through a finite layer• Unsteady diffusion through a finite layer

Page 5: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Convection in a shear flow layer (Lévēque)

Concentration c0

Shear rate

Circular cathode, zero concentration

Velocity profile

vxγ = dv/dx

Page 6: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

31

32

0865.0

d

DM

c

Diffusion coefficient

Concentration

Shear rate

Cathode diameter

Oxygen flow

Convection in a shear flow layer (Lévēque)

Page 7: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Convection in a critical point (Levich)

Concentration c0

Rotation speed Ω

Concentration 0

Rotating disc electrode

Page 8: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Density

Convection in a critical point (Levich)

ConcentrationRotation speed

Viscosity

Rotating disc electrode

216

1

32

06205.0

DM c

Diffusion coefficient

Oxygen flow

Page 9: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

0

5

10

15

20

25

30

-1.2-1-0.8-0.6-0.4-0.20

V (SCE)

A/m2

3000 RPM

2000 RPM

1000 RPM

400 RPM

100 RPM

Rotating disc electrode (RDE)

H2O2 + 2e- 2 OH-

O2 + 2 H2O + 2e- H2O2 + 2 OH-

O2 + 2 H2O + 4e- 4 OH-

2 H2O + 2e- H2 + 2 OH-

Page 10: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

1

2

3

4

0 10 20 30 40 50 60T [oC]

D [10-9

m2/s]

Diffusivity of oxygen

RDA measurement

● water saturated by oxygen

● water saturated by air

Page 11: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Unsteady diffusion to the semiinfinite space (Cotrel)

Time t=0, concentration c0 everywhere

Time t>0, polarization, concentration c=0 at the cathode

Time t=0, switching the electrochemical cell - on

Diffusion starts, decreasing electric current

Page 12: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Unsteady diffusion to the semiinfinite space (Cotrel)

21

0564.0

tD

M c

Initial concentration

Diffusion coefficient

Time

Oxygen flow

Page 13: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Steady diffusion through a finite layer(Fick)

hDiffusion coefficient D

concentration c=0 at the cathode

concentration c0* in the environment

concentration c0 at outer layer boundary

h

cDM 0

Oxygen flow

Partial pressure p0* in the environment

h

pPM

*0

Permeability P

Page 14: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

oxygensample

tissue soaked by KCl solution comunicating with the anodic space

Au cathode

Determination of permeability by Fatt (thin samples)

Page 15: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Unsteady diffusion through a finite layerFatt method

1

10

100

1000

0.01 0.1 1 10 100 1000t [s]

i [A]

Diffusion in the electrolyte layer

D ~h2/ttransition

Diffusion in the sample layer

c0 D ~i t1/2

Diffusion through the sample layer

P p0*/h ~ i

Page 16: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Thin samples

• + high current signal

• + short time if saturation

• - significant effect of electrolyte layer

Thick samples• + minor effect of electrolyte layer

• - low current signal

• - long time if saturation

• - inhomogeneous concentration field

Page 17: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Determination of permeability (thick samples)

Electrode driven oxygen diffusion

Oxygen

Page 18: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Determination of permeability (thick samples)

Electrode and inert driven oxygen diffusion

Oxygen

Inert Nitrogen

Page 19: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Au cathode insulation

resin

body of the electrode

polyamide tissue

sample

water saturated by oxygen

grid

sealing

electrolyte 0.01-n K2SO4 saturated by nitrogen

Determination of permeability (thick samples)

Page 20: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Au cathode insulation

resin

body of the electrode

polyamide tissue

sample

water saturated by oxygen

grid

sealing

electrolyte 0.01-n K2SO4 saturated by nitrogen

Determination of permeability (thick samples)

Page 21: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Unsteady diffusion through a finite layer

hDiffusion coefficient D

concentration c=0 at the cathode

concentration c0* in the environment

concentration c0 at outer layer boundary

Oxygen flow for t>0

Partial pressure p0* in the environment

Permeability P

Time t<0 Time t>0

p1*c1*c1

02

22

01

0 exp)1(21k

k th

DkMM

MM

SAMPLE LAYER

Page 22: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Unsteady diffusion through a finite layer

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20t [min]

i *

2/1

2

1388.0th

D

Diffusion coefficient D can be determined from the half time

01

0

MM

MM

t [min]

t1/2

Page 23: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Why not oxygen ?

•low current signal (and background currents)

•variable concentration (temperature, pressure)

•strange reactions (slow response, hysteresis)

•electrode poisoning

Page 24: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Low current signal

due to limited concentration of oxygen

solubility of oxygen at normal pressure :

~ 0.25 mol/m3 from air

~ 1.25 mol/m3 from pure oxygen

(100 times lower than for common salts !)

Page 25: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Background reactions

due to complicated mechanism of oxygen reduction !

due to trace of impurities !

Page 26: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Does the reduction of oxygen correspond to the difference of signals given for mass transfer driven by oxygen and blind current without oxygen ?

icorr = iOxygen - iNitrogen

?

Page 27: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

icorr = iOxygen - iNitrogen

YES ?NO ?

O2 + 2 H2O + 4e- 4 OH-

Page 28: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

0

5

10

15

20

-1.4-1.2-1-0.8-0.6-0.4-0.20

V (SCE)

A/m2

pH = 7

pH = 2pH = 3

pH = 11

pH = 12

O2 + 2 H2O + 4e- 4 OH-

O2 + 2 H2O + 2e- H2O2 + 2 OH-

2 H2O + 2e- H2 + 2 OH-

Effect of OH- ions

Page 29: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Au cathode insulation

resin

body of the electrode

polyamide tissue

sample

water saturated by oxygen

grid

sealing

electrolyte 0.01-n K2SO4 saturated by nitrogen

High signal in inert atmosphere !!!

Probably:2 H2O + 2e- H2 + 2 OH-

In absence of:O2 + 2 H2O + 4e- 4 OH-

Page 30: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Electrode treatment

• Gold? Platinum? Silver?

• Acids? Bases?

• Polarization +- ?

• Emery paper?

Page 31: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Conclusions

• Oxygen works !

• Less accurate results !

• Random impurities cause random behavior !

• Periodical checking of the system is strongly recommended !

Page 32: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Electrochemical diagnostics of oxygen mass transfer suitable for determination of :

• oxygen concentration

• oxygen diffusivity

• oxygen permeability

• oxygen solubility

• essential properties of liquid flow

Page 33: Electrochemical diagnostics of dissolved oxygen diffusion Kamil Wichterle and Jana Wichterlová Department of Chemistry, VSB-Technical University of Ostrava

Thank you for your attention

Kamil Wichterle and Jana Wichterlová

VSB-Technical University of Ostrava Ostrava, Czech Republic