2
Electrochemistry and the Redox Potential R. Corn Chem M3LC 1. Nernst Equation for reductionoxidation (Redox) reactions For example, consider the reaction: !! + !! !! + !! = !"## = ! + These two equations are combined to become the Nernst Equation: !"## = !"## ! where ! = !"## ! The cell potential is related to the ∆G of the reaction. 2. Half Cell Reactions and the Redox Potential The cell potential can be calculated from the difference between two Half Cell Potentials: !! + !! !! + !! !" = !" ! !" ! !" !! !" !! !" = !" ! !" ! !! !! !" !! !"## = !" !" Half Cells are written as reductions. The E 0 s are tabulated based on the normal hydrogen electrode (NHE) scale, which defines ! ! as zero: ! + ! ! !(!) ! = ! ! + !" ! ! ! ! !/! ! ! ! ! = 0 !" is called the Half Cell Potential, or the Redox Potential for the Fe 2+ / Fe 3+ couple. The Redox Potential can be measured in any aqueous system, and sets the concentration ratios of ALL of the redox species in the solution.

Electrochemistry-and-the-Redox-Potential- 1.--Nernst

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electrochemistry-and-the-Redox-Potential- 1.--Nernst

Electrochemistry  and  the  Redox  Potential    R.  Corn  -­‐  -­‐  Chem  M3LC    1.    Nernst  Equation  for  reduction-­‐oxidation  (Redox)  reactions    For  example,  consider  the  reaction:      𝐹𝑒!! + 𝐶𝑒!! → 𝐹𝑒!! + 𝐶𝑒!!    ∆𝐺 = −𝑛𝐹𝐸!"##    ∆𝐺 = ∆𝐺! + 𝑅𝑇𝑙𝑛𝑄    These  two  equations  are  combined  to  become  the  Nernst  Equation:    

𝐸!"## = 𝐸!"##! −𝑅𝑇𝑛𝐹 𝑙𝑛𝑄  

 where    ∆𝐺! = −𝑛𝐹𝐸!"##!    The  cell  potential  is  related  to  the  ∆G  of  the  reaction.      2.  Half  Cell  Reactions  and  the  Redox  Potential    The  cell  potential  can  be  calculated  from  the  difference  between  two  Half  Cell  Potentials:    𝐹𝑒!! + 𝑒 → 𝐹𝑒!!   𝐶𝑒!! + 𝑒 → 𝐶𝑒!!      𝐸!" = 𝐸!"! − !"

!𝑙𝑛 !"!!

!"!!   𝐸!" = 𝐸!"! − !"

!𝑙𝑛 !!!!

!"!!  

 𝐸!"## = 𝐸!" − 𝐸!"    Half  Cells  are  written  as  reductions.    The  E0s  are  tabulated  based  on  the  normal  hydrogen  electrode  (NHE)  scale,  which  defines  𝐸!!  as  zero:    

𝐻! + 𝑒 → !!𝐻!(!)    𝐸! = 𝐸!! +

!"!𝑙𝑛 !!!

!/!

!!    𝐸!! = 0    

 𝐸!"  is  called  the  Half  Cell  Potential,  or  the  Redox  Potential  for  the  Fe2+/  Fe3+  couple.    The  Redox  Potential  can  be  measured  in  any  aqueous  system,  and  sets  the  

concentration  ratios  of  ALL  of  the  redox  species  in  the  solution.  

Page 2: Electrochemistry-and-the-Redox-Potential- 1.--Nernst

3.    Electrochemical  Alpha  Fractions  

 The  total  concentration  of  Fe  in  a  solution  is  given  by  𝐶!"!"!:    𝐶!"!"! = 𝐹𝑒!! + 𝐹𝑒!!    This  concentration  is  divided  into  the  oxidized  and  reduced  forms.    The  fraction  of  

the  total  Fe  in  each  form  is  called  the  alpha  fraction:  

 𝛼!"!! =  

!"!!

!!"!"!     𝛼!"!! =  

!"!!

!!"!"!     𝛼!"!! + 𝛼!"!! = 1  

 Using  the  Fe  half  cell  reaction,  we  can  derive  equations  for  the  two  alpha  fractions  

that  depend  on  the  value  of  𝐸!":  

 

𝛼!"!! =   1+ 𝑒𝑥𝑝𝐹𝑅𝑇 𝐸!" − 𝐸!"!

!!

 

 

𝛼!"!! =   1+ 𝑒𝑥𝑝 −𝐹𝑅𝑇 𝐸!" − 𝐸!"!

!!