20
Hamrock, Jacobson and Schmid ©1998 McGraw-Hill RESORTES Entia non multiplicantor sunt prater necessitatum. (No complicar el asumto más de lo necesario.) Galileo Galilee Imagen: Colección de resortes de compresión helicoidales

EM1 631 1998 Resortes Materia Hamrock

Embed Size (px)

DESCRIPTION

Resortes Materia Hamrock

Citation preview

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    RESORTES

    Entia non multiplicantor sunt prater

    necessitatum.

    (No complicar el asumto ms de lo

    necesario.)

    Galileo Galilee

    Imagen: Coleccin de resortes de

    compresin helicoidales

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Un ciclo Esfuerzo-Deformacin

    Curva Esfuerzo Deformacin para

    un ciclo completo

    Text Reference: Figure 16.1, page 737

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Materiales de resortes

    Common name Specification Modulusof

    Elasticity,E, psi

    Shearmodulus ofelasticity,

    G, psi

    Density,, lbf/in.3

    M aximumservice

    temper atureF

    Principal char acteristics

    High car bon steelsMusic wire ASTM A228 30 x 10

    611.5 x 10

    60.283 250 High strength; excellent

    fatigue lifeHard drawn ASTM A227

    30 x 106 11.5 x 106 0.283 250General purpose use; poor

    fatigue lifeStainless steelsMartensitic AISI 410, 420 29 x 106 11 x 106 0.280 500 Unsatisfactory for subzero

    applicationsAustenitic AIAI 301, 302 28 x 106 10 x 106 0.282 600 Good strength at moderate

    temperatures; low stressrelaxation

    Copper-based alloysSpring brass ASTM B134 16 x 10

    66 x 10

    60.308 200 Low cost; high conductivity;

    poor mechanical propertiesPhosphor bronze ASTM B159 15 x 106 6.3 x 106 0.320 200 Ability to withstand repeated

    flexures; popular alloyBeryllium copper ASTM B197 19 x 106 6.5 x 106 0.297 400 High elastic and fatigue

    strength; hardenable.Nickel-based alloys

    Inconel 600 - 31 x 106

    11 x 106

    0.307 600 Good strength; high cor rosionresistance

    Inconel X-750 - 31 x 106

    11 x 106

    0.298 1100 Precipitation hardening; forhigh temperatures

    Ni-Span C - 27 x 106 9.6 x 106 0.294 200 Constant modulus over a widetemperature range

    Tabla 16.1 Propiedades tpicas de materiales comunes para resortes

    Text Reference: Table 16.1, page 738

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Coeficientes de esfuerzos

    Material Size range Constant, Apin. mm m ksi Mpa

    Music wirea

    Oil-tempered wireb

    Hard-drawn wirec

    Chromium vanadiumd

    Chromium siliconee

    0.004-0.250

    0.020-0.500

    0.028-0.500

    0.032-0.437

    0.063-0.375

    0.10-6.5

    0.50-12

    0.70-12

    0.80-12

    1.6-10

    0.146

    0.186

    0.192

    0.167

    0.112

    196

    149

    136

    169

    202

    2170

    1880

    1750

    2000

    2000aSurface is smooth and free from defects and has a bright, lustrous finish.

    bSurface has a slight heat-treating scale that must be removed before plating.

    cSurface is smooth and bright with no visible marks.

    dAircraft-quality tempered wire; can also be obtained annealed.

    eTempered to Rockwel C49 but may also be obtained untempered.

    Tabla Coeficientes usados en Ec. (16.2) para cinco materiales de resortes [Desde

    Design Handbook (1987)]

    Text Reference: Table 16.2, page 739

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Resorte Helicoidal

    Figure Bobina helicoidal (a)

    Alambre recto antes de hacer la

    espira; (b) Alambre embobinado

    mostrando el corte transversal (o

    corte directo); (c) Bobina de

    alambre mostrando el corte

    torsional.

    Text Reference: Figure 16.2, page 741

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Esfuerzos cortante en alambre y bobina

    Figura Esfuerzos cortantes actuando en el alambre y bobina. (a) Carga de torsin

    pura; (b) Carga transversal; (c) Carga torsional y transversal sin efectos de la

    curvatura; (d) t Carga torsional y transversal con los efectos de la curvatura.

    Text Reference: Figure 16.3, page 743

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Ends Used in Compression Springs

    Figura Cuatro tipos de extremos generalmente usados en resortes de

    compresin. (a) Simples; (b) Simples rebajados; (c) Cerrados sir

    rectificar; (d) Cerrados y rectificados.

    Text Reference: Figure 16.4, page 746

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Compression Spring Formulas

    Type of spring endTerm Plain Plain and

    groundSquared or

    closedSquared and

    ground

    Number of end coils, Ne 0 1 2 2T otal number of coils, Nt Na Na+1 Na+2 Na+2Free length, lf pNa+d p(Na+1) pNa+3d pNa+2dSolid length, ls d(Nt+1) dNt d(Nt+1) dNtpitch, p (lf-d)/Na lf/(Na+1) (lf-3d)/Na (lf-2d)/Na

    Table 16.3 Useful formulas for compression springs with four end conditions.

    Text Reference: Table 16.3, page 746

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Lengths and Forces for Compression Springs

    Figure 16.5 Various lengths and forces applicable to helical compression springs. (a)

    Unloaded; (b) under initial load; (c) under operating load; (d) under solid load.

    Text Reference: Figure 16.5, page 747

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Force vs.

    Deflection

    Figure 16.6 Graphical

    representation of

    deflection, force and

    length for four spring

    positions.

    Text Reference: Figure 16.6, page 747

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Buckling Conditions for Compression Springs

    Figure 16.7 Critical buckling conditions for parallel and nonparallel ends of

    compression springs. [From Design Handbook (1987).]

    Text Reference: Figure 16.7, page 748

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Ends for Extension Springs

    Figure 16.8 Ends for extension springs.

    (a) Conventional design; (b) side view of

    Fig. 16.8 (a); (c) improved design over

    Fig 16.8 (a); (d) side view of Fig. 16.8

    (c).

    Text Reference: Figure 16.8, page 756

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Preferred Range of Initial Shear Stress

    Figure 16.10 Preferred range of initial shear stress for various spring indexes [From

    Almen and Laszlo (1936).]

    Text Reference: Figure 16.10, page 757

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Torsion Spring

    Figure 16.11 Helical torsion spring.

    Text Reference: Figure 16.11, page 761

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Leaf Spring

    Figure 16.12 Leaf spring. (a) Triangular-plate, cantilever spring; (b)

    equivalent multiple-leaf spring.

    Text Reference: Figure 16.12, page 765

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Belleville Spring

    Figure 16.13 Typical Belleville spring.

    Text Reference: Figure 16.13, page 768

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Belleville Spring Behavior

    Figure 16.14 Force-deflection response of Belleville spring [From Norton

    (1996)].

    Text Reference: Figure 16.14, page 768

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Stacking of Belleville Springs

    Figure 16.15 Stacking of Belleville spring. (a) In parallel; (b) in series.

    Text Reference: Figure 16.17, page 769

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Dickerman Feed Unit

    Figure 16.16 Dickerman feed unit. [From SME (1984).]

    Text Reference: Figure 16.16, page 770

  • Hamrock, Jacobson and Schmid 1998 McGraw-Hill

    Case Study - Dickerman Feed Unit Spring

    Figure 16.17 Figure used in case study.

    Text Reference: Figure 16.17, page 771