75
Entropy production and fluctuation phenomena  in nonequilibrium systems Haye Hinrichsen Faculty for Physics and Astronomy University of Würzburg, Germany Workshop on Large Fluctuations in Non-Equilibrium Systems MPIPKS Dresden, July 2011

Entropy production and fluctuation phenomena in nonequilibrium

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Entropy production and fluctuation phenomena in nonequilibrium

Entropy production and fluctuation phenomena in nonequilibrium systems

Haye HinrichsenFaculty for Physics and AstronomyUniversity of Würzburg, Germany

Workshop on Large Fluctuations in Non­Equilibrium SystemsMPIPKS Dresden, July 2011

Page 2: Entropy production and fluctuation phenomena in nonequilibrium

In collaboration with:

Andre Barato, ICTP, Trieste, ItalyUrna Basu, SAHA Institute, Kolkata, IndiaRaphael Chetrite, Lyon and CNRSChristian Gogolin, PotsdamPeter Janotta, WürzburgDavid Mukamel, Weizmann Insititute, Israel

Non-equilibrium Dynamics, Thermalization and Entropy ProductionH. Hinrichsen, C. Gogolin, and P. JanottaJ. Phys.: Conf. Ser. 297 012011 (2011)

Entropy production and fluctuation relations for a KPZ interfaceA. C. Barato, R. Chetrite, H. Hinrichsen, and D. MukamelJ. Stat. Mech.: Theor. Exp. P10008 (2010)

Page 3: Entropy production and fluctuation phenomena in nonequilibrium

Outline

1) Introduction to entropy production

2) Fluctuation theorem revisited

3) Entropy production and renormalization

Page 4: Entropy production and fluctuation phenomena in nonequilibrium

Nonequilibrium systemsNonequilibrium systems

T1 T2

μ1 μ2

Flow of heat

… typically driven systems

Flow of particles

Page 5: Entropy production and fluctuation phenomena in nonequilibrium

Environment

Nonequilibrium systemsNonequilibrium systems

System

Page 6: Entropy production and fluctuation phenomena in nonequilibrium

Environment

Nonequilibrium systemsNonequilibrium systems

System

drive

entropy

Page 7: Entropy production and fluctuation phenomena in nonequilibrium

Models of classical nonequilibrium systemsModels of classical nonequilibrium systems

Systementropy

Model

Page 8: Entropy production and fluctuation phenomena in nonequilibrium

Models of classical nonequilibrium systemsModels of classical nonequilibrium systems

Systementropy

Set of configurations Ωsys

(state space)

configurations c∈ sys

Model

Page 9: Entropy production and fluctuation phenomena in nonequilibrium

Models of classical nonequilibrium systemsModels of classical nonequilibrium systems

Systementropy

Model Irreversible dynamics byspontaneous transitions 

at ratecc ' wcc '

Ωsys

Page 10: Entropy production and fluctuation phenomena in nonequilibrium

Configurational entropy 

Environmental entropy            

Total entropy 

S sys t = −ln P c , t

S env t

S tot (t)=Ssys(t )+Senv(t )

EnvironmentSystem

drive

entropy

Page 11: Entropy production and fluctuation phenomena in nonequilibrium

Actual time evolution:

Sequence of transitions(stochastic path)

at times                        

Our partial knowledge:

Probability distribution P(c,t)evolving deterministicallyby the master equation.

c1c2c3 ...cN

t1 , t 2 , t3 , ... , t N

⟨Ssys(t)⟩ = −∑c∈Ωsys

P(c , t) ln P(c , t)

Ssys(t) = −ln P (c(t), t)

ddt

P (c , t) = ∑c '∈Ω

P(c ' , t)wc ' c−P (c ,t )w cc '

Configurational entropy 

Mean entropy

Entropy of the systemEntropy of the system

Page 12: Entropy production and fluctuation phenomena in nonequilibrium

⟨Ssys(t)⟩ = −∑c∈Ωsys

P(c , t) ln P(c , t)

Ssys(t) = −ln P (c(t), t)Configurational entropy 

Mean entropy

Entropy of the systemEntropy of the system

Change of conf. entropy  S sys(t) = −P (c (t), t)P (c (t), t)

−∑j

δ(t−t j) lnP (c j , t )

P (c j−1 , t )

⟨ Ssys(t)⟩ = − ∑c , c '∈Ωsys

P (c ,t )wc→c ' lnP (c ,t )P(c ' , t)

Change of mean entropy

Page 13: Entropy production and fluctuation phenomena in nonequilibrium

Configurational entropy 

Environmental entropy            

Total entropy 

S sys t = −ln P c , t

S env t

S tot (t)=Ssys(t )+Senv(t )

EnvironmentSystem

drive

entropy

??

Page 14: Entropy production and fluctuation phenomena in nonequilibrium

Senv(t) = ∑j

δ(t−t j) lnωc j−1→ c j

ωc j→c j−1

Andrieux and Gaspard, J. Chem. Phys. 2004U. Seifert, PRL 2005

Commonly accepted formula for theCommonly accepted formula for theenvironmental entropyenvironmental entropy

Where does it come from?

Page 15: Entropy production and fluctuation phenomena in nonequilibrium

1976

Page 16: Entropy production and fluctuation phenomena in nonequilibrium
Page 17: Entropy production and fluctuation phenomena in nonequilibrium

X 1 X 2 X N

Page 18: Entropy production and fluctuation phenomena in nonequilibrium

P(c , t)

[X i](t )

probability

concentration

Page 19: Entropy production and fluctuation phenomena in nonequilibrium

Schnakenberg: The master equation

is mapped to a fictitious chemical system evolving according to the law of mass action (= mean field equation)

Fictitious chemical systemFictitious chemical system

ddt

P(c , t) = ∑c '∈Ω

(P(c ' , t)wc '→c−P(c , t)wc→c ')

Isothermal / isochroric   → minimize F.

Page 20: Entropy production and fluctuation phenomena in nonequilibrium

Extent of reactionExtent of reaction = average number of forward reactions c→c' minus backward reactions c'→c.

Brief summary of Schnakenbergs argument (1)Brief summary of Schnakenbergs argument (1)

Thermodynamic fluxThermodynamic flux Conjugate thermodynamic forceConjugate thermodynamic force

Extent of reaction Extent of reaction ξξcc′cc′

Chemical a nityffiChemical a nityffi

Page 21: Entropy production and fluctuation phenomena in nonequilibrium

Compare

with

 → Chemical affinity is chemical potential difference

With  and   

we arrive at:

Brief summary of Schnakenbergs argument (2)Brief summary of Schnakenbergs argument (2)

F = ∑cc '

Acc '˙ξcc ' = −∑

cc '

A cc '˙N cc '

Page 22: Entropy production and fluctuation phenomena in nonequilibrium

Brief summary of Schnakenbergs argument (3)Brief summary of Schnakenbergs argument (3)

In the stationary state                             we have  

With                           . Hence                             turns intoF=∑cc '

Acc '˙ξcc '

E,T constant

Page 23: Entropy production and fluctuation phenomena in nonequilibrium

Brief summary of Schnakenbergs argument (4)Brief summary of Schnakenbergs argument (4)

S=−kB∑c , c '

ξc , c ' ln[X c ' ]wc '→c

[X c ]wc→c '

S = −kB∑c , c '

ξc , c ' ln[X c ' ]

[X c]− kB∑

c , c '

ξc , c ' lnwc '→c

wc→c '

Page 24: Entropy production and fluctuation phenomena in nonequilibrium

Brief summary of Schnakenbergs argument (4)Brief summary of Schnakenbergs argument (4)

⟨ Ssys(t)⟩ = − ∑c , c '∈Ωsys

P (c ,t )wc→c ' lnP(c ' , t)P (c ,t )

⟨ Stot ⟩ = ⟨ S sys⟩ + ⟨ Senv⟩

S=−kB∑c , c '

ξc , c ' ln[X c ' ]wc '→c

[X c ]wc→c '

S = −kB∑c , c '

ξc , c ' ln[X c ' ]

[X c]− kB∑

c , c '

ξc , c ' lnwc '→c

wc→c '

Page 25: Entropy production and fluctuation phenomena in nonequilibrium

Brief summary of Schnakenbergs argument (4)Brief summary of Schnakenbergs argument (4)

⟨ Stot ⟩ = ⟨ S sys⟩ + ⟨ Senv⟩

⟨ Senv(t)⟩ = ∑c , c '∈Ωsys

P(c , t)wc→c ' lnwc→c '

wc '→c

S=−kB∑c , c '

ξc , c ' ln[X c ' ]wc '→c

[X c ]wc→c '

S = −kB∑c , c '

ξc , c ' ln[X c ' ]

[X c]− kB∑

c , c '

ξc , c ' lnwc '→c

wc→c '

⟨ Ssys(t)⟩ = − ∑c , c '∈Ωsys

P (c ,t )wc→c ' lnP(c ' , t)P (c ,t )

Page 26: Entropy production and fluctuation phenomena in nonequilibrium

Environmental entropy productionEnvironmental entropy production

⟨ Senv(t) ⟩ = ∑c ,c '∈Ωsys

P(c , t )wc ,→c ' lnwc→c '

wc '→ c

Senv(t) = ∑j

δ(t−t j) lnwc j−1→ c j

wc j→c j−1

Important consequence:

Irreversible transitions do not exist.In Nature, there are no „absorbing states“.

Page 27: Entropy production and fluctuation phenomena in nonequilibrium

totTotal state space

sysSystem state space

EnvironmentSystem

drive

Explaining entropy productionExplaining entropy productionin terms of microstatesin terms of microstates

Page 28: Entropy production and fluctuation phenomena in nonequilibrium

Simplest example:Simplest example:

Stochastic clock in a stationary state

Page 29: Entropy production and fluctuation phenomena in nonequilibrium

Counting the number of cycles, we may think of a linear chain of transitions

Page 30: Entropy production and fluctuation phenomena in nonequilibrium

Each configuration corresponds to a certain number of configurations of the environment.

Page 31: Entropy production and fluctuation phenomena in nonequilibrium

Assume equal rates among all transitions

Page 32: Entropy production and fluctuation phenomena in nonequilibrium

Subsystem is driven by an entropic force.

wcc '

wc 'c

=N c ' N c

Page 33: Entropy production and fluctuation phenomena in nonequilibrium

Environmental entropy production 

wcc '

wc 'c

=N env c '

N env c S env = −ln N env c '

ln N envc

S env = lnwcc '

wc 'c

Page 34: Entropy production and fluctuation phenomena in nonequilibrium

Senv(t) = ∑j

δ(t−t j) lnωc j−1→ c j

ωc j→ c j−1

Question

Under which conditions is this formula correct?

Page 35: Entropy production and fluctuation phenomena in nonequilibrium

  Answer:Answer:

●  The formula is correct if the environment The formula is correct if the environment       equilibrates instantaneouslyequilibrates instantaneously after each transition. after each transition.

●  In realistic systems this is not necessarily true.In realistic systems this is not necessarily true.

●  The formula could provide an upper bound in the   The formula could provide an upper bound in the     long­time limit (ongoing research)long­time limit (ongoing research)

Senv(t) = ∑j

δ(t−t j) lnωc j−1→ c j

ωc j→ c j−1

Question:Question: Under which conditions is Under which conditions is this formula correct? this formula correct?

Page 36: Entropy production and fluctuation phenomena in nonequilibrium

// Example: biased random walkconst double p=0.3;int x=0; double S_env=0;...if (rnd()<p)

{x++;S_env += ln(p)/ln(1­p)}

else{x­­;S_env ­= ln(p)/ln(1­p);}

Environmental entropy production is easily accessible in numerical simulations.

Whenever the configuration changes, simply add  lnwc→c '

wc '→c

p1-p

Page 37: Entropy production and fluctuation phenomena in nonequilibrium

Ssys(t ) = −P (c (t ), t)P (c (t ), t)

−∑j

δ(t−t j) lnP(c j , t)

P(c j−1 , t)

Senv(t) = ∑j

δ(t−t j) lnωc j→ c j+1

ωc j+1→ c j

Stot (t ) = −P (c (t ), t)P (c (t ), t)

−∑j

δ(t−t j) lnP (c j , t)wc j−1→c j

P (c j−1 , t)wc j→c j−1

No entropy production in the stationary state       Detailed balance↔

Page 38: Entropy production and fluctuation phenomena in nonequilibrium

Two equivalent definitions of detailed balance:Two equivalent definitions of detailed balance:

Probability currents in the stationary state cancel 

pairwise:

∀ c ,c '∈ :

P cwcc ' = P c ' wc 'c

For each closed stochastic path                                    

the product of all rates along this path is equal to the product of 

the rates in reverse direction

wc1c2wc2c3

...wcN−1cNwcNc1

=

wcNcN−1wcN−1cN−2

...wc2c1wc1cN

c1 c2 ...cN c1

●   does not rely on P(c)●   difficult to prove●   easy to disprove

●   requires knowledge of P(c)●   easy to prove 

Page 39: Entropy production and fluctuation phenomena in nonequilibrium

2. Fluctuation theorem revisited

Page 40: Entropy production and fluctuation phenomena in nonequilibrium

t

Stot(t)

t

ΔStot(t)

Second law: 

but it fluctuates ­ sometimes even in opposite direction

⟨ S tot ⟩ ≥0

Page 41: Entropy production and fluctuation phenomena in nonequilibrium

t

Stot(t)

t

ΔStot(t)

P(ΔStot)

ΔStot

Page 42: Entropy production and fluctuation phenomena in nonequilibrium

t

Stot(t)

t

ΔStot(t)

P(ΔStot)

ΔStot

P S tot

P − S tot= e S tot

Fluctuation theorem:

Page 43: Entropy production and fluctuation phenomena in nonequilibrium

To prove the fluctuation theorem, 

1)   prove it for a single transition c↔c'

2)   show that it will hold for any sequence       of transitions

YAP ­ yet another proofYAP ­ yet another proofof the fluctuation relationof the fluctuation relation

P (Δ Stot)

P(−ΔS tot)= eΔ S tot

Page 44: Entropy production and fluctuation phenomena in nonequilibrium

c c'

First step:Consider a single transition c↔c'

Page 45: Entropy production and fluctuation phenomena in nonequilibrium

P(ΔStot)

ΔStot

First step:Consider a single transition c↔c'

c c'

Page 46: Entropy production and fluctuation phenomena in nonequilibrium

P(ΔStot)

ΔStot

S tot = lnP cwcc '

P c ' wc 'c

P S tot ∝ P c wcc '

P − S tot ∝ P c ' wc 'c

P S tot

P − S tot = exp S tot

c c'

Fluctuation theorem holds trivially !

Page 47: Entropy production and fluctuation phenomena in nonequilibrium

Second step: Show that the FR holds for any sequence.

 Prove invariance under → convolution:

f x = f −x e x

g x =g −x e x

f∗g x = ∫ f ( y)g(x− y)dy

= ∫ f (− y)e y g(−x+ y)ex− y

= ex∫ f (−y)g( y−x)dy

= ex∫ f ( y)g(− y−x)dy = ex(f∗g)(−x)

Page 48: Entropy production and fluctuation phenomena in nonequilibrium

Fluctuation relation

­ holds exactly for the total entropy

­ holds approximately for the environmental entropyproduction in a non­equilibrium steady state in

the long time limit

P(Δ Senv)

P(−Δ Senv)≈ exp(Δ Senv)

P S tot

P − S tot= exp S tot

Distribution itself is system­dependent

Page 49: Entropy production and fluctuation phenomena in nonequilibrium

3. Entropy production and renormalization

Page 50: Entropy production and fluctuation phenomena in nonequilibrium

Arrow can be interpreted as ' time'

Contact process:

A → 2A2A → AA → 0

Example: Directed percolation (DP)Example: Directed percolation (DP)

Bonds openwith probability p

Toy model for epidemic spreading

Page 51: Entropy production and fluctuation phenomena in nonequilibrium

Absorbing states         Infinite entropy production↔

Page 52: Entropy production and fluctuation phenomena in nonequilibrium

Renormalization scheme for DP by logical ORRenormalization scheme for DP by logical OR

Page 53: Entropy production and fluctuation phenomena in nonequilibrium

Let               be the probability to find adjacent blocks of size mat time t in the bit pattern p.

Example:

         

P101(5)

000101001010000001011010110

1     1    0    1    1

Pp(m)(t )

Page 54: Entropy production and fluctuation phenomena in nonequilibrium

Let               be the probability to find adjacent blocks of size mat time t in the bit pattern p.

Example:

In a critical DP process                increases with timewhile all other decrease with time.

                                   saturates as 

P101(5)

000101001010000001011010110

1     1    0    1    1

Pp(m)(t )

P000(m) (t )

S p(m)(t) :=

P p(m)(t)

1−P000(m)(t)

t→∞

Page 55: Entropy production and fluctuation phenomena in nonequilibrium

Perform two limits:Perform two limits:

1. Take time  

2. Take block size  

Observation: These quantities are universal.

S p(m) := lim

t→∞S p(m)(t) =

Pp(m)(t)

1−P000(m)(t )

t→∞

m→∞

S p* := lim

m→∞S p(m)

Page 56: Entropy production and fluctuation phenomena in nonequilibrium

t→∞

Page 57: Entropy production and fluctuation phenomena in nonequilibrium

m→∞

Page 58: Entropy production and fluctuation phenomena in nonequilibrium

Useful for:

● Verification whether a given model belongs to DP● Definition of a „clean“ contact process

Number of bits Number of univ. quantities

2 2

3 5

4 9

5 17

Page 59: Entropy production and fluctuation phenomena in nonequilibrium

space

time

Page 60: Entropy production and fluctuation phenomena in nonequilibrium

space

time

Page 61: Entropy production and fluctuation phenomena in nonequilibrium

space

time

Page 62: Entropy production and fluctuation phenomena in nonequilibrium

space

time

Page 63: Entropy production and fluctuation phenomena in nonequilibrium

space

time

0 1 →

1 0 →

Page 64: Entropy production and fluctuation phenomena in nonequilibrium

space

time

0 1 →

1 0 →

Page 65: Entropy production and fluctuation phenomena in nonequilibrium

space

time

0 1 →

1 0 →

Page 66: Entropy production and fluctuation phenomena in nonequilibrium

space

time

0 1 →

1 0 →

Page 67: Entropy production and fluctuation phenomena in nonequilibrium

space

time

0 1 →

1 0 →

w100

w111

Effective transition rates  wp in the coarse­grained dynamics

Page 68: Entropy production and fluctuation phenomena in nonequilibrium

There are

● Reversible transitions 110   111↔

● Irreversible transitions 010   000↔

● Impossible transitions 000   010→

The allowed transitions are expected to decreasewith increasing block size.

Example: Effective 3­bit ratesExample: Effective 3­bit rates

Page 69: Entropy production and fluctuation phenomena in nonequilibrium

Example: Effective 3­bit ratesExample: Effective 3­bit rates

m=4

m=32

t→∞

Page 70: Entropy production and fluctuation phenomena in nonequilibrium

Example: Effective 3­bit ratesExample: Effective 3­bit rates

Page 71: Entropy production and fluctuation phenomena in nonequilibrium

Example: Effective 3­bit ratesExample: Effective 3­bit rates

Observation:

1.   The irreversible rates decrease faster than       the reversible rates with increasing block size.

w prev∼m−2 , w p

irr∼m−2.6

Page 72: Entropy production and fluctuation phenomena in nonequilibrium

Example: Effective 3­bit Example: Effective 3­bit currentscurrents

Page 73: Entropy production and fluctuation phenomena in nonequilibrium

Example: Effective 3­bit Example: Effective 3­bit currentscurrents

m→∞

Page 74: Entropy production and fluctuation phenomena in nonequilibrium

Observation:Observation:

1.   The irreversible currents decrease faster than       the reversible currents with increasing block size.

2.  The reversible currents approach each other     as if they would satisfy detailed balance     in the limit  

J prev∼m−2 , J p

irr∼m−2.6

m→∞

Page 75: Entropy production and fluctuation phenomena in nonequilibrium

Summary

●   The commonly accepted formula for environmental     entropy production holds only if the environment    equilibrates instantaneously.

●  The fluctuation theorem is a property that it is invariant   under convolution.

● It is very difficult (although not impossible) to find other    physical quantities which obey the fluctuation theorem.

● Directed percolation has infinite entropy production.  Under block renormalization, however, the currents of   irreversible transitions vanish faster while reversible transitions  seem to approach detailed balance.